Уравнения и неравенства с параметром, простейшие примеры. Примеры уравнения с параметром


Линейные уравнения с параметром

К задачам с параметром можно отнести, например, поиск решения линейных и квадратных уравнений в общем виде, исследование уравнения на количество имеющихся корней в зависимости от значения параметра.

Не приводя подробных определений, в качестве примеров рассмотрим следующие уравнения:

у = kx, где x, y – переменные, k – параметр;

у = kx + b, где x, y – переменные, k и b – параметр;

аx2 + bх + с = 0, где x – переменные, а, b и с – параметр.

Решить уравнение (неравенство, систему) с параметром это значит, как правило, решить бесконечное множество уравнений (неравенств, систем).

Задачи с параметром можно условно разделить на два типа:

а) в условии сказано: решить уравнение (неравенство, систему) – это значит, для всех значений параметра найти все решения. Если хотя бы один случай остался неисследованным, признать такое решение удовлетворительным нельзя.

б) требуется указать возможные значения параметра, при которых уравнение (неравенство, система) обладает определенными свойствами. Например, имеет одно решение, не имеет решений, имеет решения, принадлежащие промежутку и т. д. В таких заданиях необходимо четко указать, при каком значении параметра требуемое условие выполняется.

Параметр, являясь неизвестным фиксированным числом, имеет как бы особую двойственность. В первую очередь, необходимо учитывать, что предполагаемая известность говорит о том, что параметр необходимо воспринимать как число. Во вторую очередь, свобода обращения с параметром ограничивается его неизвестностью. Так, например, операции деления на выражение, в котором присутствует параметр или извлечения корня четной степени из подобного выражения требуют предварительных исследований. Поэтому необходима аккуратность в обращении с параметром.

Например, чтобы сравнить два числа -6а и 3а, необходимо рассмотреть три случая:

1) -6a будет больше 3a, если а отрицательное число;

2) -6а = 3а в случае, когда а = 0;

3) -6а будет меньше, чем 3а, если а – число положительное 0.

Решение и будет являться ответом.

Линейные уравнения с параметром

Пусть дано уравнение kx = b. Это уравнение – краткая запись бесконечного множества уравнений с одной переменной.

При решении таких уравнений могут быть случаи:

1. Пусть k – любое действительное число не равное нулю и b – любое число изR, тогда x = b/k.

2. Пусть k = 0 и b ≠ 0, исходное уравнение примет вид  0 · x = b. Очевидно, что у такого уравнения решений нет.

3. Пусть k и b числа, равные нулю, тогда имеем равенство 0 · x = 0. Его решение  – любое действительное число.

Алгоритм решения такого типа уравнений:

1. Определить «контрольные» значения параметра.

2. Решить исходное уравнение относительно х при тех значениях параметра, которые были определены в первом пункте.

3. Решить исходное уравнение относительно х при значениях параметра, отличающихся от выбранных в первом пункте.

4. Записать ответ можно в следующем виде:

Ответ:

1) при … (значения параметра), уравнение имеет корни …;

2) при … (значения параметра), в уравнении корней нет.

Пример 1.

Решить уравнение с параметром |6 – x| = a.

Решение.

Легко видеть, что здесь a ≥ 0.

По правилу модуля 6 – x = ±a, выразим х:

x = 6 ± a.

Ответ: х = 6 ± a, где a ≥ 0.

Пример 2.

Решить уравнение a(х – 1) + 2(х – 1) = 0 относительно переменной х.

Решение.

Раскроем скобки: aх – а + 2х – 2 = 0

Запишем уравнение в стандартном виде: х(а + 2) = а + 2.

В случае, если выражение а + 2 не нуль , т. е. если а ≠ -2, имеем решение х = (а + 2) / (а + 2), т.е. х = 1.

В случае, если а + 2 равно нулю, т.е. а = -2, то имеем верное равенство 0 · x = 0, поэтому х – любое действительное число.

Ответ: х = 1 при а ≠ -2 и х € R при а = -2.

Пример 3.

Решить уравнение x/a + 1 = а + х относительно переменной х.

Решение.

Если а = 0, то преобразуем уравнение к виду а + х = а2 + ах или (а – 1)х = -а(а – 1). Последнее уравнение при а = 1 имеет вид 0 · x = 0, следовательно, х – любое число.

Если а ≠ 1, то последнее уравнение примет вид х = -а.

Данное решение можно проиллюстрировать на координатной прямой (рис. 1)

Ответ: нет решений при а = 0; х – любое число при а = 1; х = -а при а ≠ 0 и а ≠ 1.

Графический метод

Рассмотрим еще один способ решения уравнений с параметром – графический. Этот метод применяется достаточно часто.

Пример 4.

Сколько корней в зависимости от параметра a имеет уравнение ||x| – 2| = a?

Решение.

Для решения графическим методом строим графики функций y = ||x| – 2| и y = a (рис. 2).

На чертеже наглядно видны возможные случаи расположения прямой y = a и количество корней в каждом из них.

Ответ: корней у уравнения не будет, если а < 0; два корня будет в случае, если a > 2 и а = 0; три корня уравнение будет иметь в случае а = 2; четыре корня – при 0 < a < 2.

Пример 5.

При каком а уравнение 2|x| + |x – 1| = a имеет единственный корень?

Решение.

Изобразим графики функций  y = 2|x| + |x – 1| и y = a. Для  y = 2|x| + |x – 1|, раскрыв модули методом промежутков, получим:

      {-3x + 1, при x < 0,

y = {x + 1, при  0 ≤ x ≤ 1,

      {3x – 1, при x > 1.

На рисунке 3 хорошо видно, что единственный корень уравнение будет иметь только при а = 1.

Ответ: а = 1.

Пример 6.

Определить число решений уравнения |x + 1| + |x + 2| = a в зависимости от параметра а?

Решение.

График функции  y = |x + 1| + |x + 2| будет представлять собой ломаную. Ее вершины будут располагаться в точках (-2; 1) и (-1; 1) (рисунок 4).

Ответ: если параметр a будет меньше единицы, то корней у уравнения не будет; если а = 1, то решение уравнения является бесконечное множество чисел из отрезка [-2; -1]; если значения параметра а будут больше одного, то уравнение будет иметь два корня.

 Остались вопросы? Не знаете, как решать уравнения с параметром?Чтобы получить помощь репетитора – зарегистрируйтесь.Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Уравнения с параметром | LAMPA

Исследование квадратного трёхчлена

Часто уравнение с параметром удаётся привести к квадратному. В таких задачах нужно найти значения параметра, при которых корни лежат на некотором промежутке. Для решения подобных примеров необходимо произвести анализ расположения корней. Чтобы определить взаимное расположение границ промежутка и корней уравнения, следует воспользоваться следующими утверждениями:

  • Чтобы число ppp находилось между корнями квадратичной функции f(x)=ax2+bx+cf(x)=ax^2+bx+cf(x)=ax2+bx+c, необходимо и достаточно, чтобы выполнялось условие a⋅f(p)<0a\cdot f(p)\lt 0a⋅f(p)<0;
  • Чтобы число ppp было меньше корней квадратичной функции f(x)=ax2+bx+cf(x)=ax^2+bx+cf(x)=ax2+bx+c, необходимо и достаточно, чтобы {D≥0,a⋅f(p)>0,p<−b2a;\begin{cases} D\ge 0{,}\\ a\cdot f(p)\gt 0{,}\\ p\lt -\frac{b}{2a}{;}\end{cases}⎩⎪⎨⎪⎧​D≥0,a⋅f(p)>0,p<−2ab​;​
  • Чтобы число ppp было больше корней квадратичной функции f(x)=ax2+bx+cf(x)=ax^2+bx+cf(x)=ax2+bx+c, необходимо и достаточно, чтобы {D≥0,a⋅f(p)>0,p>−b2a.\begin{cases} D\ge 0{,}\\ a\cdot f(p)\gt 0{,}\\ p\gt -\frac{b}{2a}{.}\end{cases}⎩⎪⎨⎪⎧​D≥0,a⋅f(p)>0,p>−2ab​.​

Для использования приведённых выше утверждений не нужно непосредственно вычислять корни уравнения.

При каких значениях параметра aaa оба корня уравнения x2+ax−1=0x^2+ax-1=0x2+ax−1=0 меньше 3?

Воспользуемся утверждением, приведённым выше, для f(x)=x2+ax−1f(x)=x^2+ax-1f(x)=x2+ax−1. Система примет вид: {D>0,1⋅f(3)>0,3>−a2⋅1.\begin{cases} D\gt 0{,}\\ 1\cdot f(3)\gt 0{,}\\ 3\gt -\frac{a}{2\cdot 1}{.}\end{cases}⎩⎪⎨⎪⎧​D>0,1⋅f(3)>0,3>−2⋅1a​.​D=a2+4>0,D=a^2+4\gt 0,D=a2+4>0,Первое условие выполняется автоматически. Запишем два других условия:1⋅f(3)>0⇔32+a⋅3−1=3a+8>0⇔a>−83,1\cdot f(3)\gt 0 \,\,\,\,\Leftrightarrow \,\,\,\, 3^2+a\cdot 3-1=3a+8\gt 0\,\,\,\,\Leftrightarrow \,\,\,\,a\gt -\frac{8}{3},1⋅f(3)>0⇔32+a⋅3−1=3a+8>0⇔a>−38​,3>−a2⇔a>−6.3\gt -\frac{a}{2}\,\,\,\,\Leftrightarrow \,\,\,\,a\gt -6.3>−2a​⇔a>−6.Взяв наиболее сильное из этих условий, получим a>−83a\gt -\frac{8}{3}a>−38​.

Ответ: (−83;+∞)(-\frac{8}{3}; +\infty )(−38​;+∞).

Параметр как равноправная переменная

Несмотря на то, что выше параметр рассматривался как фиксированное, но неизвестное число, можно считать его равноправной переменной.

При каких aaa уравнение a+a+sinx=sinx\sqrt{a+\sqrt{a+\sin x}}=\sin xa+a+sinx​​=sinx имеет решения?

Обозначим sinx=t\sin x = tsinx=t. Исходное уравнение примет вид a+a+t=t\sqrt{a+\sqrt{a+t}}=ta+a+t​​=t. С учётом ∣t∣≤1|t|\le 1∣t∣≤1 это уравнение равносильно системе: {a+t=(t2−a)2,1≥t≥0,t2≥a.\begin{cases} a+t=(t^2-a)^2{,}\\ 1\ge t\ge 0{,}\\ t^2\ge a{.}\end{cases}⎩⎪⎨⎪⎧​a+t=(t2−a)2,1≥t≥0,t2≥a.​Уравнение удобно представить как квадратное относительно aaa. Получим a2−a(2t2+1)+t4−t=0⇔(a−t2−t−1)(a−t2+t)=0⇔a^2-a(2t^2+1)+t^4-t=0\,\,\Leftrightarrow \,\,(a-t^2-t-1)(a-t^2+t)=0\,\,\Leftrightarrowa2−a(2t2+1)+t4−t=0⇔(a−t2−t−1)(a−t2+t)=0⇔⇔[a=t2+t+1,a=t2−t.\Leftrightarrow \,\,\left[\begin{array}{l} a=t^2+t+1{,}\\ a=t^2-t{.}\end{array}\right.⇔[a=t2+t+1,a=t2−t.​Так как t2≥at^2\ge at2≥a и 1≥t≥01\ge t\ge 01≥t≥0, то t2−a+t+1>0t^2-a+t+1\gt 0t2−a+t+1>0. Поэтому первое равенство совокупности не может выполняться. Тогда выполняется второе, и исходная система равносильна такой: {a=t2−t,1≥t≥0,t2≥a.⇔{a=t2−t,1≥t≥0.\begin{cases} a=t^2-t{,}\\ 1\ge t\ge 0{,}\\ t^2\ge a{.}\end{cases}\,\,\,\,\Leftrightarrow \,\,\,\,\begin{cases} a=t^2-t{,}\\ 1\ge t\ge 0{.}\end{cases}⎩⎪⎨⎪⎧​a=t2−t,1≥t≥0,t2≥a.​⇔{a=t2−t,1≥t≥0.​Условие t2≥at^2\ge at2≥a выполняется автоматически при a=t2−ta=t^2-ta=t2−t и t≥0t\ge 0t≥0.

lampa.io

Уравнения с параметрами в школьном курсе математики

Линейные уравнения, содержащие параметр

- таков общий вид названного уравнения.

Его решение состоит из следующих частей:

1. Если , то - единственный корень уравнения.

2. Если , то могут быть случаи:

а) , уравнение решений не имеет;

б) , любое число является корнем уравнения.

Результатом решения служит ответ:

1) , - любое, ;

2) , , - любое число.

3.1.1. Примеры линейных уравнений с параметрами

Пример 1. Решить уравнение ax = 1.

Решение. На первый взгляд представляется возможным сразу дать ответ:

х = . Однако при а = 0 данное уравнение решений не имеет, и верный ответ выглядит так:

Ответ: Если а = 0, то решений нет; если а ≠ 0, то х = .

Пример 2. Решить уравнение (а2 – 1)х = а + 1.

Решение. Рассмотрим случаи:

1) а = 1, тогда уравнение принимает вид 0х = 2 и не имеет решений;

2) а = -1,получаем 0х = 0, очевидно х – любое;

3) а ≠ ± 1; имеем х = .

Ответ: Если а = - 1, то х – любое; если а = 1, то нет решений; если а ≠ ± 1, то х = .

Пример 3:

После преобразования получаем равносильное данному уравнение

.

  1. Если , т.е и , то

  1. Если , т.е или , то: 1) при , получается уравнение , которое корней не имеет; 2) при , получается уравнение , корнем которого является любое число.

Ответ: 1) и , ;

2) , нет корней;

3) , - любое число.

Пример 4:

После преобразования получаем равносильное данному уравнение:

.

  1. Если , то

  2. Если , т.е . , то нет корней

Ответ: Если , то ;

Если , т.е , то нет корней

Пример 5: (1)

После преобразования получаем равносильное данному уравнение:

, ,

  1. Если и , то получаем ;

  2. Если , то , следовательно уравнение (1) не имеет решения;

  3. Если , то получаем , т.е. , значит - любое;

Ответ: 1) и , ;

2) , нет корней;

3) , - любое.

Пример 6. Решить уравнение

2а•(а-2)•х = а-2. (2)

Решение.

Рассмотрим случаи:

1) При а=0 уравнение (2) принимает вид 0•х=2. Это уравнение не имеет корней.

2) При а=2 уравнение (2) принимает вид 0•х=0. Корнем этого уравнения является любое действительное число.

3) При а≠0, а≠2 уравнение соответствует третьему типу откуда х ==.

0твет: 1) если а=0, то корней нет;

2) если а=2, то х — любое действительное число;

3) если а≠0, а≠2 , то х = .

Пример 7:

Преобразуем данное уравнение: ;

;

;

  1. Если , т.е. , то ;

  2. Если , то ;

;

, нет корней.

Ответ: 1) , ;

2) , нет корней.

www.qp1qp.narod.ru

Линейные уравнения с параметром.

Рассмотрим линейные уравнения с параметром вида: $$p(a)x-q(a)=0,$$ где \(p(a)\) и \(q(a)\)- выражения, которые зависят от параметра. Для того, чтобы решить такое уравнение, нужно найти все \(x\) при всех значениях параметра \(a\). Приведем наше уравнение к виду: $$p(a)x=q(a),$$ Отсюда единственное решение:

\(x=\frac{q(a)}{p(a)}\) при \(p(a)≠0.\) Если же \(p(a)=0\) и \(q(a)=0\), то решением данного уравнения является любое число. И последний случай, когда \(p(a)=0\),а \(q(a)≠0\), то уравнение не имеет решений. Замечу, что по некоторым уравнениям сразу невозможно определить, являются ли они линейными. Выполнив некоторые преобразования, вдруг обнаружим, что в уравнении отсутствуют члены с \(x\) в степени большей, чем 1. Если изначально у нас и были старшие степени, то теперь они сократились. Мы провели анализ линейного уравнения в общем виде, теперь разберем несколько примеров:

Пример 1

Решить уравнение \(ax-5a=7x-3\) при всех возможных \(a\).

Перенесем все одночлены с \(x\) влево, а оставшиеся члены – вправо. И вынесем \(x\) за скобку, как общий множитель: $$x(a-7)=5a-3;$$ Первый случай, когда \((a-7)≠0\). Тогда мы можем поделить все уравнение на \(a-7\) и выразить: $$x=\frac{5a-3}{a-7}.$$ Второй случай, когда \((a-7)=0\), получим уравнение $$x*0=32,$$ которое не имеет решений. Таким образом, мы нашли решения уравнения для всех значений параметра \(а\). Например, \(x=\frac{2}{7}\) при \(a=0,\) \(x=\frac{-1}{3}\) при \(a=1\) и т.д. Ответ: При \(a=7\) \(x∈∅;\) при \(a≠7\) \(x=\frac{5a-3}{a-7}.\)

Пример 2

Найдите все \(a\), при которых корнем уравнения $$ax+5a-2(3x+2)=-5x+a^2$$ будет любое число.

Раскроем скобки и перенесем все члены, содержащие \(x\), влево, а остальные – вправо. $$ax-6x+5x=-5a+4+a^2$$ Приведем подобные: $$ax-x=a^2-5a+4$$ И вынесем за скобку \(x\) и разложим квадратный многочлен на множители: $$x(a-1)=a^2-5a+4$$ $$x(a-1)=(a-1)(a-4)$$ Первый случай: \((a-1)=0\),т.е. \(a=1\) $$x*0=(a-1)(a-4)$$ $$x*0=0.$$ Решением уравнения будет любое число. Второй случай: \((a-1)≠0\), т.е. \(a≠1\) $$x=\frac{(a-1)(a-4)}{a-1}=a-4.$$ Решением данного уравнения будет одно число \(x=a-4\). Ответ: \(a=1.\)

Пример 3

Решите уравнение \(\frac{x}{5a+x}-\frac{5a+x}{x-5a}=\frac{100a^2}{25a^2-x^2}.\)

Из ОДЗ видно, что \(5a+x≠0\) и \(x-5a≠0,\) таким образом, \(x≠±5a.\) Приведем уравнение к общему знаменателю \(x^2-25a^2\) и умножим на него все уравнение: $$x^2-5ax-x^2-10ax-25a^2=-100a^2$$ $$-15ax=-5a^2$$ $$ax=5a^2.$$

После преобразований получили линейное уравнение.

Первый случай: \(a=0.\) Получаем уравнение \(0*x=0.\) Решениями этого уравнения будет любое число, кроме \(x=0\) (ОДЗ \(x≠±5a\)).

Второй случай: \(a≠0.\) Выражаем \(x=\frac{5a^2}{a}=5a.\) Этот корень не будет удовлетворять ОДЗ.

Ответ: При \(a=0\) решениями уравнения будут все действительные числа, кроме \(x=0.\) Если \(a≠0,\) то решений нет.

sigma-center.ru

Уравнения и неравенства с параметром, простейшие примеры. Конспекты уроков

Дополнительные сочинения

В данном уроке мы рассмотрим такие уравнения и неравенства, в которых присутствует параметр, приведем простые примеры.

Тема: Уравнения и неравенства. Системы уравнений и неравенств

Урок: Уравнения и неравенства с параметром, простейшие примеры

1. Суть решения задач с параметром, простейшие примеры

Напомним смысл выражения «решить с параметром» – можно решать уравнения, неравенства, системы с параметром.

Решить задачу, например уравнение или неравенство с параметром а – означает «перебрать» все значения параметра и для каждого из них указать ответ.

2. Решение уравнений с параметром

Поясним на простейших примерах.

Пример 1 – решить уравнение с параметром:

Задача состоит в том, чтобы для каждого значения параметра решить уравнение относительно .

Пусть , тогда имеем простейшее линейное уравнение:

В общем случае в данном уравнении возможны два варианта решения – когда можно делить на коэффициент а и когда нельзя, необходимо перебрать все допустимые значения параметра а ()

Рассмотрим два случая. При мы не имеем права разделить единицу на коэффициент а, поэтому подставляем значение ноль в заданное уравнение и изучаем его. При любых других значениях а имеем право выполнить деление:

Ответ: при решений нет, при

Рассмотрим решение простейшего неравенства с параметром.

3. Решение неравенства с параметром

Рассмотрим решение простейшего неравенства с параметром.

Пример 2 – решить неравенство с параметром:

Если а – конкретное число, мы можем легко решить заданное неравенство, например:

у нас же есть коэффициент а в общем виде. Рассмотрим три случая:

Ответ: при решений нет; при ; при

Пример 3 – решить уравнение с параметром:

Дробь равна нулю тогда и только тогда, когда числитель ее равен нулю, а знаменатель не равен нулю:

Значение параметра может быть любым. Рассмотрим два случая:

При этом получаем в первом случае: х с одной стороны равен пяти, т. к. , а с другой стороны не равен пяти, т. к. знаменатель дроби не может быть равен нулю, кроме того получаем выражение , а такого выражения не существует.

Когда , противоречий не возникает

Ответ: при решений нет, при

Пример 4 – решить уравнение с параметром:

Значение а может быть любым, но квадратный корень – это строго неотрицательное число. Следовательно, рассматриваем два случая:

Ответ: при ; при

4. Решение иррационального уравнения с параметром

Решим иррациональное неравенство с параметром.

       

Пример 5 – решить неравенство с параметром:

Исследуем данное неравенство.

х стоит под знаком квадратного корня, значит допустимые значения по х - все неотрицательные значения. а может принимать любые значения. рассмотрим три случая. Если меньше нуля и корень существует, то неравенство выполняется. Если , любой неотрицательный х удовлетворяет неравенству. Если же больше нуля, имеем право возвести в квадрат:

Ответ: при ; при

Рассмотрим решение данного неравенства графическим методом. Для этого сначала строим график функции, стоящей в левой части: , область определения данной функции . Рассекаем полученную кривую семейством прямых и находим точки пересечения.

По рисунку очевидно, что когда , кривая находится над прямой при всех допустимых х, то есть при всех допустимых х неравенство выполняется.

Если а положительно, кривая имеет единственную точку пересечения с прямой и кривая находится выше прямой правее точки пересечения, абсцисса точки пересечения , поэтому решением неравенства является

Очевидно, что ответ совпадает с ответом при решении аналитическим способом.

Пример 6 – решить уравнение с параметром:

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а второй при этом существует.

Рассматриваем два варианта – либо , но корень при этом должен существовать, либо , в таком случае а – любое число:

Ответ: при ; при

Итак, мы рассмотрели решение различных простых задач, в которых присутствует параметр. Далее рассмотрим задачи, в которых присутствуют линейные функции и параметр.

Список литературы

1. Мордкович А. Г. Алгебра и начала математического анализа. – М.: Мнемозина.

2. Муравин Г. К., Муравина О. В. Алгебра и начала математического анализа. – М.: Дрофа.

3. Колмогоров А. Н., Абрамов А. М., Дудницын Ю. П. и др. Алгебра и начала математического анализа. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Математика .

2. Параметры .

3. Tutoronline. ru .

Домашнее задание

1. Алгебра и начала анализа, 10-11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990, № 132, 137, 138 ст. 282-283;

2. Решить уравнение с параметром:

а) ;

б) ;

в) ;

г) ;

3. Решить неравенство с параметром:

а) ;

б) ;

в) ;

г) ;

dp-adilet.kz

Линейные уравнения с параметрами в 7-м классе (методические рекомендации)

Разделы: Математика

Известно, что в программе по математике для неспециализированных школ задачам с параметрами отводится незначительное место. К задачам с параметрами, рассматриваемым в школьном курсе, относятся, например, задачи, в которых отыскивается решение линейных и квадратных уравнений в общем виде, исследуется количество их корней в зависимости от значений параметров. Естественно, что такой небольшой класс задач не позволяет учащимся овладеть методами решения задач с параметрами. В результате, у учащихся возникает психологический барьер уже при «первом» знакомстве с параметрами - это неизвестное и известное, переменная и постоянная. Выход из сложившейся ситуации - включать задачи с параметрами в каждую тему.

  • Для решения задач с параметрами требуется:

а) свободное владение навыками решения уравнений; б) знание специфических преобразований, которые используются в уравнениях; в) умение построить логическую цепочку рассуждений.

  • Что дают задачи с параметрами:

а) отработку навыков решения уравнений; б) повышают интеллектуальный уровень ученика и его логическое мышление; в) формируют навыки исследовательской деятельности; г) повышают интерес к математике.

        Прежде чем ввести понятие «параметр», учащимся необходимо напомнить роль букв в алгебре. Обратить внимание ребят на то, что за буквой скрывается число. Предложите учащимся задания, в которых надо выразить одну переменную через другую. К этим задачам надо возвращаться постоянно, особенно в 7-м классе, поскольку умение выражать одну переменную через другую очень пригодится при решении задач по физике, где требуется вначале составить буквенное выражение и только затем подставить числовые значения.

Пример №1. 1) Из формулы S=Vt выразить: а) V, через S и t; б)  t, через  S и V. 2) Из формулы P=2(a+b) выразить :а)  a, через  P иb; б)  b, через  P и a. 3) Из формулы S=ab выразить: а)  a, через S и b; б)  b, через S и  a. 4) Из формулы V=abc выразить: а) a, через  V, b и c; б) b, через  V, a и c; в) c, через  V, a и b. При каких значениях переменных имеют смысл эти выражения (формулы)?

 Пример №2. Выразить  х : а)  ах = а-1; б) (а+2) х = а-1; в) а х = а -1. Укажите, при каких значениях а имеет смысл полученное выражение. Найдите значение х при а=2; а=3; а= -10. Повторите на простых примерах, что такое уравнение, что значит решить уравнение. При решении уравнений типа 2х-2=-1;14х=-4; 3-3х=1 обратите внимание учащихся на то, что мы выразили неизвестное, которое надо найти, через числа. Покажите, что в уравнение, помимо неизвестного, могут быть введены и другие буквы, и буквенные выражения. Например, ах=а-1, (а+2)х=а-1, (а+2)х=(а+2)-1, а х=а -1. При этом, как всегда в алгебре, мы полагаем, что буквы могут принимать любые числовые значения. Например, задавая произвольно значения а для уравнения ах=а-1 получаем при а=2  имеем 2х=2-1; при а=3  имеем 3х=3-1; при а=0 имеем 0х=0-1; при а=-4 имеем -4х=-4-1.

Пример №3. Дано уравнение ах=5а-9. Напишите уравнение, которое получится, если  а=10; а=-2;  а=0.

 Пример №4. Решить уравнение относительно х:х+2=а+7.Решение: х=а+5. Переменную, которую надо найти, будем называть неизвестной, а переменную, через которую будем выражать искомую неизвестную, назовем параметром.

  • Параметр -это переменная величина, которая в процессе решения уравнения (задачи) считают фиксированной и относительно которой  проводится анализ полученного решения.
  • Решить уравнение с параметром - это  значит для каждого значения параметра найти значение неизвестной переменной, удовлетворяющее этому уравнению.

Заметим, что в нашем примере параметр а может принимать любые значения.Ответ запишем так: при любом значении параметра а

                                  х=а+5 . Основное, что нужно усвоить при первом «знакомстве» с параметром, это необходимость осторожного обращения с фиксированным, но неизвестным числом.  Необходимость аккуратного обращения с параметром хорошо видна в примерах, где замена параметра числом делает задачу банальной. К таким задачам, например,  относятся задачи, в которых требуется сравнить два числа.

Пример №5. Сравнить числа: а) а и 3а;  б) -а и 3а.Решение: а) естественно рассмотреть три случая: если  а < 0, то а > 3а;  если  а = 0, то а = 3а; если  а > 0, то а < 3а; б) естественно рассмотреть три случая: если а < 0, то -а > 3а; если а = 0, то -а = 3а; если а > 0, то -а < 3а.

Пример №6.  При каком значении параметра а  х=2,5 является корнем уравнения х+2=а+7? Решение. Т.к.  х= 2,5 – корень уравнения  х+2=а+7, то при подстановке  х= 2,5 в уравнение получим верное равенство  2,5+2=а+7, откуда находим  а =-2,5.Ответ: при а=-2,5.

Пример №7. Имеет ли уравнение  3х+5 = 3х+а  решение при а=1. Подберите значение а, при котором уравнение будет иметь корни.

Пример №8. Найдите множество корней уравнения  ах = 4х+5 а)  при а=4; б)  при а≠4. На простых примерах надо показать, что приемы, используемые для решения уравнений с параметрами, такие же, как и при решении уравнений, содержащих помимо неизвестной только числа.

Пример №9.  Решить уравнение ах=1.Решение. На первый взгляд представляется возможным сразу дать ответ:  Однако, при а=0 данное уравнение решений не имеет и верный ответ записывается так: если а=0, то нет решений; если а≠0, то

Пример №10. Найти все натуральные значения а, при которых корень уравнения (а-1)х=12 является

a) натуральным числом; б) неправильной дробью.

Решение:а≠1, то так как иначе уравнение не имеет решений; а) если а≠1, то Перебором находим: при а=13,  х=1;при а=7,    х=2;при а=5,    х=3;при а=4,    х=4;при а=3,    х=6;при а=2,    х=12.Ответ: а є {13, 7, 5, 4, 3, 2}. б) если а≠1, то Перебором находим, что а є {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

Пример №11. Решить уравнение |х|=|а|.

Пример №12. Решить уравнение ах+8=а.Решение. Запишем уравнение в стандартном виде  ах=а-8. Основа правильного решения задач с параметрами состоит в грамотном разбиении области изменения параметра, к этому надо приучать путем подробного описания хода решения. Итак, коэффициент при х равен а. Возникают два возможных случая:

  1. коэффициент при х равен нулю и уравнение примет вид 0х=-8, полученное уравнение не имеет корней;
  2. коэффициент при х не равен нулю, и мы имеем право разделить обе части уравнения на этот коэффициент:    а≠0,

   ах=а-8,  Ответ:   при а=0, нет  корней; при а≠0, Важно зафиксировать внимание учащихся на случае, когда коэффициент при х равен нулю, и рассматривать этот случай всегда первым, чтобы помочь учащимся избежать наиболее распространенной ошибки, когда этот случай теряют. Полезно обратить внимание учащихся на конструкцию записи ответа. В различных пособиях по математике встречаются две конструкции:

  1. при а …, х …;
  2. если а …, то х … .

Предложите учащимся решить самостоятельно (с последующей проверкой на доске) уравнение (а+2)х+2=а, где а – параметр. Ответ:   при а=-2, нет  корней; при а≠-2,  Таким образом любое линейное уравнение с параметрами элементарными преобразованиями может быть приведено к виду Ах=В, где А и В – некоторые выражения, хотя бы одно из которых содержит параметр и  исследуется по схеме:

Пример № 13.  При каких значениях а уравнение (а2-1)х=а+1 а) не имеет решений; б) имеет бесконечное множество решений; в) имеет единственный корень.Решение: а) данное уравнение не имеет решений в том случае, если коэффициент при х равен нулю, а выражение, стоящее в правой части уравнения не обращается в нуль, то есть Т.о., при а=1 уравнение не имеет решений. б) данное уравнение имеет бесконечное множество решений в том случае, если коэффициент при х равен нулю и выражение, стоящее в правой части уравнения, обращается в нуль, то есть  Т.о., при а=-1 уравнение имеет бесконечное множество решений. в) уравнение имеет единственное решение, при а2-1≠0, то есть (а-1)(а+1)≠0, т.е. а≠±1.Ответ:

  1. Уравнение не имеет решений, при а=1.
  2. Уравнение имеет бесконечное множество решений, при а=-1.
  3. Уравнение имеет единственный корень, при а≠±1.

Пример №15.  Предложить учащимся решить самостоятельно уравнение (а- параметр)                          (а-1)х+2=а+1.Решение. Запишем уравнение в стандартном виде(а-1)х=а-1.

  1. Если а-1=0, т.е. а=1, то уравнение примет вид 0х=0, т.е. х – любое число.
  2. Если а-1≠0, т.е. а≠1, то х=1.

Ответ: при а=1, х – любое число; при а≠1, х=1.

Пример №19. Сколько корней в зависимости от параметра а имеет уравнение 2 -1-х=а?Решение. Преобразуем уравнение к виду 2|x| -1=х+а. Рассмотрим функции f(х)=2|x| -1 и g(х,а)= х+а. Графиком первой из них является ломаная (рис.1), графиком второй - семейство прямых, параллельных прямой у=х.

Эти прямые пересекаются с осью ординат в точках с координатами (0;а). Очевидно, что если а будет возрастать от - , то впервые графики пересекутся тогда, когда прямая пройдет через вершину ломаной, т.е. через точку (0;-1), т.е. при а=-1. В этом случае уравнение имеет единственное решение. Если дальше увеличивать параметр а, то точек пересечения будет ровно две – с каждой из ветвей ломаной. В результате этого анализа получаем ответ.Ответ: при а<-1 уравнение не имеет корней; при а=-1 уравнение имеет единственный корень; при а>-1 уравнение имеет два корня.

Как было сказано ранее, к уравнениям с параметрами надо возвращаться постоянно. Поэтому, на конец учебного года можно вынести уравнения:1) (а-3)х=а2-9;2) (3-2а)х=4а2-12а+9;3) (а2-4)х=а2-5а+6;4) (а2-1)х=а3+1      Решение.1) (а2-1)=0, а=±1.                         При а=1 уравнение имеет вид 0х=2. Следовательно, решений нет.                         При а=-1 уравнение имеет вид 0х=0. Следовательно, х- любое число.

Задачи для самостоятельного решения.

Для всех значений параметров а и в решите уравнения:

  1. (5а+1)х+25а2+10а+1=0;
  2. ах-а=х-1;
  3. (а2-4)х=а2+а-2;
  4. (а2-1)х-а2+2а-1=0;
  5. (а-2в)х+а+в=3;
  6. каких значениях параметра а уравнение а2(х-2)=х+а-3 имеет бесконечное множество решений?
  7. каком значении параметра а корень уравнения х+3=2х-а будет отрицательным числом?
  8. каждого значения параметра а определить число корней уравнения |x-1| =а.
  9. каждого значения параметра а определить число корней уравнения|5x-3| =а.

Используемая литература.

  1. Газета «Математика». Учебно-методическое приложение к газете «Первое сентября»:  Е.Пронина, « Линейные уравнения с параметрами» №12, 2000 г.;  C.Неделяева, «Особенности решения задач с параметрами» №34, 1999 г.
  2. Азаров А.И., Барвенов С.А., Федосенко В.С. Методы решения задач с параметрами. Математика для старшеклассников. Минск: «Аверсэв», 2003.
  3. Мочалов В.В., Сильвестров В.В. Уравнения и неравенства с параметрами. Чебоксары: Изд-во Чувашского университета,  2004.
  4. Соколовская С.И., Духон М.Ю. Линейные уравнения и неравенства с параметром. Пособие для учащихся старших классов. М., 2005.

xn--i1abbnckbmcl9fb.xn--p1ai

Системы уравнений с параметром

1. Системы линейных уравнений с параметром

Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

Пример 1.

Найти все значения для параметра а, при которых система уравнений не имеет решений.

{х + (а2 – 3)у = а,{х + у = 2.

Решение.

Рассмотрим несколько способов решения данного задания.

1 способ. Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а1 = b/b1 ≠ c/c1). Тогда имеем:

1/1 = (а2 – 3)/1 ≠ а/2 или систему

{а2 – 3 = 1,{а ≠ 2.

Из первого уравнения а2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

Ответ: а = -2.

2 способ. Решаем методом подстановки.

{2 – у + (а2 – 3)у = а,{х = 2 – у,

или

{(а2 – 3)у – у = а – 2,{х = 2 – у.

После вынесения в первом уравнении общего множителя у за скобки, получим:

{(а2 – 4)у = а – 2,{х = 2 – у.

Система не имеет решений, если первое уравнение не будет иметь решений, то есть

{а2 – 4 = 0,{а – 2 ≠ 0.

Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

Ответ: а = -2.

Пример 2.

Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

{8х + ау = 2,{ах + 2у = 1.

Решение.

По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а1 = b/b1 = c/c1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

Ответ: а = 4.

2. Системы рациональных уравнений с параметром

Пример 3.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{3|х| + у = 2,{|х| + 2у = a.

Решение.

Умножим первое уравнение системы на 2:

{6|х| + 2у = 4,{|х| + 2у = a.

Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

Ответ: а = 4.

Пример 4.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{х + у = а,{у – х2 = 1.

Решение.

Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1). Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

1,25 = 0,5 + а;

а = 0,75.

Ответ: а = 0,75.

Пример 5.

Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

{ах – у = а + 1,{ах + (а + 2)у = 2.

Решение.

Из первого уравнения выразим у и подставим во второе:

{у = ах – а – 1,{ах + (а + 2)(ах – а – 1) = 2.

Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

ах + а2х – а2 – а + 2ах – 2а – 2 = 2;

а2х + 3ах = 2 + а2 + 3а + 2.

Квадратный трехчлен а2 + 3а + 2 представим в виде произведения скобок

(а + 2)(а + 1), а слева вынесем х за скобки:

(а2 + 3а)х = 2 + (а + 2)(а + 1).

Очевидно, что а2 + 3а не должно быть равным нулю, поэтому,

а2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

Ответ: а ≠ 0; ≠ -3.

Пример 6.

Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

{х2 + у2 = 9,{у – |х| = а.

Решение.

Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

х2 + у2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

Ответ: а = 3.

 Остались вопросы? Не знаете, как решать системы уравнений?Чтобы получить помощь репетитора – зарегистрируйтесь.Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru