Задача: определить площадь круга, если известна длина окружности. Радиус круга через длину окружности


Чему равен радиус окружности

Чему равен радиус окружностиРадиус окружности можно найти несколькими способами, в зависимости от того, какие данные уже известны.Самым простым способом является вычисление длины радиуса через длину его диаметра:

   

Например, если диаметр окружности равен 144 см, то радиус будет равен: (см).Рассмотрим вычисление радиуса через длину окружности.Запишем формулу длины окружности через ее радиус:

   

Выразим радиус из этой формулы:

   

Например, если длина окружности равна 289 см, то ее радиус будет равен:

   

При решении математических задач можно оставлять число Пи, не подставляя его значение. Но при решении задач по геометрии все же берут приближенное значение числа Пи, равное 3,14: (см).Рассмотрим вычисление радиуса через площадь круга.Запишем формулу площади круга:

   

Выразим длину радиуса из этой формулы:

   

   

Например, площадь круга равна 378 квадратных сантиметров.Найдем радиус окружности: (см).

ru.solverbook.com

Как рассчитать длину окружности по формулам через диаметр, равный двум радиусам

Окружность состоит из множества точек, которые находятся на равном расстоянии от центра. Это плоская геометрическая фигура, и найти ее длину не составит труда. С окружностью и кругом человек сталкивается ежедневно независимо от того, в какой сфере он работает. Многие овощи и фрукты, устройства и механизмы, посуда и мебель имеют круглую форму. Кругом называют то множество точек, которое находится в границах окружности. Поэтому длина фигуры равна периметру круга.

Характеристики фигуры

Кроме того, что описание понятия окружности достаточно простое, её характеристики также несложные для понимания. С их помощью можно вычислить её длину. Внутренняя часть окружности состоит из множества точек, среди которых две — А и В — можно увидеть под прямым углом. Этот отрезок называют диаметром, он состоит из двух радиусов.

Это интересно: как переводить градусы в радианы?

В пределах окружности имеются точки Х такие, что не изменяется и не равняется единице отношение АХ/ВХ. В окружности это условие обязательно соблюдается, в ином случае эта фигура не имеет форму круга. На каждую точку, из которых состоит фигура, распространяется правило: сумма квадратов расстояний от этих точек до двух других всегда превышает половину длины отрезка между ними.

Основные термины окружности

Для того чтобы уметь находить длину фигуры, необходимо знать основные термины, касающиеся её. Основные параметры фигуры — это диаметр, радиус и хорда. Радиусом называют отрезок, соединяющий центр круга с любой точкой на её кривой. Величина хорды равна расстоянию между двумя точками на кривой фигуры. Диаметр — расстояние между точками, проходящее через центр фигуры.

Это интересно: какой четырёхугольник называется квадратом?

Основные формулы для вычислений

Параметры используются в формулах вычислений величин окружности:

  • длину фигуры вычисляют умножением диаметра на число π и записывают таким образом: C = π*D.
  • Величина диаметра в два раза превышает длину радиуса. Иной способ вычисления радиуса — необходимо разделить длину круга на удвоенное π: R = C/(2* π) = D/2.
  • Диаметр рассчитывается с помощью радиуса или делением длины окружности на число π. Формула нахождения диаметра: D = C/π = 2*R.
  • Площадь круга, ограниченного окружностью, можно найти двумя способами: через радиус или диаметр. По формуле площадь равна четвёртой части произведения числа π и диаметра в квадрате или радиусу в квадрате, умноженному на π: S = π*R2 = π*D2/4.

Это интересно: что такое горизонтально, что означает слово горизонталь?

Диаметр в формулах вычисления

В экономике и математике нередко появляется необходимость поиска длины окружности. Но и в повседневной жизни можно столкнуться с этой надобностью, к примеру, во время постройки забора вокруг бассейна круглой формы. Как рассчитать длину окружности по диаметру? В этом случае используют формулу C = π*D, где С — это искомая величина, D — диаметр.

Например, ширина бассейна равна 30 метрам, а столбики забора планируют поставить на расстоянии десяти метров от него. В этом случае формула расчёта диаметра: 30+10*2 = 50 метров. Искомая величина (в этом примере — длина забора): 3,14*50 = 157 метров. Если столбики забора будут стоять на расстоянии трёх метров друг от друга, то всего их понадобится 52.

Расчёты по радиусу

Как вычислить длину окружности по известному радиусу? Для этого используется формула C = 2*π*r, где С — длина, r — радиус. Радиус в круге меньше диаметра в два раза, и это правило может пригодиться в повседневной жизни. К примеру, в случае приготовления пирога в раздвижной форме.

Для того чтобы кулинарное изделие не испачкалось, необходимо использовать декоративную обёртку. А как вырезать бумажный круг подходящего размера?

Те, кто немного знаком с математикой, понимают, что в этом случае нужно умножить число π на удвоенный радиус используемой формы. Например, диаметр формы равен 20 сантиметрам, соответственно, её радиус составляет 10 сантиметров. По этим параметрам находится необходимый размер круга: 2*10*3, 14 = 62,8 сантиметра.

Это интересно: формулировка и доказательство признаков параллелограмма.

Подручные способы вычисления

Если найти длину окружности по формуле нет возможности, то стоит воспользоваться подручными методами расчёта этой величины:

  • При небольших размерах круглого предмета его длину можно найти с помощью верёвки, обёрнутой вокруг один раз.
  • Величину большого предмета измеряют так: на ровной плоскости раскладывают верёвку, и по ней прокатывают круг один раз.
  • Современные студенты и школьники для расчётов используют калькуляторы. В режиме онлайн по известным параметрам можно узнавать неизвестные величины.

Круглые предметы в истории человеческой жизни

Первое изделие круглой формы, которое изобрёл человек — это колесо. Первые конструкции представляли собой небольшие округлые бревна, насаженные на оси. Затем появились колёса, сделанные из деревянных спиц и обода. Постепенно в изделие добавляли металлические детали для уменьшения износа. Именно для того, чтобы узнать длину металлических полос для обивки колёса, учёные прошлых веков искали формулу расчёта этой величины.

Форму колеса имеет гончарный круг, большинство деталей в сложных механизмах, конструкциях водяных мельниц и прялок. Нередко встречаются круглые предметы в строительстве — рамки круглых окон в романском архитектурном стиле, иллюминаторы в суднах. Архитекторы, инженеры, учёные, механики и проектировщики ежедневно в сфере своей профессиональной деятельности сталкиваются с надобностью расчёта размеров окружности.

obrazovanie.guru

определить площадь круга, если известна длина окружности

Условие задачи:

Длина окружности 5 м. Найти площадь круга, ограниченного этой окружностью.

Дано:Длина окружности, L = 5 м

Пояснение к рисунку:O - центр окружности

Найти площадь круга: S

Решение

Используем формулу площади круга через радиус. Но нам пока не известен радиус, его надо найти.

Определить радиус, нам поможет формула длины окружности.

После преобразования, выразим радиус через длину окружности и подставим значения.

Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли  π ≈ 3.14

Получили значение радиуса окружности.

В формулу площади круга, подставляем найденное значение радиуса.

Ответ:

Если в формулу площади круга подставить выраженный радиус через длину окружности, то получим следующую формулу, в которой площадь круга сразу выражена через длину окружности. Проверим, подставив наше значение

Калькулятор для расчета площади круга

 

www-formula.ru

Площадь круга - формулы, примеры расчетов

Круг – это плоская фигура, которая представляет собой множество точек равноудаленных от центра. Все они находятся на одинаковом расстоянии и образуют собой окружность. Отрезок, который соединяет центр круга с точками его окружности, называется радиусом. В каждой окружности все радиусы равны между собой. Прямая, соединяющая две точки на окружности и проходящая через центр называется диаметром. Формула площади круга рассчитывается с помощью математической константы – числа π..

Это интересно: Число π. представляет собой соотношение длины окружности к длине ее диаметра и является постоянной величиной. Значение π = 3,1415926 получило применение после работ Л. Эйлера в 1737 г.

Площадь окружности можно вычислить через константу π. и радиус окружности. Формула площади круга через радиус выглядит так:

Рассмотрим пример расчета площади круга через радиус. Пусть дана окружность с радиусом R = 4 см. Найдем площадь фигуры. Площадь нашей окружности будет равна 50,24 кв. см.

Существует формула площади круга через диаметр. Она также широко применяется для вычисления необходимых параметров. Данные формулы можно использовать для нахождения площади треугольника по площади описанной окружности.

Рассмотрим пример расчета площади круга через диаметр, зная его радиус. Пусть дана окружность с радиусом R = 4 см. Для начала найдем диаметр, который, как известно, в два раза больше радиуса. Теперь используем данные для примера расчета площади круга по приведенной выше формуле: Как видим, в результате получаем тот же ответ, что и при первых расчетах.

Знания стандартных формул расчета площади круга помогут в дальнейшем легко определять площадь секторов и легко находить недостающие величины.

Мы уже знаем, что формула площади круга рассчитывается через произведение постоянной величины π на квадрат радиуса окружности. Радиус можно выразить через длину окружности и подставить выражение в формулу площади круга через длину окружности: Теперь подставим это равенство в формулу расчета площади круга и получим формулу нахождения площади круга, через длину окружности

Рассмотрим пример расчета площади круга через длину окружности. Пусть дана окружность с длиной l = 8 см. Подставим значение в выведенную формулу: Итого площадь круга будет равна 5 кв. см.

Площадь круга описанного вокруг квадрата

Очень легко можно найти площадь круга описанного вокруг квадрата.

Для этого потребуется только сторона квадрата и знание простых формул. Диагональ квадрата будет равна диагонали описанной окружности. Зная сторону a ее можно найти по теореме Пифагора: отсюда .После того, как найдем диагональ – мы сможем рассчитать радиус: .И после подставим все в основную формулу площади круга описанного вокруг квадрата:

Рассмотрим пример расчета площади круга, описанного вокруг квадрата. Задача: дан квадрат, вписанный в круг. Его сторона a = 4 см. Найдите площадь окружности. Для начала рассчитаем длину диагонали d. Теперь подставляем данные в формулу

Зная несколько простых правил и теорему Пифагора, мы смогли рассчитать площадь описанной вокруг квадрата окружности.

2mb.ru

Как найти радиус круга

2 методика:Вычисление радиуса по основным величинамВычисление радиуса по трем точкам на окружности

Радиус круга - отрезок, соединяющий центр круга с любой точкой на его окружности. Значение радиуса используется для вычисления длины окружности, площади круга, диаметра окружности, а также при нахождении объема трехмерных фигур, например, объема цилиндра. Радиус круга равен d/2, где d – диаметр круга; C/2π, где C – длина окружности; √(A/π), где A – площадь круга.

Шаги

Метод 1 из 2: Вычисление радиуса по основным величинам

Определение основных величин
  1. 1 Радиус можно найти по известным значениям основных величин круга/окружности. К таким величинам относятся:
    • Длина окружности (C).
    • Диаметр (D) (отрезок, соединяющей две точки на окружности и проходящий через центр круга).
    • Радиус (R) (отрезок, соединяющий центр круга с любой точкой на окружности).
    • Площадь (A) (пространство, ограниченное окружностью).
    • Число Пи (π) (математическая постоянная, представляющая отношение длины окружности к ее диаметру; это число применяется при вычислении всех основных величин круга и обычно округляется до 3,14).
  2. 2 Ниже приведены формулы для вычисления диаметра, длины окружности и площади круга; каждая из них включает радиус. Запомните: обособив радиус на одной стороне формулы, вы сможете найти его по известным значениям основных величин круга/окружности.
    • D = 2r. Диаметр вдвое больше радиуса.
    • С = πD = 2πr. Длина окружности равна произведению π на ее диаметр. Так как диаметр в два раза больше радиуса, то длина окружности равна произведению π на двойку и на радиус этой окружности.
    • A = πr^2. Площадь круга равна произведению квадрата его радиуса на π.
Вычисление радиуса по формулам
  1. 1 Если вам дан диаметр, разделите его пополам (на 2) и получите радиус. Так как D = 2r, то r =D/2.
    • Например, если диаметр круга равен 10 м, то радиус круга равен 10/2 = 5 м.
  2. 2 Если вам дана длина окружности, разделите ее на 2π и получите радиус. Так как C = 2πr, то r = C/2π.
    • Например, если длина окружности равна 10 см, то сначала разделите это значение на π: 10/π = 3,14 см. Теперь разделите полученное значение на 2, чтобы вычислить радиус: 3,14/2 = 1,59 см.
  3. 3 Если вам дана площадь круга, разделите ее на π и из полученного значения извлеките квадратный корень, чтобы найти радиус. Так как А = πr2, то r = √(A/π).
    • Например, площадь круга равна 10 м2. Сначала разделите это значение на π: 10/π = 3,14. Теперь из полученного значения извлеките квадратный корень, чтобы найти радиус: √3,14 = 1,78 м.

Метод 2 из 2: Вычисление радиуса по трем точкам на окружности

  1. 1 Если вам не даны значения диаметра, длины окружности или площади круга, вы можете вычислить радиус круга по координатам трех точек на окружности (назовем их P1, P2 и P3). Это делается при помощи одной из двух формул, приведенных ниже.
    • Формулы для нахождения радиуса круга по трем точкам, лежащем на окружности:
      • (abc)/(√(a + b + c)(b + c - a)(c + a - b)(a + b - c)), где a, b, c – стороны треугольника с вершинами в точках P1, P2, P3.[1]
      • a/(2sin(θ)), где a –сторона треугольника с вершинами в точках P1, P2, P3; θ – противолежащий угол.
    • Во второй формуле вам нужно знать только координаты двух точек и угол; если угол не дан, вам понадобятся координаты всех трех точек.
  2. 2 Найдите расстояние между каждыми двумя точками, чтобы определить значения сторон треугольника. Для этого подставьте известные вам координаты в формулу: Расстояние = √((x2 - x1)2 + (y2 - y1)2), где x1,y1 - координаты первой точки; x2,y2 - координаты второй точки.
    • Пример. На окружности круга лежат точки с координатами (3,0), (3,8) и (-1, 4). Найдите расстояние между точками (3,8) и (-1,4) по следующей формуле (то есть вы находите сторону треугольника):
      • √((x2 - x1)2 + (y2 - y1)2)
      • √((-1 - 3)2 + (4 - 8)2)
      • √((-4)2 + (-4)2)
      • √(16 + 16) = √(32) = 5,66
  3. 3 Найдите расстояние между двумя другими парами точек (то есть найдите две другие стороны треугольника) при помощи процесса, описанного в предыдущем шаге. Подставьте известные вам координаты в ту же формулу: Расстояние = √((x2 - x1)2 + (y2 - y1)2).
    • В нашем примере вам необходимо найти расстояние между точками (3,0) и (3,8) и между точками (3,0) и (-1, 4). В первой паре меняется только координата «у», поэтому расстояние равно 8. Расстояние между второй парой точек вычислите следующим образом:
      • √((x2 - x1)2 + (y2 - y1)2)
      • √((-1 - 3)2 + (4 - 0)2)
      • √((-4)2 + (4)2)
      • √(16 + 16) = √(32) = 5,66. Таким образом, стороны треугольника равны 5,66; 8; 5,66.
  4. 4 Воспользуйтесь формулой (abc)/(√(a + b + c)(b + c - a)(c + a - b)(a + b - c)) для вычисления радиуса круга (a, b, c – стороны треугольника). Для этого подставьте в эту формулу найденные вами стороны треугольника.
    • В нашем примере а = 5,66; b = 8; с = 5,66.
      • (abc)/(√(a + b + c)(b + c - a)(c + a - b)(a + b - c))
      • ((5,66)(8)(5,66))/(√(5,66 + 8 + 5,66)(8 + 5,66 – 5,66)(5,66 + 5,66 - 8)(5,66 + 8 – 5,66))
      • (256,28)/(√(19,32)(8)(3,32)(8))
      • (256,28)/(√(4105,11))
      • (256,28)/(64,07) = 4. Радиус нашего круга равен 4. Этот ответ верный, потому что сторона треугольника, равная 8, проходит через центр круга, то есть это его диаметр. Так как радиус равен половине диаметра, то 8/2 = 4.
  5. 5 Теперь найдем угол, противолежащий найденной стороне треугольника, по формуле (теорема косинусов): c2 = a2 + b2 - 2abCos(θ), где a, b, c – стороны треугольника, θ - угол между сторонами а и b, противолежащий стороне с. Найдя противолежащий угол, вы можете вычислить радиус по формуле: a/(2sin(θ))).
    • В нашем примере а = 5,66; b = 8; с = 5,66. Найдем угол, противолежащий первой стороне.
      • c2 = a2 + b2 - 2abCos(θ)
      • 5,662 = 5,662 + 82 - 2(5,66)(8)Cos(θ)
      • 32,04 = 32,04 + 64 – 90,56Cos(θ)
      • -64 = - 90,56Cos(θ)
      • 0.707 = Cos(θ)
      • θ = 45o (для нахождения угла необходимо вычислить arcos).
  6. 6 Подставьте известные вам значения стороны треугольника и противолежащего угла в формулу а/(2sin(θ)), чтобы найти радиус круга. Эта формула выведена из теоремы синусов, которая гласит, что отношение стороны треугольника к ее противолежащему углу равно удвоенному радиусу (или диаметру) окружности, описанной вокруг треугольника, то есть а/sin(θ) = 2r.[2]
    • В нашем примере сторона равна 5,66, а противолежащий угол равен 45o. Подставьте эти значения в формулу.
      • a/(2sin(θ))
      • 5,66/(2sin(45o))
      • 5,66/ 2(0,707)
      • 5,66/1,414 = 4. Обратите внимание, что вы получили такое же значение радиуса, как и при использовании формулы ((abc)/(√(a + b + c)(b + c - a)(c + a - b)(a + b - c))).

Советы

  • Пользуйтесь калькулятором для проверки ответа.
  • Для получения более точных результатов на калькуляторе используйте клавишу π.

ves-mir.3dn.ru

Как найти радиус, если известна длина окружности

радиус = длина/2 пи, или r=c/2п, где п - 3.14 а с - длина окружности

половина длины окружности это радиус !

Разделить на пи и еще на 2

С=2пи*R отсюда и ищи радиус

R= L : 3.14159(число Пи) : 2

р= ц / пи умноженное на 2 ?

нахрен его искать, если у тебя естя рисунак,, ти што ниможешь померять линейкой!

touch.otvet.mail.ru