Точка на прямой. Точка т лежит на прямой


Взаимное положение точки и прямой

т.А лежит на прямой т.В не лежит (III четверть) т.С выше прямой т.D перед прямой  

Если точка лежит на прямой, то её проекции лежат на одноимённых проекциях прямой.

1. Взаимное положение двух прямых

2 прямые в пространстве могут быть:

а) //,

б) пересекаться,

в) скрещиваться.

Если две прямые //, то их одноимённые проекции также //-ы друг другу.

Если две прямые пересекаются:

Одноимённые проекции двух пересекающихся прямых пересекаются и точки их пересечения лежат на одной линии связи. В противном случае прямые скрещиваются.

2. Проекции плоскостей. Способы задания и изображения плоскости на комплексном чертеже

Определителем плоскости называется совокупность геометрических элементов, однозначно задающих положение плоскости в пространстве.

На комплексном чертеже плоскость задаётся проекциями элементов своего определителя.

Способы задания плоскостей:

1) тремя точками, не лежащими на одной прямой

 

2) прямой и точкой, не лежащей на этой прямой

 

3) двумя пересекающимися прямыми

 

4) двумя параллельными прямыми

 

5) любой плоской фигурой

Мы рассмотрим способы задания плоскости общего положения.

Плоскость считается заданной, если относительно любой точки пространства можно однозначно решить задачу о её принадлежности к этой плоскости.

3. Плоскости частного положения

К плоскостям частного положения относятся // или ^ к какой-либо плоскости проекций.

Плоскость, ^ плоскости проекций, называется проецирующей плоскостью.

^ к П1 – горизонтально проецирующая,

^ к П2 – фронтально проецирующая,

^ к П3 – профильно проецирующая.

горизонтально-проецирующая

Горизонтальные проекции всех точек, линий и фигур, лежащих в плоскости, проецируются на горизонтальную проекцию плоскости – собирательное свойство плоскости.

фронтально-проецирующая

Плоскость, // плоскости проекций, называется плоскостью уровня.

// П1 – горизонтальная плоскость уровня,

// П2 – фронтальная плоскость уровня,

// П3 – профильная плоскость уровня.

4. Точка в плоскости

Точка лежит в плоскости, если она принадлежит прямой, лежащей в этой плоскости.

5. Линии в плоскости

Среди множества прямых, лежащих в плоскости общего положения, можно выделить прямые частного положения.

Через любую точку плоскости общего положения всегда проходит 1 горизонталь, фронталь и профильная прямая уровня.

6. Параллельность прямой и плоскости

Прямая // плоскости, если в плоскости можно провести прямую, // данной.

1) Чаще всего приходится отвечать на вопрос: параллельны ли между собой заданная плоскость и прямая. Для этого на одной проекции плоскости проводится проекция прямой // проекции заданной прямой. Затем, из условия принадлежности прямой плоскости строится её вторая проекция и определяется, параллельна ли она второй проекции заданной прямой.

2) построить прямую, // данной плоскости

например, Задача имеет решений

1) через заданную точку провести плоскость // данной прямой

1) m||l Q(m,n)||l

7. Параллельность плоскостей

Плоскости параллельны друг другу, если 2 пересекающиеся прямые одной плоскости //-ы двум пересекающимся прямым другой плоскости.

1) через заданную точку провести плоскость // данной.

2) заданы 2 плоскости, надо определить параллельны ли они между собой.

8. Классификация многогранников

Многогранником называется тело, ограниченное плоскими многоугольниками.

Многогранник называется выпуклым, если весь он лежит по одну сторону от плоскости любой его грани.

Многогранник называется правильным, если его боковые грани являются правильными многоугольниками.

Платон открыл 5 правильных выпуклых многогранников:

1) тетраэдр (четырёхгранник) – правильная треугольная пирамида;

2) гексаэдр(куб) – 8 вершин, 6 граней – квадратов;

3) октаэдр(8ми-гранник) – 6 вершин, 8 граней – треугольников;

4) икосаэдр(20ти-гранник) – 12 вершин, 20 граней – треугольников;

5) додекаэдр(12ти-гранник) – 20 вершин, 12 граней – пятиугольников.

Среди неправильных многогранников наибольший интерес представляют:

1) призмы – боковые рёбра // друг другу, а боковыми гранями являются параллелограммы;

2) пирамиды - боковые рёбра пересекаются в одной точке вершины;

3) призматоиды– многогранники, ограниченные какими-либо двумя многоугольниками, расположенными в //-ных плоскостях, называемыми основаниями, и треугольниками или трапециями, вершинами которых служат вершины оснований.

9. Изображение многогранников на комплексном чертеже

Многогранник на комплексном чертеже изображается проекциями своих вершин и рёбер.

Для придания однозначности чертежу вершины необходимо пронумеровать, а рёбра обвести с учётом видимости. Для определения видимости рёбер надо воспользоваться конкурирующими точками.

10. Понятие о поверхности

В математике под поверхностью понимается непрерывное множество точек, между координатами которых может быть установлена зависимость, определяемая в декартовой системе координат уравнением вида F(x,y,z)=0.

Похожие статьи:

poznayka.org

точки а б и ц принадлежат прямой л. Докажите что данные точки расположены в одной плоскости

Ха ха ха! Дело в том что ЛЮБЫЕ три точки (не обязательно лежащие на одной прямой) ВСЕГДА лежат в одной плоскости (ибо плоскость и задается тремя точками {не лежащими на одной прямой}).

Аксиома 2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. Т. е. у нас две точки а и б, принадлежащие прямой л, лежат в какой-то плоскости. То и точка с, принадлежащая прямой л, лежит в той же плоскости.

Плоскость определяется, разумеется, тремя точками. Но! если они (точки) НЕ лежат на одной прямой. Прямая л, которой принадлежат точки а, б и ц, может принадлежать N числу плоскостей, а стало быть и такому же числу плоскостей. Вывод делай сама

touch.otvet.mail.ru

Точка на прямой

Комплексный чертеж точки, находящейся на прямой. Точку на прямой можно рассматривать как одну из точек, принадлежащих этой прямой. Пусть дан отрезок АВ и его проекции А1В1 и А2В2. На отрезке АВ лежит точка С, требуется определить ее проекции. Так как точка принадлежит отрезку, то ее проекции будут лежать на одноименных проекциях отрезка (фиг.211,а).

Проведем через точку С проектирующие прямые, получим горизонтальную проекцию С1 точки С на горизонтальной проекции А1В1отрезка АВ и фронтальную проекцию С2 на фронтальной проекции А2В2 (фиг.211,б). Рассматривая комплексный чертеж точки С, замечаем, что обе проекции С1 и С2 лежат на одной вертикальной линии связи, как проекции одной и той же точки. Если одна (фиг.211,в) или две проекции (фиг.211,г) точки не лежат на одноименных проекциях отрезка, то точка не лежит на отрезке. Следовательно, для того чтобы точка лежала на прямой, необходимо, чтобы проекции этой точки не только лежали на одноименных проекциях прямой, но и находились на одной линии связи. Это правило имеет исключение в том случае, когда точка лежит на горизонтальной прямой, данной фронтальной и профильной проекциями, на фронтальной прямой, данной горизонтальной и профильной проекциями, или профильной прямой, данной горизонтальной и фронтальной проекциями.

Тогда, для того чтобы определить, лежит ли точка на прямой, необходимо построить третью проекцию. На (фиг.212) видно, что точка Е не лежит на отрезке АВ, так как профильная проекция Е3 точки Е не лежит на профильной проекции А3В3 отрезка АВ; точка F лежит на отрезке АВ, так как не только ее горизонтальная F1 фронтальная F2, но и профильная F3 проекции лежат на одноименных проекциях отрезка АВ.

Параллельные прямые.....



 

www.viktoriastar.ru