Атомный радиус: что такое и как определить. Возрастание атомного радиуса


Периодический закон и система Д.И. Менделеева

1. Слева направо по периоду (см. Таблица Менделеева):

    • металлические свойства простых веществ ослабевают (уменьшаются)
    • неметаллические свойства усиливаются (увеличиваются)
    • радиус атома уменьшается (атомное сжатие из-за увеличения заряда ядра)
    • электроотрицательность элементов возрастает (самый ЭО элемент - фтор)
    • восстановительные свойства уменьшаются
    • окислительные свойства увеличиваются
    • основные свойства оксидов и гидроксидов уменьшаются
    • Кислотные свойства оксидов и гидроксидовусиливаются
    • идет увеличение числа электронов на внешнем уровне
    • увеличивается максимальная валентность элементов

2. Сверху вниз по группе (см. Таблица Менделеева) (для главной подгруппы):

    • металлические свойства простых веществ усиливаются
    • неметаллические свойства ослабевают
    • радиус атома увеличивается
    • электроотрицательность элементов уменьшается
    • основные свойства оксидов и гидроксидов усиливаются
    • кислотные свойства оксидов и гидроксидов убывают
    • Число электронов на внешнем уровне не меняется

3. К основным оксидам относятся оксиды металлов со степенью окисления +1 и +2

4. К кислотным оксидам относятся оксиды неметаллов и оксиды металлов со степенью окисления +5, +6, +7

5. К амфотерным оксидам относятся Al2O3, BeO, ZnO, Cr2O3

Давайте порассуждаем вместе

1. Как изменяется радиус атома в ряду Be - Mg - Ca ?

1) уменьшается

2) увеличивается

3) не изменяется

4) сначала уменьшается, потом увеличивается

 

Ответ: все элементы находятся в одной группе, сверху вниз, значит радиус атома увеличивается

2. Как изменяются металлические свойства в ряду Li - Be - B?

1) не изменяются

2) сначала усиливаются, потом уменьшаются

3) ослабевают

4) усиливаются

 

Ответ: все элементы находятся в одном периоде слева направо, значит металлические свойства ослабевают

3. Как изменяется электроотрицательность в ряду F - O - N?

1) сначала усиливается, потом ослабевает

2) уменьшается

3) не изменяется

4) усиливается

 

Ответ: все элементы находятся в одном периоде справа налево, значит электроотрицательность уменьшается.

4. Как изменяются неметаллические свойства в ряду As - P - N?

1) уменьшаются

2) не изменяются

3) сначала усиливаются, потом уменьшаются

4) усиливаются

 

Ответ: все элементы находятся в одной группе снизу вверх, значит неметаллические свойства усиливаются

5. Как изменяется число валентных электронов в ряду Li - Na - K?

1) не изменяется

2) увеличивается

3) уменьшается

4) сначала уменьшается, затем увеличивается

 

Ответ: все элементы находятся в одной группе сверху вниз, значит число валентных электронов не изменяется

6. Как изменяются окислительные свойства в ряду O - S - Se?

1) увеличиваются

2) сначала уменьшаются, затем увеличиваются

3) не изменяются

4) уменьшаются

 

Ответ: все элементы находятся в одной группе сверху вниз, значит окислительные свойства уменьшаются

7. Как изменяются восстановительные свойства в ряду Si - Al - Mg?

1) сначала уменьшаются, затем усиливаются

2) увеличиваются

3) не изменяются

4) уменьшаются

 

Ответ: все элементы находятся в одном периоде справа налево, значит восстановительные свойства усиливаются

8. Как изменяются свойства оксидов в ряду MgO -> Al2O3 --> SiO2

1) от основных к кислотным

2) от кислотных к основным

3) от кислотных к амфотерным

4) от основных к амфотерным

 

Ответ: все элементы находятся в одном периоде слева направо, значит свойства оксидов изменяются от основных к кислотным

 

Задания повышенной сложности

 

1. В главных подгруппах периодической системы с увеличением заряда ядра атомов химических элементов происходит:

1) усиление неметаллических свойств

2) усиление металлических свойств

3) высшая валентность элементов остается постоянной

4) изменяется валентность в водородных соединениях

5) уменьшается радиус атомов

 

Ответ: 2, 3

2. В главных подгруппах периодической системы  восстановительная способность атомов увеличивается по мере

1) уменьшения радиуса атома

2) увеличения числа электронных слоев в атомах

3) уменьшения заряда ядра атомов

4) увеличения числа валентных электронов

5) увеличения порядкового номера элемента

 

Ответ: 2, 5

3. В ряду химических элементов Be, Mg, Ca, Sr

1) усиливается способность атомов отдавать электроны

2) уменьшается заряд ядра атомов

3) усиливается восстановительная способность

4) уменьшаются металлические свойства

5) усиливается способность атомов принимать электроны

 

Ответ: 1, 3

4. В ряду химических элементов I, Br, Cl, F восстановительная способность атомов уменьшается, потому что

1) увеличивается радиус атома

2) увеличивается заряд ядра атомов

3) увеличивается число электронных слоев в атомах

4) уменьшается число электронных слоев в атомах

5) уменьшается способность атомов отдавать электроны

 

Ответ: 4, 5

5. В ряду химических элементов As, P, N

1) увеличивается радиус атома

2) увеличивается электроотрицательность

3) усиливаются кислотные свойства их высших оксидов

4) возрастает значение высшей степени окисления

5) увеличивается число электронов во внешнем электронном слое атомов

 

Ответ: 2, 3

6.  В ряду химических элементов  P, N, O

1) уменьшается число электронов во внешнем электронном слое

2) увеличивается электроотрицательность

3) возрастает значение высшей валентности

4) ослабевают неметаллические свойства

5) усиливается способность атомов принимать электроны

 

Ответ: 2, 5

7. В ряду гидроксидов NaOH, Ca(OH)2, Al(OH)3

1) увеличивается термическая стойкость

2) ослабевают основные свойства

3) увеличивается способность к электролитической диссоциации

4) ослабевают окислительные свойства

5) уменьшается растворимость в воде

 

Ответ: 2,5

dx-dy.ru

Понятие о радиусе атома и электроотрицательность элементов

Рассмотрим взаимосвязь между положением элементов в периодической системе и такими свойствами химических элементов, как атомный радиус и электроотрицательность.

Атомный радиус является величиной, которая показывает размер электронной оболочки атома. Это очень важная величина, от которой зависят свойства атомов химических элементов.

В главных подгруппах с увеличением заряда ядра атома происходит увеличение числа электронных уровней, поэтому атомный радиус с увеличением порядкового номера в главных подгруппах увеличивается. В периодах происходит увеличение заряда ядра атома химического элемента, что приводит к усилению притяжения внешних электронов к ядру. Кроме того, с увеличением заряда ядра увеличивается число электронов на внешнем уровне, однако число электронных уровней не увеличивается. Указанные закономерности приводят к сжатию электронной оболочки вокруг ядра. Поэтому атомный радиус с увеличением порядкового номера в периодах уменьшается.

Например, расположим химические элементы O, C, Li, F, N в порядке уменьшения атомных радиусов. Приведенные химические элементы находятся во втором периоде. В периоде атомные радиусы с увеличением порядкового номера уменьшаются. Следовательно, указанные химические элементы надо записать в порядке возрастания их порядковых номеров: Li, C, N, O, F.

Свойства элементов и образуемых ими веществ зависят от числа валентных электронов, равным номеру группы в периодической таблице.

Завершены энергетические уровни, а также внешние уровне, содержащих восемь электронов, имеют повышенную стойкость. Именно этим объясняется химическая инертность гелия, неона и аргона: они вообще не вступают в химические реакции. Атомы всех других химических элементов стремятся отдать подсоединить электроны, чтобы их электронная оболочка оказалась устойчивой, при этом они превращаются в заряженные частицы.

Электроотрицательность - это способность атома в соединениях притягивать к себе валентные электроны, т.е. те электроны, с помощью которых образуются химические связи между атомами. Это свойство обусловлено тем, что атомы стремятся завершить внешний электронный слой и получить энергетически выгодное конфигурацию инертного газа - 8 электронов. Электроотрицательность зависит от способности атомного ядра притягивать электроны внешнего энергетического уровня. Чем сильнее это притяжение, тем электроотрицательность больше. Сила притяжения электронов внешнего энергетического уровня тем больше, чем меньше атомный радиус. Следовательно, изменение электроотрицательности в периодах и главных подгруппах будет противоположная изменении атомных радиусов. Поэтому, в главных подгруппах электроотрицательность с увеличением порядкового номера уменьшается. В периодах с увеличением порядкового номера электроотрицательность увеличивается.

Например, расположим химические элементы Br, F, I, Cl в порядке увеличения электроотрицательности. Приведенные химические элементы находятся в главной подгруппе седьмой группы. В главных подгруппах электроотрицательность с увеличением порядкового номера уменьшается. Следовательно, указанные химические элементы надо записать в порядке уменьшения их порядковых номеров: I, Br, Cl, F.

worldofscience.ru

А почему при перемещении сверху вниз АТОМНЫЕ РАДИУСЫ элементов растут?

Всё просто - при перемещении вниз по группе увеличивается число электронов, а следовательно и занимаемый ими объём. Заряд ядра здесь не играет роли, ведь последний электрон притягивается к ядру зарядом Z протонов, который экранируется зарядом (Z-1) предыдущих электронов, т. е. фактически к одному протону. При этом энергия крайнего электрона большая (он находится на уровень выше, чем такой же электрон у предыдущего атома) , значит находится он дальше, чем в атоме водорода. При перемещении вправо по периоду радиусы уменьшаются как раз из-за того, что внешние электроны расположены на одном и том же энергетическом уровне, а заряд ядра растёт.

Вы о чём? По мере увеличения заряда ядра (увеличения кол-ва протонов) и ко-ва нейтронов, увеличивается объём и масса ядра. Электронов становится больше т. к. больше заряд. Добавляются новые оболочки и объём облака электронов тоже увеличивается. Слева-направо и сверху-вниз увеличивается масса ядра, как следствие, уменьшается его стабильность. Это связано с большим и малым ядерными взаимодействиями. При альфа распаде номер элемента уменьшается на 2 до стабильного 80 (свинец по-моему) , после свинца распад идёт только у некоторых изотопов. И чем тяжелее элемент тем a) он быстрее распадётся b) образует больше альфа-бета-гамма частиц.

Грубо говоря, при увеличении номера в пределах периода новые электроны размещаются на уже имеющихся электронных оболочках, поэтому размеры атома не увеличиваются. При переходе к новому периоду возникает новая электронная оболочка, вследствие чего размер атома становится больше. Ну а более корректно это описывается квантовой механикой.

touch.otvet.mail.ru

Атомные радиусы — Мегаэнциклопедия Кирилла и Мефодия — статья

А́томные ра́диусы — характеристики, позволяющие приближенно оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах.

Под эффективным радиусом атома или иона понимается радиус сферы его действия, причем атом (ион) считается несжимаемым шаром. Используя планетарную модель атома, его представляют как ядро, вокруг которого по орбиталям вращаются электроны. Последовательность элементов в Периодической системе Менделеева соответствует последовательности заполнения электронных оболочек. Эффективный радиус иона зависит от заполненности электронных оболочек, но он не равен радиусу наружной орбиты. Для определения эффективного радиуса представляют атомы (ионы) в структуре кристалла как соприкасающиеся жесткие шары, так что расстояние между их центрами равно сумме радиусов. Атомные и ионные радиусы определены экспериментально по рентгеновским измерениям межатомных расстояний и вычислены теоретически на основе квантово-механических представлений.

Размеры ионных радиусов подчиняются следующим закономерностям:

1. Внутри одного вертикального ряда периодической системы радиусы ионов с одинаковым зарядом увеличиваются с возрастанием атомного номера, поскольку растет число электронных оболочек, а значит, и размер атома.

2. Для одного и того же элемента ионный радиус возрастает с увеличением отрицательного заряда и уменьшается с увеличением положительного заряда. Радиус аниона больше радиуса катиона, поскольку у аниона имеется избыток электронов, а у катиона – недостаток. Например, у Fe, Fe2+, Fe3+ эффективный радиус равен 0, 126, 0, 080 и 0, 067 нм соответственно, у Si4-, Si, Si4+ эффективный радиус равен 0, 198, 0, 118 и 0, 040 нм.

3. Размеры атомов и ионов следуют периодичности системы Менделеева; исключения составляют элементы от № 57 (лантан) до №71 (лютеций), где радиусы атомов не увеличиваются, а равномерно уменьшаются (так называемое лантаноидное сжатие), и элементы от № 89 (актиний) и дальше (так называемое актиноидное сжатие).

Атомный радиус химического элемента зависит от координационного числа. Увеличение координационного числа всегда сопровождается увеличением межатомных расстояний. При этом относительная разность значений атомных радиусов, соответствующих двум разным координационным числам, не зависит от типа химической связи (при условии, что тип связи в структурах со сравниваемыми координационными числами одинаков). Изменение атомных радиусов с изменением координационного числа существенно сказывается на величине объемных изменений при полиморфных превращениях. Например, при охлаждении железа, его превращение из модификации с гранецентрированной кубической решеткой в модификацию с объемно-центрированной кубической решеткой имеющее место при 906 оС, должно сопровождаться увеличением объема на 9%, в действительности увеличение объема составляет 0, 8%. Это связано с тем, что за счет изменения координационного числа от 12 до 8 атомный радиус железа уменьшается на 3%. Т.е., изменение атомных радиусов при полиморфных превращениях в значительной степени компенсируют те объемные изменения, которые должны были бы произойти, если бы при этом не менялся атомный радиус. Атомные радиусы элементов можно сопоставлять только при одинаковом координационном числе.

Атомные (ионные) радиусы зависят также от типа химической связи.

В кристаллах с металлической связью атомный радиус определяется как половина межатомного расстояния между ближайшими атомами. В случае твердых растворов металлические атомные радиусы меняются сложным образом.

Под ковалентными радиусами элементов с ковалентной связью понимают половину межатомного расстояния между ближайшими атомами, соединенными единичной ковалентной связью. Особенностью ковалентных радиусов является их постоянство в разных ковалентных структурах с одинаковыми координационными числами. Так, расстояния в одинарных связях С-С в алмазе и насыщенных углеводородах одинаковы и равны 0, 154 нм.

Ионные радиусы в веществах с ионной связью не могут быть определены как полусумма расстояний между ближайшими ионами. Как правило, размеры катионов и анионов резко различаются. Кроме того, симметрия ионов отличается от сферической. Существует несколько подходов к оценке величины ионных радиусов. На основании этих подходов оценивают ионные радиусы элементов, а затем из экспериментально определенных межатомных расстояний определяют ионные радиусы других элементов.

Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми атомными радиусами считают половину межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой химической связью, т.е. принадлежащими разным молекулам (например, в молекулярных кристаллах).

При использовании в расчетах и построениях величин атомных (ионных) радиусов их значения следует брать из таблиц, построенных по одной системе.

megabook.ru

Понятие о радиусе атома и электроотрицательность элементов

Рассмотрим взаимосвязь между положением элементов в периодической системе и такими свойствами химических элементов, как атомный радиус и электроотрицательность.

Атомный радиус является величиной, которая показывает размер электронной оболочки атома. Это очень важная величина, от которой зависят свойства атомов химических элементов. В главных подгруппах с увеличением заряда ядра атома происходит увеличение числа электронных уровней, поэтому атомный радиус с увеличением порядкового номера в главных подгруппах увеличивается.

В периодах происходит увеличение заряда ядра атома химического элемента, что приводит к усилению притяжения внешних электронов к ядру. Кроме того, с увеличением заряда ядра увеличивается число электронов на внешнем уровне, однако число электронных уровней не увеличивается. Указанные закономерности приводят к сжатию электронной оболочки вокруг ядра. Поэтому атомный радиус с увеличением порядкового номера в периодах уменьшается.

Например, расположим химические элементы O, C, Li, F, N в порядке убывания атомных радиусов. Приведены химические элементы находятся во втором периоде. В периоде атомные радиусы с увеличением порядкового номера уменьшаются. Следовательно, указанные химические элементы надо записать в порядке возрастания их порядковых номеров: Li, C, N, O, F.

Свойства элементов и образуемых ими веществ зависят от числа валентных электронов, равную номеру группы в периодической таблице.

Завершены энергетические уровни, а также внешние уровне, содержащих восемь электронов, имеют повышенную устойчивость. Именно этим объясняется химическая инертность гелия, неона и аргона: они вообще не вступают в химические реакции. Атомы всех других химических элементов стремятся отдать или присоединить электроны, чтобы их электронная оболочка оказалась устойчивой, при этом они превращаются в заряженные частицы.

Электроотрицательность — это способность атома в соединениях притягивать к себе валентные электроны, то есть электроны, посредством которых образуются химические связи между атомами. Это свойство обусловлено тем, что атомы стремятся завершить внешний электронный слой и получить энергетически выгодное конфигурацию инертного газа — 8 электронов.

Электроотрицательность зависит от способности атомного ядра притягивать электроны внешнего энергетического уровня. Чем сильнее это притяжение, тем электроотрицательность больше. Сила притяжения электронов внешнего энергетического уровня тем больше, чем меньше атомный радиус. Следовательно, изменение электроотрицательности в периодах и главных подгруппах будет противоположная изменении атомных радиусов. Поэтому, в главных подгруппах электроотрицательность с увеличением порядкового номера уменьшается. В периодах с увеличением порядкового номера электроотрицательность увеличивается.

Например, расположим химические элементы Br, F, I, Cl в порядке увеличения электроотрицательности. Приведены химические элементы находятся в главной подгруппе седьмой группы. В главных подгруппах электроотрицательность с увеличением порядкового номера уменьшается. Следовательно, указанные химические элементы надо записать в порядке уменьшения их порядковых номеров: I, Br, Cl, F.

 

xn----7sbfhivhrke5c.xn--p1ai

Атомный радиус: что такое и как определить

Чтобы разобраться в вопросе, что в современной науке называется радиусом атома, вспомним, что из себя представляет сам атом. По классическим представлениям в центре атома находится ядро, состоящее из протонов и нейтронов, а вокруг ядра каждый на своей орбите вращаются электроны.

Радиус атома в физике

Поскольку в данной модели строения атома электроны являются пространственно ограниченными частицами, т. е. корпускулами, логично считать атомным радиусом (а. р.) расстояние от его ядра до самой дальней, или внешней, орбиты, по которой вращаются так называемые валентные электроны.

Однако по современным, квантовомеханическим представлениям, определить данный параметр нельзя так однозначно, как это делается в классической модели. Здесь электроны уже не представляются в виде частиц-корпускул, а получают свойства волн, т. е. пространственно-неограниченных объектов. В такой модели точно определить положение электрона просто невозможно. Здесь эта частица уже представляется в виде электронной орбитали, плотность которой меняется, в зависимости от расстояния до ядра атома.

Итак, в современной модели строения атома его радиус нельзя определить однозначно. Поэтому в квантовой физике, общей химии, физике твердого тела и других смежных науках эту величину сегодня определяют как радиус сферы, в центре которой находится ядро, внутри которой сосредоточено 90-98% плотности электронного облака. Фактически это расстояние и определяет границы атома.

Если рассмотреть Периодическую таблицу химических элементов (таблицу Менделеева), в которой приведены атомные радиусы, можно увидеть определенные закономерности, которые выражаются в том, что в пределах периода эти числа уменьшаются слева направо, а в пределах группы они увеличиваются сверху вниз. Такие закономерности объясняются тем, что внутри периода при движении слева направо заряд атома возрастает, что увеличивает силу притяжения им электронов, а при движении внутри группы сверху вниз все больше заполняется электронных оболочек.

Атомный радиус в химии и кристаллографии

Какие бывают виды

Данная характеристика сильно варьируется, в зависимости от того, в какой химической связи состоит атом. Поскольку все вещества в природе в подавляющем своем большинстве состоят из молекул, понятие а. р. используют для определения межатомных расстояний в молекуле. А данная характеристика зависит от свойств входящих в молекулу атомов, т. е. их положения в Периодической системе химических элементов. Обладая разными физическими и химическими свойствами, молекулы образуют все огромное разнообразие веществ.

По сути, эта величина очерчивает сферу действия силы электрического притяжения ядра атома и его внешних электронных оболочек. За пределами этой сферы в действие вступает сила электрического притяжения соседнего атома. Существует несколько типов химической связи атомов в молекуле:

  • ковалентная;
  • ионная;
  • металлическая;
  • ван-дер-ваальсова.

Соответственно этим связям таким же будет и атомный радиус.

Как зависит от типа химической связи

При ковалентной связи АР определяется как половина расстояния между соседними атомами в одинарной химической связи Х—Х, причем Х — это неметалл, ибо данная связь свойственна неметаллам. Например, для галогенов ковалентный радиус будет равен половине межъядерного расстояния Х—Х в молекуле Х2, для молекул селена Se и серы S — половине расстояния Х—Х в молекуле Х8, для углерода С он будет равен половине кратчайшего расстояния С—С в кристалле алмаза.

Данная химическая связь обладает свойством аддитивности, т. е. суммирования, что позволяет определять межъядерные расстояния в многоатомных молекулах. Если связь в молекуле двойная или тройная, то ковалентный АР уменьшается, т. к. длины кратных связей меньше одинарных.

При ионной связи, образующейся в ионных кристаллах, используют значения ионного АР для определения расстояния между ближайшими анионом и катионом, находящимися в узлах кристаллической решетки. Такое расстояние определяется как сумма радиусов этих ионов.

Существует несколько способов определения ионных радиусов, при которых отличаются значения у индивидуальных ионов. Но в результате эти способы дают примерно одинаковые значения межъядерных расстояний. Эти способы или системы были названы в честь ученых, проводивших в этой области соответствующие исследования:

  • Гольдшмидта;
  • Полинга;
  • Белова и Бокия;
  • других ученых.

При металлической связи, возникающей в кристаллах металлов, АР принимаются равными половине кратчайшего расстояния между ними. Металлический радиус зависит от координационного числа К. При К=12 его значение условно принимается за единицу. Для координационных чисел 4, 6 и 8 металлические радиусы одного и того же элемента соответственно будут равны 0.88, 0.96 и 0.98.

Если взять два разных металла и сравнить металлические радиусы их элементов, то близость этих значений друг к другу будет означать необходимое, но недостаточное условие взаимной растворимости этих металлов по типу замещения. Например, жидкие калий К и литий Li в обычных условиях не смешиваются и образуют два жидких слоя, потому что их металлические радиусы сильно различаются (0.236 нм и 0.155 нм соответственно), а калий К с цезием Cs образуют твердый раствор благодаря близости их радиусов (0.236 нм и 0.268 нм).

Ван-дер-ваальсовы АР используют для определения эффективных размеров атомов благородных газов, а также расстояний между ближайшими одноименными атомами, принадлежащими разным молекулам и не связанными химической связью (пример — молекулярные кристаллы). Если такие атомы сблизятся на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, между ними возникнет сильное межатомное отталкивание. Эти радиусы определяют минимально допустимые границы контакта двух атомов, принадлежащих соседним молекулам.

Кроме того, данные АР используют для определения формы молекул, их конформаций и упаковки в молекулярных кристаллах. Известен принцип «плотной упаковки», когда молекулы, образующие кристалл, входят друг в друга своими «выступами» и «впадинами». На основе этого принципа интерпретируются данные кристаллографии и предсказываются структуры молекулярных кристаллов.

Видео

Это полезное видео поможет вам понять, что такое радиус атома.

liveposts.ru

Атомные радиусы элементов - Справочник химика 21

    Как изменяются атомные радиусы элементов в периодах и в группах  [c.22]

    Как меняются атомные радиусы элементов сверху вниз но подгруппе Слева направо по периоду Почему  [c.54]

    Химические свойства оксидов и гидроксидов зависят как от положения соответствующего элемента в периодической системе химических элементов Д. И. Менделеева, так и от его степени окисления. Вам уже известно, что в группах сверху вниз увеличиваются атомные радиусы элементов и, следовательно, возрастают металлические свойства. Особенно это характерно для элементов главных подгрупп. В том же направлении усиливаются основные свойства оксидов и гидроксидов соответству-ЮШ.ИХ элементов. В этом можно убедиться при сравнении свойств элементов, их оксидов и гидроксидов, отраженных в таблице 19. [c.116]

    АТОМНЫЕ РАДИУСЫ ЭЛЕМЕНТОВ [c.32]

    В табл. 21.9 указан ряд важнейших свойств атомов элементов группы 5А. Наблюдаемые в этих свойствах общие закономерности подобны обсуждавшимся ранее для элементов групп 7А и 6А с возрастанием атомного номера элемента в пределах группы происходит увеличение атомного радиуса и металлического характера. Отметим также, что в сравнении с соответствующими элементами групп 6А и 7А атомные радиусы элементов группы 5А больше, а энергии ионизации и электроотрицательности меньше. [c.314]

    Плохая растворимость в воде обусловлена неполярным характером молекул галогенов, слабо способных взаимодействовать с полярными молекулами воды. Они легче растворяются в неполярных растворителях. Вообще если энергия связи между молекулами растворителя (Еаа) больше энергии связи (Едв) между молекулами растворителя А и растворенного вещества В, то вещество В не будет растворяться. Если же ав> аа, то растворение возможно. Как следует из приведенных соотношений, чем меньше атомный радиус элемента, тем лучше растворяется его простое вещество в неполярном растворителе. [c.417]

    На примере атомных радиусов элементов 2-го периода и элементов 1А-подгруппы видна периодичность изменения атомных радиусов с ростом порядкового номера (в максимумах находятся элементы, начинающие период, в минимумах — элементы, заканчивающие период). [c.58]

    Атомные радиусы элементов подгруппы меди невелики / (- =128 пм Лд = / д = 144 пм. (Для сравнения укажем радиусы атомов щелочных металлов, находящихся в четвертом, пятом и шестом периодах, как и элементы подгруппы меди Г = 236 пм, Гр.[,==248 пм / 05 = 268 пм. Поэтому медь, серебро и золото имеют высокие значения энергий ионизации. [c.226]

    Различие между простыми и переходными металлами проявляется уже при сравнении атомных радиусов. /-Элементы характеризуются меньшими значениями радиусов, чем р-металлы. Кроме того, различие атомных радиусов у зр-элементов-аналогов значительно больше, чем у элементов вставных декад. Так, у металлов [А-группы радиусы изменяются от 0,250 для ЯЬ до 0,155 нм у а атомные радиусы всех -элементов — в интервале 0,124 — 0,181 нм. Еще более близки атомные радиусы у /-металлов, что объясняется заполнением третьего снаружи энергетического уровня. Так, все элементы семейства лантаноидов имеют атомные радиусы в пределах 0,174 — 0,183 нм. [c.210]

    Рассчитанные величины ионных и атомных радиусов элементов триад палладия и платины мало различаются как внутри триад (заполнение внутреннего -электронного уровня), так и между триадами (влияние лантанидного сжатия все еще сказывается). Например, для четырехвалентного состояния (формальная степень окисления +4) получены очень близкие друг к другу значения ионных радиусов (для родия степень окисления +4 мало характерна, и поэтому приведено значение радиуса иона Rh4+)  [c.152]

    В периодах системы Д. И. Менделеева атомные радиусы элементов, как правило, уменьшаются с ростом положительного заряда ядра. В подгруппах обычно наблюдается возрастание атомных радиусов сверху вниз, что можно объяснить увеличением числа электронных слоев в атомах. [c.47]

    По мере дальнейшего заполнения -орбиталей электронами эффект -сжатия ослабевает из-за накладывающего отталкивания между электронами. На орбитали в состоянии ° (в меньшей мере ) существенно влияет эффект проникающей к ядру пары s , которая, экранируя заряд ядра, стабилизирует состояние -орбитали. С этим связано возрастание атомных радиусов элементов, стоящих в конце периодов (в подгруппах меди и особенно цинка). [c.491]

    Вследствие лантаноидной контракции атомные радиусы последующих -элементов аномально малы. Аналогично лантаноидной контракции можно отметить и существование -сжатия. Это явление, однако, выражено слабее, что объясняется, во-первых, относительно большим удалением -оболочки от ядра, а во-вторых, меньшей плотностью -состояний по сравнению с /-уровнем. Поэтому эффект -контракции заметен лишь у элементов 1-й вставной декады и проявляется в уменьшении атомного радиуса последующего элемента галлия (0,125 нм) по сравнению с его предшествующим аналогом — алюминием (0,142 нм). На значениях атомных радиусов элементов, следующих за 2-й и 3-й декадами, -контракция практически не сказывается. [c.371]

    В периоде атомные радиусы элементов уменьшаются слева направо, что видно, например, при рассмотрении атомных радиусов элементов [c.57]

    Объясните тенденции в изменениях атомных радиусов элементов при движении  [c.548]

    Постройте график зависимости атомных радиусов элементов I и VII групп от их порядкового номера (см. рис. 6.6). Какие выводы можно сделать на основании рассмотрения этого графика  [c.106]

    Одной из причин большего сходства между собой соединений (простых и сложных) платиновых металлов, чем соединений тяжелых триад и триады железа, конечно, является все еще продолжающее сказываться влияние лантанидного сжатия. Как видно из табл. 1.15, атомные радиусы элементов триад палладия и платины почти одина-Koebij хотя и существенно отличаются от таких же величин у атомов элементов подгруппы железа. [c.111]

    Благородные газы (образующие нулевую группу) в отличие от остальных неметаллов существуют в элементарном состоянии в виде индивидуальных атомов. Поэтому атомные радиусы элементов нулевой группы нельзя сопоставлять с радиусами других неметаллических элементов. Установлено, что ковалентный радиус ксенона в ХеР равен 1,30А. Вероятные ковалентные радиусы других благородных газов могут быть получены экстраполяцией этого значения для ксенона в предположении, что они изменяются в пределах этой группы аналогично тому, как это имеет место для неметаллических элементов других групп. Полученные таким образом значения ковалентных (а не атомных ) радиусов благородных газов приведены на рис. 6.6, что позволяет сопоставить их с радиусами других неметаллов. [c.98]

    В основу наиболее современной шкалы электроотрицательностей Сандерсона положены порядковый номер и атомный радиус элементов. [c.103]

    В периодической системе элементов наблюдается увеличение сродства к электрону и электроотрицательности при переходе слева направо вдоль каждого из периодов, что соответствует возрастанию заряда ядра элементов и, следовательно, числа их валентных электронов, а также уменьшению размеров атомов. Сродство к электрону и электроотрицательность достигают максимальных значений у галогенов — элементов седьмой группы, а затем резко убывают до нуля при переходе к благородным газам — элементам нулевой группы. Другая закономерность изменения сродства к электрону и электроотрицательности заключается в том, что они увеличиваются при переходе снизу вверх вдоль каждой группы периодической системы, что соответствует уменьшению атомного радиуса элементов. В связи с этим следует ожидать, что наибольшей способностью к восстановлению должен характеризоваться фтор. Способность к восстановлению [c.323]

    Если исходить из модели плотной упаковки шаров, то можно определить атомный радиус элемента (как половину расстояния между соседними атомами). Атомный радиус металла оказывается значительно больше его ионного радиуса в каком-либо соединении. Например, радиус иона натрия в кристаллах поваренной соли равен 0,9 A, а его атомный радиус в кристалле металлического натрия равен 1,89 А. Это говорит о том, что одноименные заряженные ионы металла в металлическом кристалле не могут сближ 1ться так же тесно, как разноименные ионы в ионных соединениях. [c.48]

    Чем объясняется близость атомных радиусов /-элементов V периода и /-элементов VI периода одной группы  [c.132]

    Что касается дегидрогенизации циклогексана на металлических катализаторах, то мультиплетная теория выражает ее секстетной моделью (рис. 17), в которой происходит совпадение элементов симметрии молекулы и грани кристаллической решетки. Согласно этой теории, только те металлы являются катализаторами дегидрогенизации, которые кристаллизуются в кубической системе с центрированными гранями или в гексагональной системе (в обеих системах есть грани, состоящие из равносторонних треугольников), причем все три молекулы водорода отрываются одновременно, или, правильнее сказать, продукт реакции отходит от активной поверхности только после отщепления третьей молекулы водорода. Кроме того, атомные радиусы элементов, являющихся катализаторами этой реакции, лежат в пре- [c.138]

    Критерием правильности служат число и сортность размещения атомов, согласованность межатомных расстояний с атомными радиусами элементов, составляющих кристалл, величина Л-фактора. [c.292]

    В пределах одной и той же -группы атомные радиусы элементов в целом растут. Однако этот рост меньше ожидаемогс более того, атомные радиусы 5 -элeмeнтoв практически равны атомным радиусам их электронных аналогов — 4 -элeмeнтoв. [c.490]

    На примерах молекул галогенов и галогеноводородов, а также кристаллов алмаза, кремния и германия обнаруживается зависимость прочности связи от ее длины, закономерно изменяющаяся с изменением атомных радиусов элементов. При сравнении углерод — углеродных связей обнаруживается влияние дополнительных -связей на 0-связь, проявляющееся в изменении длины и энергии кратных связей. Последние три типа связей в табл. 8 позволяют понять переход от диэлектрических свойств к полупроводниковым в ряду указанных чещестБ. [c.99]

    Для примера рассмотрим атомные радиусы элементов 1А-иодгруппы  [c.57]

    При анализе возможности образования того или иного И. исходят не из конкретных значений геом. факторов и эффективных атомных радиусов, а из табличных для к. ч.= 12 в случае переходных металлов следует иметь в виду, что их атомные радиусы сравнительно мало изменяются в пределах одного периода, поскольку при переходе от элемента к элементу достраиваются внутр. электронные оболочки. Благодаря эффекту лантаноидного сжатия малы различия атомных радиусов элементов 5-го и 6-го периодов, 24 элемента имеют атомные радиусы в пределах 0,125-0,160 нм, и различия между ними составляют 10% и менее. [c.246]

    В периоде атомный радиус элементов уменьшается и растет их электронейтральность. В результате полярности связи Э — ОН в гидроксидах элементов понижается (электронная пара, осупдествляюпдая химическую связь, все труд- [c.190]

    Ададуров [2] пытался выяснить роль носителя в каталитических процессах. Он считает носитель не безразличной подкладкой для катализатора, а приписывает ему функцию деформатора и поляризатора атсмсв и молекул, изменяя при этом свойства последних. Предполагают, что деформирующее действие тем больше, чем меньше атомный радиус и чем выше валентнссть элементов, образующих носитель. С другой стороны, деформируемость катализатора тем больше, чем больше атомный радиус элементов, образуюш 1х катализатор, и чем меньше их заряд. Чем больше деформирующее действие носителя, тем больше изменения, происходящие в энергии активации. [c.124]

    Вторичная периодичность, вызываемая первой из названных причин, выран ается для -элементов в том, что величины орбитальных атомных радиусов -элементов каждой серии оказываются не на одной, а на двух параллельных кривых (см. рис. 3). В первой серии -элементов это кривые Сг—Си (элементы с 45 -электроном) и S —Zn (элементы с 45Чэлектро- [c.29]

    Для приближенного расчета принимается, что ван-дер-ваальсов- кий объем ограничивается наружной поверхностью ряда взаимопроникающих сфер. За радиусы этих сфер принимаются (постоянные) атомные радиусы элементов, нходящих в данную молекулу, а расстояния между центрами, сфер представляют собой (постоянные) длины связей. [c.54]

    Атомные радиусы элементов II группы меньше, чем у элементов группы —Сз, что обусловлено более высокими зарядами ядер (см. табл. 4.2). У металлов II группы по два связывающих электрона, поэтому они имеют более высокие температуры плавления и кипения и более высокую плотность. Энтальпии ионизации и испарения больше, чем у элементов I группы. Тем не менеё высокие энергии решеток и высокие энергии гидратации ионов М - -компенсируют это увеличение. Поэтому металлы сильно электроположительны, проявляют большую химическую активность и отличаются высокими стандартными, электродными потенциалами. [c.269]

    Дополнительное подтверждение описанной теории связи в конденсированных фазах дает изучение молярных объемов и эффективных атомных радиусов элементов (рис. 5.18—5.20). Малые молярные объемы (небольшие межъядерные расстояния), а также высокие температуры плавления и кипения имеют те элементы, у которых число валентных электронов приблизительно равно числу свободных полуорбиталей. [c.204]

chem21.info