Трапеция. Свойства трапеции. Свойства высоты в трапеции равнобедренной


Равнобедренная трапеция | Треугольники

Что такое равнобедренная трапеция и каковы ее свойства?

Определение.

Равнобедренная трапеция — это трапеция, у которой боковые стороны равны.

Еще равнобедренную трапецию называют равнобокой (или равнобочной) трапецией.

рисунокравнобедреннойтрапеции

ABCD — равнобедренная трапеция.

AD и BC — основания трапеции,

AB и CD — её боковые стороны,

AB=CD.

Перечислим основные свойства равнобедренной трапеции.

Свойства равнобедренной трапеции:

1) Углы при основании равнобедренной трапеции равны.

∠A=∠D, ∠B=∠C

2) Сумма противолежащих углов равнобедренной трапеции равна 180º.

∠A+∠C=180º, ∠B+∠D=180º

3) Диагонали равнобедренной трапеции равны.

AC=BD

 

4) Около любой равнобедренной трапеции можно описать окружность.

Кроме основных, у равнобедренной трапеции есть и другие свойства. Например, можно доказать один раз и в дальнейшем использовать при решении задач следующее утверждение:

Высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований.

AD=a, BC=b

   

   

 

 

Признаки равнобедренной трапеции:

1) Если углы при основании трапеции равны, то она — равнобедренная.

2) Если сумма противолежащих углов трапеции равна 180º, то она — равнобедренная.

3) Если диагонали трапеции равны, то она — равнобедренная.

4) Если около трапеции можно описать окружность, то она — равнобедренная.

www.treugolniki.ru

Трапеция. Свойства, признаки трапеции | Подготовка к ЕГЭ по математике

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны.Если боковые стороны равны, трапеция называется равнобедренной.

Трапеция,  у которой есть  прямые углы при боковой стороне, называется прямоугольной.

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.

 

Свойства трапеции

 

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия –

Отношение площадей этих треугольников есть .

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

 

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции

 

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

 

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная  окружность

 

Если в трапецию вписана окружность с радиусом   и она делит боковую сторону точкой касания на два отрезка —  и ,  то

 

Площадь

 

или где   – средняя линия

Смотрите хорошую подборку  задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Смотрите также площадь трапеции.

egemaximum.ru

Трапеция

\[{\Large{\text{Произвольная трапеция}}}\]

Определения

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.

 

Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.

 

Теоремы: свойства трапеции

 

1) Сумма углов при боковой стороне равна \(180^\circ\).

 

2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.

 

Доказательство

1) Т.к. \(AD\parallel BC\), то углы \(\angle BAD\) и \(\angle ABC\) – односторонние при этих прямых и секущей \(AB\), следовательно, \(\angle BAD +\angle ABC=180^\circ\).

 

2) Т.к. \(AD\parallel BC\) и \(BD\) – секущая, то \(\angle DBC=\angle BDA\) как накрест лежащие.Также \(\angle BOC=\angle AOD\) как вертикальные.Следовательно, по двум углам \(\triangle BOC \sim \triangle AOD\).

Докажем, что \(S_{\triangle AOB}=S_{\triangle COD}\). Пусть \(h\) – высота трапеции. Тогда \(S_{\triangle ABD}=\frac12\cdot h\cdot AD=S_{\triangle ACD}\). Тогда: \[S_{\triangle AOB}=S_{\triangle ABD}-S_{\triangle AOD}=S_{\triangle ACD}-S_{\triangle AOD}=S_{\triangle COD}\]

 

Определение

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

 

Теорема

Средняя линия трапеции параллельна основаниям и равна их полусумме.

 

Доказательство*С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

 

1) Докажем параллельность.

 

Проведем через точку \(M\) прямую \(MN'\parallel AD\) (\(N'\in CD\)). Тогда по теореме Фалеса (т.к. \(MN'\parallel AD\parallel BC, AM=MB\)) точка \(N'\) — середина отрезка \(CD\). Значит, точки \(N\) и \(N'\) совпадут.

 

2) Докажем формулу.

 

Проведем \(BB'\perp AD, CC'\perp AD\). Пусть \(BB'\cap MN=M', CC'\cap MN=N'\).

 

Тогда по теореме Фалеса \(M'\) и \(N'\) — середины отрезков \(BB'\) и \(CC'\) соответственно. Значит, \(MM'\) – средняя линия \(\triangle ABB'\), \(NN'\) — средняя линия \(\triangle DCC'\). Поэтому: \[MM'=\dfrac12 AB', \quad NN'=\dfrac12 DC'\]

Т.к. \(MN\parallel AD\parallel BC\) и \(BB', CC'\perp AD\), то \(B'M'N'C'\) и \(BM'N'C\) – прямоугольники. По теореме Фалеса из \(MN\parallel AD\) и \(AM=MB\) следует, что \(B'M'=M'B\). Значит, \(B'M'N'C'\) и \(BM'N'C\) – равные прямоугольники, следовательно, \(M'N'=B'C'=BC\).

 

Таким образом:

\[MN=MM'+M'N'+N'N=\dfrac12 AB'+B'C'+\dfrac12 C'D=\] \[=\dfrac12 \left(AB'+B'C'+BC+C'D\right)=\dfrac12\left(AD+BC\right)\]

Теорема: свойство произвольной трапеции

Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.

 

Доказательство*С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

 

1) Докажем, что точки \(P\), \(N\) и \(M\) лежат на одной прямой.

 

Проведем прямую \(PN\) (\(P\) – точка пересечения продолжений боковых сторон, \(N\) – середина \(BC\)). Пусть она пересечет сторону \(AD\) в точке \(M\). Докажем, что \(M\) – середина \(AD\).

 

Рассмотрим \(\triangle BPN\) и \(\triangle APM\). Они подобны по двум углам (\(\angle APM\) – общий, \(\angle PAM=\angle PBN\) как соответственные при \(AD\parallel BC\) и \(AB\) секущей). Значит: \[\dfrac{BN}{AM}=\dfrac{PN}{PM}\]

Рассмотрим \(\triangle CPN\) и \(\triangle DPM\). Они подобны по двум углам (\(\angle DPM\) – общий, \(\angle PDM=\angle PCN\) как соответственные при \(AD\parallel BC\) и \(CD\) секущей). Значит: \[\dfrac{CN}{DM}=\dfrac{PN}{PM}\]

Отсюда \(\dfrac{BN}{AM}=\dfrac{CN}{DM}\). Но \(BN=NC\), следовательно, \(AM=DM\).

 

2) Докажем, что точки \(N, O, M\) лежат на одной прямой.

 

Пусть \(N\) – середина \(BC\), \(O\) – точка пересечения диагоналей. Проведем прямую \(NO\), она пересечет сторону \(AD\) в точке \(M\). Докажем, что \(M\) – середина \(AD\).

 

\(\triangle BNO\sim \triangle DMO\) по двум углам (\(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac{BN}{MD}=\dfrac{ON}{OM}\]

Аналогично \(\triangle CON\sim \triangle AOM\). Значит: \[\dfrac{CN}{MA}=\dfrac{ON}{OM}\]

Отсюда \(\dfrac{BN}{MD}=\dfrac{CN}{MA}\). Но \(BN=CN\), следовательно, \(AM=MD\).

\[{\Large{\text{Равнобедренная трапеция}}}\]

Определения

Трапеция называется прямоугольной, если один из ее углов – прямой.

 

Трапеция называется равнобедренной, если ее боковые стороны равны.

 

Теоремы: свойства равнобедренной трапеции

1) У равнобедренной трапеции углы при основании равны.

 

2) Диагонали равнобедренной трапеции равны.

 

3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.

 

Доказательство

1) Рассмотрим равнобедренную трапецию \(ABCD\).

Из вершин \(B\) и \(C\) опустим на сторону \(AD\) перпендикуляры \(BM\) и \(CN\) соответственно. Так как \(BM\perp AD\) и \(CN\perp AD\), то \(BM\parallel CN\); \(AD\parallel BC\), тогда \(MBCN\) – параллелограмм, следовательно, \(BM = CN\).

 

Рассмотрим прямоугольные треугольники \(ABM\) и \(CDN\). Так как у них равны гипотенузы и катет \(BM\) равен катету \(CN\), то эти треугольники равны, следовательно, \(\angle DAB = \angle CDA\).

 

2)

 

Т.к. \(AB=CD, \angle A=\angle D, AD\) – общая, то по первому признаку \(\triangle ABD=\triangle ACD\). Следовательно, \(AC=BD\).

 

3) Т.к. \(\triangle ABD=\triangle ACD\), то \(\angle BDA=\angle CAD\). Следовательно, треугольник \(\triangle AOD\) – равнобедренный. Аналогично доказывается, что и \(\triangle BOC\) – равнобедренный.

 

Теоремы: признаки равнобедренной трапеции

1) Если у трапеции углы при основании равны, то она равнобедренная.

 

2) Если у трапеции диагонали равны, то она равнобедренная.

 

Доказательство

Рассмотрим трапецию \(ABCD\), такую что \(\angle A = \angle D\).

 

Достроим трапецию до треугольника \(AED\) как показано на рисунке. Так как \(\angle 1 = \angle 2\), то треугольник \(AED\) равнобедренный и \(AE = ED\). Углы \(1\) и \(3\) равны как соответственные при параллельных прямых \(AD\) и \(BC\) и секущей \(AB\). Аналогично равны углы \(2\) и \(4\), но \(\angle 1 = \angle 2\), тогда \(\angle 3 = \angle 1 = \angle 2 = \angle 4\), следовательно, треугольник \(BEC\) тоже равнобедренный и \(BE = EC\).

 

В итоге \(AB = AE - BE = DE - CE = CD\), то есть \(AB = CD\), что и требовалось доказать.

 

2) Пусть \(AC=BD\). Т.к. \(\triangle AOD\sim \triangle BOC\), то обозначим их коэффициент подобия за \(k\). Тогда если \(BO=x\), то \(OD=kx\). Аналогично \(CO=y \Rightarrow AO=ky\).

 

Т.к. \(AC=BD\), то \(x+kx=y+ky \Rightarrow x=y\). Значит \(\triangle AOD\) – равнобедренный и \(\angle OAD=\angle ODA\).

 

Таким образом, по первому признаку \(\triangle ABD=\triangle ACD\) (\(AC=BD, \angle OAD=\angle ODA, AD\) – общая). Значит, \(AB=CD\), чтд.

 

shkolkovo.net

Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике - Планиметрия

Основные определения и свойства трапеций

Тип утвержденияФигураРисунокФормулировка
ОпределениеТрапеция

Трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны.

      Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции

ОпределениеДиагоналитрапецииДиагоналями трапеции называют отрезки, соединяющие противоположные вершины трапеции
ОпределениеВысотатрапецииВысотой трапеции называют перпендикуляр, опущенный из любой точки одного оснований трапеции на другое основание или его продолжение
СвойствоТочка пересечения диагоналей

Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой

Более подробно об этом свойстве

ОпределениеСредняя линиятрапецииСредней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции
Свойство

Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме

Посмотреть доказательство

СвойствоБиссектрисы углов при боковой стороне трапецииБиссектрисы углов при боковой стороне трапеции перпендикулярны
Трапеция

Определение: Трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны.

Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции

Диагонали трапеции

Определение: Диагоналями трапеции называют отрезки, соединяющие противоположные вершины трапеции

Высота трапеции

Определение: Высотой трапеции называют перпендикуляр, опущенный из любой точки одного оснований трапеции на другое основание или его продолжение

Точка пересечения диагоналей

Свойство: Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой

Более подробно об этом свойстве

Средняя линия трапеции

Определение: Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции

Свойство: Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме

Посмотреть доказательство

Биссектрисы углов при боковой стороне трапеции

Свойство: Биссектрисы углов при боковой стороне трапеции перпендикулярны

      Подробнее со свойствами средней линии трапеции можно ознакомиться в разделе нашего справочника «Средняя линия трапеции».

      В разделе нашего справочника «Типы четырёхугольников» представлена схема классификации трапеций. В том же разделе представлена таблица, в которой описаны всевозможные типы трапеций.

Свойства и признаки равнобедренных трапеций

Тип утвержденияФигураРисунокФормулировка
ОпределениеРавнобедренная трапецияРавнобедренной трапецией называют трапецию, у которой боковые стороны равны.
СвойствоРавенство углов при основанииЕсли трапеция является равнобедренной, то углы при каждом из её оснований равны.
ПризнакЕсли у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной.
СвойствоРавенство диагоналейЕсли трапеция является равнобедренной, то её диагонали равны.
ПризнакЕсли у трапеции диагонали равны, то она является равнобедренной
СвойствоУглы, которые диагонали образуют с основаниямиЕсли трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований.
ПризнакЕсли диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной.
СвойствоОписанная окружностьЕсли трапеция является равнобедренной, то около неё можно описать окружность.
ПризнакЕсли около трапеции можно описать окружность, то она является равнобедренной.
СвойствоВысоты трапецииОснования высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований
Определение: Равнобедренная трапеция
Равнобедренной трапецией называют трапецию, у которой боковые стороны равны.
Свойство: равенство углов при основании
Если трапеция является равнобедренной, то углы при каждом из её оснований равны.
Признак: равенство углов при основании
Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной.
Свойство: равенство диагоналей
Если трапеция является равнобедренной, то её диагонали равны.
Признак: равенство диагоналей
Если у трапеции диагонали равны, то она является равнобедренной
Свойство: углы, которые диагонали образуют с основаниями
Если трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований.
Признак: углы, которые диагонали образуют с основаниями
Если диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной.
Свойство: описанная окружность
Если трапеция является равнобедренной, то около неё можно описать окружность.
Признак: описанная окружность
Если около трапеции можно описать окружность, то она является равнобедренной.
Свойство: высоты трапеции
Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований
Равнобедренная трапеция

Определение: Равнобедренной трапецией называют трапецию, у которой боковые стороны равны.

Равенство углов при основании

Свойство: Если трапеция является равнобедренной, то углы при каждом из её оснований равны.

Признак: Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной.

Равенство диагоналей

Свойство: Если трапеция является равнобедренной, то её диагонали равны.

Признак: Если у трапеции диагонали равны, то она является равнобедренной.

Углы, которые диагонали образуют с основаниями

Свойство: Если трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований.

Признак: Если диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной.

Описанная окружность

Свойство: Если трапеция является равнобедренной, то около неё можно описать окружность.

Признак: Если около трапеции можно описать окружность, то она является равнобедренной.

Высоты трапеции

Свойство: Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Трапеция. Свойства и элементы трапеции

Виды трапеций

Равнобедренная трапеция — это вид трапеции с равными боковыми сторонами.

Также встречаются такие названия, как равнобокая или равнобочная.

Прямоугольная трапеция — это трапеция, у которой углы при боковой стороне прямые.

Элементы трапеции

a, b — основания трапеции (a параллельно b),

m, n — боковые стороны трапеции,

d1, d2 — диагонали трапеции,

h — высота трапеции (отрезок, соединяющий основания и при этом перпендикулярен им),

MN — средняя линия (отрезок, соединяющий середины боковых сторон).

Площадь трапеции

  1. Через полусумму оснований a, b и высоту h: S = \frac{a + b}{2}\cdot h
  2. Через среднюю линию MN и высоту h: S = MN\cdot h
  3. Через диагонали d1, d2 и угол (\sin \varphi) между ними: S = \frac{d_{1} d_{2} \sin \varphi}{2}

Свойства трапеции

Средняя линия трапеции

Средняя линия параллельна основаниям, равна их полусумме и разделяет каждый отрезок с концами, находящимися на прямых, которые содержат основания, (к примеру, высоту фигуры) пополам:

MN || a, MN || b, MN = \frac{a + b}{2}

Сумма углов трапеции

Сумма углов трапеции, прилежащих к каждой боковой стороне, равна 180^{\circ}:

\alpha + \beta = 180^{\circ}

\gamma + \delta =180^{\circ}

Равновеликие треугольники трапеции

Равновеликими, то есть имеющими равные площади, являются отрезки диагоналей и треугольники AOB и DOC, образованные боковыми сторонами.

Подобие образованных треугольников трапеции

Подобными треугольниками являются AOD и COB, которые образованы своими основаниями и отрезками диагоналей.

\triangle AOD \sim \triangle COB

Коэффициент подобия k находится по формуле:

k = \frac{AD}{BC}

Причем отношение площадей этих треугольников равно k^{2}.

Отношение длин отрезков и оснований

Каждый отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции, поделен этой точкой в отношении:

\frac{OX}{OY} = \frac{BC}{AD}

Это будет являться справедливым и для высоты с самими диагоналями.

Описанная около трапеции окружность

Каждая равнобокая трапеция может содержать описанную окружность. Только равнобокую трапецию возможно вписать в окружность.

Вписанная в трапецию окружность

Треугольники AOB и DOC являются прямоугольными, если трапеция ABCD описана около окружности. Центром же вписанной окружности будет являться точка O.

Опущенные на гипотенузы, высоты этих треугольников, тождественны радиусу вписанной окружности, а высота трапеции тождественна диаметру вписанной окружности.

academyege.ru

Свойства трапеции, с примерами

Параллельные стороны называются основаниями трапеции. Две другие стороны называются ее боковыми сторонами. Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.

Трапеция, у которой боковые стороны равны, называется равнобокой (равнобедренной) трапецией. Трапеция, у которой при одной боковой стороне прямые углы называется прямоугольной.

Свойства трапеции

  1. Средняя линия трапеции параллельна основаниям и равна их полусумме.
  2. Отрезок, соединяющий середины диагоналей, равен половине разности оснований и лежит на средней линии.
  3. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
  4. Треугольники, образованные при пересечении диагоналей и лежащие на основаниях трапеции, подобные:

       

  5. Треугольники, образованные при пересечении диагоналей и лежащие на боковых сторонах трапеции, равновеликие:

       

  6. Если трапеция равнобокая, то ее диагонали равны и углы при основании равны.
  7. Если трапеция равнобокая, то около нее можно описать окружность.
  8. Если сумма оснований трапеции равна сумме боковых сторон, то в нее можно вписать окружность.
  9. Площадь трапеции вычисляется по формуле

       

    где – основания трапеции, – высота трапеции.

  10. Если в трапецию вписана окружность радиуса и она делит боковую сторону точкой касания на два отрезка длины и , то .

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Все формулы сторон равнобедренной трапеции

1. Формула длины основания равнобедренной трапеции через среднюю линию

 

a - нижнее основание

b - верхнее основание

m - средняя линия

 

 

Формулы длины основания:

 

 

2. Формулы длины сторон через высоту и угол при нижнем основании

 

a - нижнее основание

b - верхнее основание

c - равные боковые стороны

α - угол при основании трапеции

h - высота трапеции

 

Формулы всех четырех сторон трапеции:

 

 

3. Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

 

a - нижнее основание

b - верхнее основание

c - равные боковые стороны

d - диагонали

α , β - углы между диагоналями

h - высота трапеции

 

Формулы длины сторон трапеции:

справедливо для данной ситуации:

 

4. Формулы длины сторон равнобедренной трапеции через площадь

 

a - нижнее основание

b - верхнее основание

c - равные боковые стороны

α , β - углы при основаниях

m - средняя линия

h - средняя линия

 

Формулы длины сторон равнобедренной трапеции через площадь:

 

Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

www-formula.ru