В чем заключается ферментативная функция белков? Ферментативная функция белков: примеры. Примеры белков строительной функции


В чем заключается строительная функция белков?

Белки – основа существования живой клетки. Они составляют большую часть ее элементов. Строительная функция белков заключается в их наличии во многих органах и тканях человека. Большинство плотных веществ состоит из белков. Например, мышцы, опорные ткани, ногти, волосы.

Белки – высокомолекулярные соединения. Например, молекула белка в несколько сот раз превышает по размерам молекулу воды. Любое белковое вещество образовывается за счет соединений, которые называются аминокислотами. Располагаются они в строгом порядке, следуя одна за другой, образуя длинную цепь, которая называется пептидной. Химические и биологические свойства белка определяются расположившимися в нем аминокислотами. Все выполняемые ими функции очень важны для живых организмов, и одна из них, строительная функция белков, находится в основе существования и развития всего живого.

Свойства белков

Исследования ученых доказали, что физические и химические свойства белка определяются присутствующими в нем аминокислотами, их количеством и последовательностью соединений.

Белки бывают:

  • нерастворимые и растворимые в воде;
  • неустойчивые, меняющиеся под незначительным воздействием на них, и устойчивые.

Бывают в виде:

  • длинных нитей;
  • соединения маленьких шарообразных молекул.

Однако при таком различном строении свойства белков строго отвечают выполняемым ими функциям. Например, белки в форме нитей присутствуют в мышцах, поскольку наделены способностью к сокращению. Белки легкорастворимые, со строением молекулы из маленьких шариков, выполняют функции транспортировки. Как катализатор используются белки с легко изменяемой структурой.

Функции белков

Каждое органическое вещество, находясь в теле, выполняет определенные функции. Рассмотрим, какие функции, обеспечивающие жизнедеятельность человека, выполняет белок:

  • Строительную. Белок используется при образовании оболочек и мембран клеток, в составе кровеносных сосудов, сухожилий. Строительная функция белков, (примеры описаны в статье) полностью проявляется в таких органах и тканях, как кожа, волосы, ногти и пр.

  • Двигательную.
  • Каталитическую. В организме человека постоянно происходят разные химические реакции. Регулируют скорость их прохождения ферменты, которые состоят из белков.
  • Транспортную. Белки осуществляют перенос по организму и всем тканям жизненно необходимых веществ. Например, белок гемоглобин переносит кислород.
  • Защитную. Иммунная система вырабатывает белки-антитела как реакцию на вредные чужеродные микроорганизмы, попавшие внутрь организма. Белки-антитела блокируют атаку вредных веществ. Также существуют белки крови – фибриногены, которые способны предостеречь организм от потери крови путем образования сгустка (сворачивание крови).
  • Гормональную. Гормоны отвечают за соблюдение равновесия в организме, регулируют обмен веществ, при этом большинство их состоит из белков или полипептидов.
  • Питательную. Например, белок казеин присутствует в грудном молоке и отвечает за насыщение малыша.

Строительная функция белка – одна из главных, отвечающих за нормальную жизнедеятельность организма.

Количество белков в организме человека

Наличие белков в каждой живой клетке составляет не меньше половины ее сухого веса. Вообще в составе всех белков присутствует только двадцать аминокислот, при этом различные белковые соединения отличаются между собой количеством повторов и последовательностью соединений. В зависимости от этого белки и выполняют разные функции, одна из которых, необходимая для продолжения жизни, – строительная функция белков.

Белки распределены по организму неодинаково.

Процентное соотношение белков к массе сухой ткани
Органы,ткани% белка к массе сухой ткани
Кожа63
Кости20
Зубы18
Мышцы80
Мозг45
Легкие82
Селезенка84
Печень57
Жировые ткани14

Строительная функция белков

Где осуществляется она? В организме человека создание новых клеток и восстановление разрушенных тканей невозможно без наличия белка. Он также участвует в синтезе соков пищеварения, входит в состав иммунных тел, гормонов. Белок выполняет и энергетическую функцию: при больших физических нагрузках необходимо получать его для поддержания баланса питательных веществ организма.

Одна из основных функций белка – строительная. Если белок перестанет ее выполнять, живой организм не сможет существовать. Как проявляется строительная функция белков? Примеры белков и их действие на организм живых существ оисаны ниже:

  1. Кератин – белок, из которого состоят волосы, ногти; у животных – шерсть, рога, копыта. В зависимости от набора аминокислот, он может быть мягким и гибким, а может – жестким и прочным.
  2. Коллаген - присутствует в сухожилиях и хрящах, его волокна не растягиваются, поэтому мышечное усилие направляется на кости, к которым прикреплены мышцы.
  3. Эластин – белок, прочность которого не очень велика, при этом он имеет хорошую эластичность, под давлением способен легко растянуться. Находится в стенках сосудов.

Белок в клеточных скелетах

Строительная функция белка проявляется как в строении организма, так и в клетках – белки создают внутренний цитоскелет.

Существует три вида клеточного скелета:

  • микротрубочки;
  • микрофиламенты;
  • филаменты.

Микротрубочки – это трубочки, состоящие из белка тубулина. С их помощью компоненты клетки переносятся по ней.

Микрофиламенты состоят из белка актина. Они создают мелкую непрерывную сетку под наружной мембраной клетки, таким образом, делая ее упругой и прочной.

Наличие определенного вида белка в промежуточных филаментах определяется тем, в каких клетках они находятся. Исходя из исследований, считается, что филаменты придают клетке прочность.

Аминокислоты

Аминокислоты – это связь углерода, водорода, кислорода и азота и (иногда) серы. Аминокислот существует более 100 видов, однако у человека присутствует всего лишь 20. Одни из них организм вырабатывает сам, а другие необходимо получать из продуктов питания.

Аминокислоты делятся на три вида:

  1. Заменимые – организм их синтезирует сам.
  2. Незаменимые – получаются из продуктов питания.
  3. Условно-заменимые – аминокислоты, которые могут синтезироваться организмом, однако для этого необходимо присутствие определенного количества других аминокислот.

Важность аминокислот

Наличие в организме основного набора аминокислот обязательно, поскольку их недостаток отразится на нарушениях функциональности тех органов, за которые они отвечают. Например, дефицит лизина в крови провоцирует понижение уровня гемоглобина, что губительно отражается на состоянии здоровья человека.

Одна аминокислота называется пептидом, связь 3-100 аминокислот – это маленький белок. Белки могут состоять из 100-800 последовательно соединенных аминокислот.

Итак, строительная функция белков где осуществляется? Она может проявляться на клеточном уровне и в строении организма человека. Белковые рецепторы содержатся и в цитоплазме, и в мембране клеток. Существующие моторные белки функционируют для обеспечения двигательной функции организма, например участвуют в сокращении мышц, перемещении клеток.

Строительная функция белков заключается в том, что белки присутствуют в клеточных мембранах, формируют скелет клетки, входят в состав рибосом, хромосом и других жизненно важных формирований.

Путь белка при строительной функции

Белок, выполняющий строительную функцию, проходит свой путь. Например, путь, который проходит белок, попавший в организм из пищи, следующий. Из продуктов питания он попадает в желудок, где расщепляется на аминокислоты. После чего они всасываются слизистой кишечника и попадают в печень, из которой распространяются по всем органам и тканям организма, чтобы обеспечить синтез белка. Строительная функция белков проявляется в том, что они участвуют во всех жизненно важных процессах организма.

Заключение

Для продолжения жизни человеку необходимо, чтобы в его клетках постоянно проходили различные химические реакции. И одну из главных ролей выполняют белки, благодаря которым осуществляется развитие и функционирование организма.

Строительная функция белков проявляется в формировании новых клеток и регенерации старых. Для регенерации необходимо присутствие нужного количества белка, чтобы его хватило на замену изношенных клеток.

Большой износ тканей и клеток наблюдается у людей, ведущих спортивный образ жизни. Поэтому им необходимо потреблять пищу, богатую белками. Также это касается и тех, кто занимается умственной деятельностью.

Белки способны связывать воду, образовывая коллоидные структуры. Можно сказать, что жизнь – это процесс существования белков, их взаимосвязи с окружающей средой. Если этот процесс прекратится, жизнь живого организма закончится.

fb.ru

Каталитическая функция белков: примеры. Основные функции белков

Белки представляют собой природные органические соединения, которые обладают высокомолекулярным строением. Молекула данных веществ является неразветвляющимся полимером. Белки построены из 20 аминокислот. Именно они представляют структурную минимальную единицу молекулы – мономер. Все составляющие белка соединены между собой полипептидной, по-другому - карбамидной, связью в достаточно длинные цепи. При этом молекулярная масса может составлять от нескольких тысяч и до миллионов атомных частиц.

Каким может быть белок

Чтобы определить основные функции белка, стоит разобраться в строении подобных веществ. На данный момент существует две разновидности этого важного для человека компонента: фибриллярные и глобулярные. Различают их в основном благодаря разнице в строении белковой молекулы.

Глобулярное вещество прекрасно растворяется не только в воде, но и в солевых растворах. При этом молекула такого белка обладает шарообразной формой. Такую хорошую растворимость можно легко объяснить расположением заряженных остатков аминокислот, которые окружены гидратной оболочкой, на поверхности глобулы. Именно это и обеспечивает такие хорошие контакты с различными растворителями. Стоит отметить, что в группу глобулярных компонентов входят все ферменты, а также практически все биологически активные белки.

Что касается фибриллярных веществ, то их молекулы обладают волокнистой структурой. Каталитическая функция белков очень важна. Поэтому сложно представить ее выполнение без вспомогательных веществ. Фибриллярные белки не растворяются ни в солевых растворах, ни в обычной воде. Их молекулы располагаются параллельно в полипептидных цепях. Такие вещества участвуют в процессах образования некоторых структурных элементов соединительных тканей. Это эластины, кератины, коллагены.

Особую группу составляют сложные белки, которые состоят не только из аминокислот, но и нуклеиновых кислот, углеводов и прочих веществ. Все эти компоненты играют особую роль. Особое значение имеет каталитическая функция белков. Помимо этого, вещества подобного плана являются дыхательными пигментами, гормонами, а также надежной защитой для любого организма. Биосинтез белка осуществляется на рибосомах. Этот процесс определяется при трансляции кодом нуклеиновых кислот.

Каталитическая функция белков

Катализ разнообразных химических веществ – это самая главная функция белков. Подобные процессы осуществляются ферментами. Это белки, которые обладают каталитическими специфическими свойствами. Каждый из подобных веществ может осуществлять одну или же несколько похожих реакций. Катализируют ферменты процесс расщепления сложных молекул, а также их синтез. По-другому эти реакции называют катаболизмом и анаболизмом. Каталитическая функция белков подразумевает также репарацию и репликацию ДНК, а также матричный синтез РНК.

Что такое катализ

Уже к 2013 году учеными было выявлено чуть более 5 тысяч ферментов. Подобные вещества способны влиять на ход практически любых биохимических реакций. Чтобы стала более понятной каталитическая функция белков, стоит разобраться, что же такое катализ. С греческого языка это понятие переводится как "прекращение". Катализ представляет собой изменение скорости протекания любой химической реакции. Происходит это под действием определенных соединений. Ферментами выполняется каталитическая функция белков. Примеры этого явления встречаются в повседневной жизни постоянно. Просто человек этого не замечает.

Пример каталитической функции

Чтобы понять, как действуют ферменты, стоит рассмотреть несколько примеров. Итак, в чем заключается каталитическая функция белков. Примеры:

  1. При фотосинтезе рибулезобифосфаткарбоксилаза осуществляет катализ фиксации СО2.
  2. Перекись водорода расщепляется до кислорода и воды.
  3. ДНК синтезирует ДНК-полимераза.
  4. Амилаза способна расщепляет до мальтозы крахмал.
  5. Деградация угольной кислоты: СО2 + Н2О НСО3 + Н+.

Каталитическая функция белков заключается в ускорении любых химических превращений. К подобным реакциям относится синтез, распад веществ, перенос отдельных атомов или электронов от одного компонента к другому.

Транспортная функция

Жизнедеятельность любой клетки должна поддерживаться различными веществами, которые являются для них не только строительным материалом, но и своеобразной энергией. Биологические функции белков включают и транспортную. Именно эти компоненты поставляют в клетки все важные вещества, ведь мембраны построены из нескольких слоев липидов. Именно здесь и находятся различные белки. При этом гидрофильные участки все сосредоточены на поверхности, а хвостики - в толще мембран. Такое строение не позволяет проникать внутрь клеток очень важным веществам – ионам щелочных металлов, аминокислотам и сахарам. Белки переносят все эти компоненты внутрь клеток для их питания. Например, гемоглобин транспортирует кислород.

Рецепторная

Основные функции белка обеспечивают не только питание клеток живых организмов, но и помогают распознать сигналы, которые поступают из внешней среды и соседних клеток. Самый яркий пример такого явления – рецепторы ацетилхолина, который расположен на мембране около межнейронных контактов. Сам процесс очень важен. Белки выполняют рецепторную функцию, их взаимодействие с ацетилхолином проявляется специфическим образом. В результате внутрь клетки передается сигнал. Однако спустя некоторое время нейромедиатор обязательно должен быть удален. Только в этом случае клетка сможет получить новый сигнал. Именно эту функцию выполняет один из ферментов – ацетилхолтнэстераза, который выполняет расщепление до холина и ацетата гидролизацетилхолина.

Защитная

Иммунная система любого живого существа способна отвечать на появление в организме чужеродных частиц. В данном случае срабатывает защитная функция белка. В организме происходит выработка большого количества лимфоцитов, которые способны наносить вред патогенным бактериям, макромолекулам, раковым клеткам и прочее. Одна из групп данных веществ осуществляет выработку особых белков - иммуноглобулинов. Происходит выделение данных веществ в кровеносную систему. Иммуноглобулины распознают чужеродные частицы и образуют высоко специфический комплекс определенной стадии уничтожения. Так осуществляется защитная функция белка.

Структурная

Функции белка в клетке протекают незаметно для человека. Некоторые вещества имеют по большей части структурное значение. Подобные белки обеспечивают механическую прочность отдельных тканей в организмах. Прежде всего, это коллаген. Это основной компонент внеклеточного матрикса всех соединительных тканей в живом организме.

Стоит отметить, что у млекопитающих коллаген составляет примерно 25 % от общей массы белков. Синтез данного компонента происходит в фибробластах. Это основные клетки любой соединительной ткани. Первоначально образуется проколлаген. Это вещество является предшественником и проходит химическую обработку, которая состоит в окислении до гидроксипролина остатков пролина, а также до гидрксилина остатков лизина. Коллаген образуется в виде трех пептидных цепей, скрученных в спираль.

Это не все функции белков. Биология - достаточно сложная наука, которая позволяет определить и распознать множество явлений, протекающих в организме человека. Каждая функция белка играет особую роль. Так, в эластичных тканях, например в легких, стенках кровеносных сосудов и коже имеется эластин. Этот белок способен растягиваться, а затем возвращаться к исходной форме.

Двигательные белки

Мышечные сокращения – это процесс, при котором происходит превращение энергии, запасенной в молекулах АТФ в виде пирофосфатных макроэргических связей, именно в механическую работу. В данном случае функции белка в клетке выполняют миозин и актин. Каждый из них имеет свои особенности.

Миозин обладает необычайным строением. Этот белок состоит из нитевидной достаточно длиной части – хвоста, а также из нескольких глобулярных головок. Выделяется миозин, как правило, в виде гексамера. Этот компонент образуется несколькими совершенно одинаковыми полипептидными цепями, каждая из которых обладает молекулярной массой в 200 тысяч, а также 4 цепями, молекулярная масса которых составляет всего 20 тысяч.

Актин представляет собой глобулярный белок, который обладает способностью полимеризоваться. При этом вещество образует достаточно длинную структуру, которую принято называть F-актином. Только в таком состоянии компонент может нормально взаимодействовать с миозином.

Примеры основных функций белков

Ежесекундно в клетках живого организма протекают всевозможные процессы, которые невозможны были бы без белков. Примером рецепторной функции подобных веществ может послужить сообщение клеткам адренорецептором о присоединении адреналина. Под воздействием света происходит разложение родопсина. Подобное явление запускает реакцию и возбуждает палочку.

Что касается структурной функции, то лучшим примером в данном случае может послужить действие коллагена. Это вещество придает соединительным тканям больше упругости.

Примером транспортной функции является перенос гемоглобином кислорода по всему живому организму.

В заключение

Это все основные биологические функции белков. Каждая из них очень важна для живого организма. При этом определенная функция выполняется соответствующим белком. Отсутствие подобных компонентов может привести к нарушению работы определенных органов и систем в организме.

fb.ru

Защитная функция белков. Строение и функции белков

Белки являются основой всех живых организмов. Именно эти вещества выступают компонентом клеточных мембран, органелл, хрящей, сухожилий и роговых производных кожи. Однако защитная функция белков - одна из самых важных.

Белки: особенности строения

Наряду с липидами, углеводами и нуклеиновыми кислотами белки являются органическими веществами, составляющими основу живых существ. Все они - природные биополимеры. Эти вещества состоят из многократно повторяющихся структурных единиц. Они называются мономеры. Для белков такими структурными единицами являются аминокислоты. Соединяясь в цепочки, они образуют крупную макромолекулу.

Уровни пространственной организации белка

Цепочка, состоящая из двадцати аминокислот, может образовывать различные структуры. Это уровни пространственной организации или конформации белка. Первичная структура представлена цепью из аминокислот. Когда она закручивается в спираль, возникает вторичная. Третичная структура возникает при закручивании предыдущей конформации в клубок или глобулу. А вот следующая структура самая сложная - четвертичная. Она состоит из нескольких глобул.

Свойства белков

Если четвертичная структура разрушается до первичной, а именно до цепи аминокислот, то происходит процесс, который называется денатурацией. Он обратим. Цепочка аминокислот способна снова образовать более сложные структуры. А вот когда происходит деструкция, т.е. разрушение первичной структуры, белок восстановить уже невозможно. Такой процесс является необратимым. Деструкцию осуществлял каждый из нас, когда термически обрабатывал продукты, состоящие из белка - куриные яйца, рыбу, мясо.

Функции белков: таблица

Белковые молекулы очень многобразны. Это обусловливает широкий спектр их возможностей, которые обусловлены строением аминокислот. Функции белков (таблица содержит необходимую информацию) являются необходимым условием существования живых организмов.

Функция белкаЗначение и суть процессаНазвание белков, осуществляющих функцию

Строительная

(структурная)

Белок является строительным материалом для всех структур организма: от мембран клетки до мышц и связок.Коллаген, фиброин
ЭнергетическаяПри расщеплении белков выделяется энергия, необходимая для осуществления процессов жизнедеятельности организма (1 г белка - 17, 2 кДж энергии).Проламин
СигнальнаяБелковые соединения клеточных мембран способны распознавать специфические вещества из окружающей среды.Гликопротеиды
СократительнаяОбеспечение двигательной активности.Актин, миозин
РезервнаяЗапас питательных веществ.Эндосперм семян
ТранспортнаяОбеспечение газообмена.Гемоглобин
РегуляторнаяРегуляция химических и физиологических процессов в организме.Белки гормонов
КаталитическаяУскорение протекания химических реакций.Ферменты (энзимы)

Защитная функция белков в организме

Как видите, функции белков очень разнообразны и важны по своему значению. Но мы не упомянули еще об одной из них. Защитная функция белков в организме заключается в предотвращении проникновения чужеродных веществ, которые могут нанести существенный вред организму. Если же это произошло, специализированные белки способны их обезвредить. Эти защитники называются антителами или иммуноглобулинами.

Процесс формирования иммунитета

С каждым вздохом в наш организм проникают болезнетворные бактерии и вирусы. Они попадают в кровь, где начинают активно размножаться. Однако на их пути встает значительная преграда. Это белки плазмы крови - иммуноглобулины или антитела. Они являются специализированными и характеризуются способностью распознавать и обезвреживать чужеродные для организма вещества и структуры. Они называются антигенами. Так проявляется защитная функция белков. Примеры ее можно продолжить информацией об интерфероне. Этот белок также является специализированным и распознает вирусы. Это вещество даже является основой многих иммуностимулирующих лекарственных препаратов.

Благодаря наличию защитных белков организм способен противостоять болезнетворным частицам, т.е. у него формируется иммунитет. Он может быть врожденным и приобретенным. Первым все организмы наделены еще с момента появления на свет, благодаря чему и возможна жизнь. А приобретенный появляется после перенесения различных инфекционных заболеваний.

Механическая защита

Белки выполняют защитную функцию, непосредственно предохраняя клетки и весь организм от механических воздействий. К примеру, наружный скелет ракообразных играет роль панциря, надежно защищая все содержимое. Кости, мышцы и хрящи образуют основу организма, и не только предотвращают повреждение мягких тканей и органов, но и обеспечивают его передвижение в пространстве.

Образование тромбов

Процесс свертывания крови - это также защитная функция белков. Он возможен благодаря наличию специализированных клеток - тромбоцитов. При повреждении кровеносных сосудов они разрушаются. В результате растворимый белок плазмы фибриноген превращается в его нерастворимую форму - фибрин. Это сложный ферментативный процесс, в результате которого нити фибрина очень часто переплетаются и образуют густую сеть, которая препятствует вытеканию крови. Другими словами, образуется сгусток крови или тромб. Это является защитной реакцией организма. При нормальной жизнедеятельности этот процесс длится максимум до десяти минут. Но при болезни несвертываемости крови - гемофилии, которой страдают в основном мужчины, человек может погибнуть даже при незначительном ранении.

Однако если тромбы образуются внутри кровеносного сосуда, это может быть очень опасно. В некоторых случаях это даже приводит к нарушению его целостности и внутреннему кровоизлиянию. В этом случае рекомендованы препараты, наоборот, разжижающие кровь.

Химическая защита

Защитная функция белков проявляется и в химической борьбе с болезнетворными веществами. И начинается она уже в ротовой полости. Попадая в нее, пища вызывает рефлекторное выделение слюны. Основу этого вещества составляет вода, ферменты, которые расщепляют полисахариды и лизоцим. Именно последнее вещество обезвреживает вредоносные молекулы, защищая организм от их дальнейшего воздействия. Содержится он и в слизистых оболочках желудочно-кишечного тракта, и в слезной жидкости, которая омывает роговицу глаза. В большом количестве лизоцим находится в грудном молоке, слизи носоглотки и белке куриных яиц.

Итак, защитная функция белков проявляется в первую очередь в обезвреживании бактериальных и вирусных частиц в крови организма. В результате у него формируется способность противостоять болезнетворным агентам. Ее и называют иммунитетом. Белки, которые входят в состав наружного и внутреннего скелета, защищают внутреннее содержимое от механических повреждений. А белковые вещества, находящиеся в слюне и других средах, предотвращают действие на организм химических агентов. Другими словами, защитная функция белков заключается в обеспечении необходимых условий для всех процессов жизнедеятельности.

fb.ru

Строение, свойства и функции белков

Строение белков

Белки - высокомолекулярные органические соединения, состоящие из остатков α -аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин - 36 000, гемоглобин - 152 000, миозин - 500 000. Для сравнения: молекулярная масса спирта - 46, уксусной кислоты - 60, бензола - 78.

Аминокислотный состав белков

Белки - непериодические полимеры, мономерами которых являются α -аминокислоты. Обычно в качестве мономеров белков называют 20 видов α -аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты - могут синтезироваться; незаменимые аминокислоты - не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными - содержат весь набор аминокислот; неполноценными - какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

3-d модели аминокислот и белков

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства. Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н+ определяют буферные свойства белков; один из самых мощных буферов - гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание) могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией. Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой, в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией. Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой.

Функции белков

Строительная: Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.

Транспортная:

Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.

Регуляторная: Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.

Защитная: В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки - антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.

Двигательная: Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.

Сигнальная: В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.

Запасающая: В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.

Энергетическая: При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов - воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.

Каталитическая: Одна из важнейших функций белков. Обеспечивается белками - ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО2 при фотосинтезе.



Copyright © BioFile 2007-2016

biofile.ru

примеры и описание. Какие белки и где осуществляют энергетическую функцию?

Наш организм состоит из различных микроэлементов и веществ. За счет их постоянного преобразования мы можем жить и выполнять свои дела. Мы даже не задумываемся о том, что каждую минуту жизни мелкие частицы нашего тела постоянно работают, принося нам пользу. Естественно, задача каждого человека состоит в том, чтобы постоянно пополнять их запасы.

Вещества для жизнедеятельности организма

Основными веществами, которые позволяют нам полноценно функционировать, являются углеводы, белки и жиры. Эти вещества в разных пропорциях находятся практически во всех продуктах, но важно соблюдать баланс этих элементов, так как в противном случае могут начаться проблемы со здоровьем. В данной статье мы рассмотрим функции белков, как они могут давать организму энергию.

Что за вещество - белки?

Это элементы, которые представляют собой цепочки аминокислот. Они обладают большой молекулярной массой, так как одна молекула вмещает в себе несколько аминокислот, которые соединяются полипептидной связью. Одна единица, составляющая белок, представлена какой-либо аминокислотой.

Это вещество является незаменимым стройматериалом для организма. Из аминокислот и белков строится практически все в организме: от них зависит обеспечение человека кислородом, так как гемоглобин - это белок. Данное вещество помогает поддерживать иммунитет, участвует в синтезе гормонов, так необходимых для регуляции многих внутренних процессов. На него также возложена энергетическая функция, которая ему не свойственна в полноте. Без него очень сложно организму развиваться и расти. Но и избыток белков не нужен нам. От большого их количества происходят процессы брожения и другие негативные влияния на клетки и органы.

Основные их функции

Белки выполняют много функций, за счет этого организм не испытывает недостаток в регуляции каких-либо процессов, продуцировании новых клеток, иммунной защите и так далее. Рассмотрим их подробнее.

  1. Каталитическая. Аминокислоты, соединяясь определенным образом, создают ферменты, которые отвечают за скорость определенных реакций в организме. Речь идет не об одном десятке занятых катализацией ферментов. Их у нас порядка нескольких тысяч, и контролируют они до 4000 реакций. Все эти процессы объединяются в одно понятие - обмен веществ. Именно белки определяют, с какой скоростью он будет происходить.
  2. Структурная - с помощью определенных белков сохраняется форма внутренних клеток, в снаружи мы имеем постоянной формы ногти, волосы и так далее.
  3. Защитная функция. Она заключается в том, что белки, входящие в состав биологических жидкостей, веществ и клеток, обеспечивают защиту на физическом, химическом, иммунном уровне.
  4. Регуляторная - есть такие белки, которые не являются стройматериалами клеток, не участвуют в метаболизме, энергетическая функция для них не свойственна, но занимаются они регуляцией процессов в клетках. Они "следят" за передачей генетической информации, активностью и синтезом аминокислот.
  5. Транспортная функция белков заключается в том, что они переносят важные и полезные вещества для организма с током крови или между клетками.
  6. Рецепторная - иначе ее могут называть механохимической. Некоторые белки под действием разных сигналов могут менять свою длину, сокращаясь.
  7. Энергетичекая функция белков - при расщеплении белков высвобождается некоторое количество энергии. Поэтому эти вещества в определенных обстоятельствах служат ее источником.

В каком случае возникает энергетическая функция белков?

Не всегда наше питание сбалансировано так, чтобы белки, жиры и углеводы поступали в наш организм именно в таком количество, как требуется. Поэтому часто возникает недостаток или избыток тех или иных веществ.

В случае длительного отсутствия достаточного количества углеводов и жиров на первый план выступает энергетическая функция белков. Организм не перестает потреблять энергию, поэтому именно соединения аминокислот начинают ее поставлять.

Как происходит высвобождение энергии?

Белки - уникальные вещества в организме. Вариаций их строения можт быть тысячи, в зависимости от этого их различают по свойствам. Расход этого вещества в течение длительного времени колоссальный, та же энергетическая функция белков приводит к их расщеплению, следовательно, необходимо их запас постоянно пополнять. В этом нам помогает наш же организм - есть множество клеток, которые синтезируют белок, причем определенного вида и свойства.

Высвобождение энергии происходит с процессом переваривания белков в разных отделах желудочно-кишечного тракта. Окончательное расщепление аминокислот происходит на клеточном уровне.

Преобразование белков в желудке

Энергетическая функция белков, примеры которой мы рассмотрим ниже, начинается с расщепления этих веществ в желудке. Здесь на помощь приходит это же вещество, только другой структуры - фермент пепсин. Он активно действует при определенных условиях (когда рН не выше 5,0 и не ниже 2,0). Посредством преобразования секрета желез желудка получается кислый желудочный сок, что благоприятно сказывается на работе пепсина.

Уже на этом этапе начинается энергетическая функция белков. Пепсин - один из многих ферментов, который способен расщеплять сложный белок коллаген (основной в соединениях ткани мяса). Соединяясь с водой (гидролиз), он образует промежуточные продукты распада и маленькую долю тепла, которое рассеивается по организму, участвуя в энергетическом обмене. Можно сказать, что белки, выполняющие энергетическую функцию, по своей структуре не ферменты, так как последние только помогают эту функцию осуществить другим веществам.

Участие поджелудочной железы в расщеплении белков

Поджелудочная железа не принимает в себе вещества для расщепления. Но она является поставщиком необходимых ферменов, поэтому без нее в переваривании белков трудно обойтись. Она обеспечивает органы пищеварения панкреатическими ферментами: проэластазой, хемотрипсином, трипсином, карбоксиполипептидазой.

Расщепление в кишечнике

Не все белки подвергаются полному распаду в кишечнике, хотя над этим трудится много веществ. Даже в конце переваривания могут оставаться дипептиды и трипептиды. Лишь некоторые аминокислоты выходят из этого отдела ЖКТ единичными.

Трипсин и хемотрипсин помогают белкам преобразоваться в полипептиды, выделяя при нехватке глюкозы в организме тепло, здесь продолжает свое действие энергетическая функция белков. Примеры такого преобразования мы можем наблюдать каждый день, когда употребляем различные вещества в пищу. После распада белков на полипептиды вступает в работу фермент карбоксиполипептаза - она отсоединяет отдельные аминокислоты от конца образовавшихся соединений. Проэластаза переваривает эластические волокна мясных продуктов и других сложных веществ.

Белки, выполняющие энергетическую функцию, проходят последний этап своего расщепления в тонком кишечнике, двенадцатиперстной кишке. Там они подвергаются воздействию ворсинок, которые содержат в себе пептидазы. Эти вещества, взаимодействуя с кишечной жидкостью, заканчивают процесс расщепления полипептидов до маленького числа аминокислот. Далее процесс распределения тепла как энергии от распада белков происходит на клеточном уровне, а конечными продуктами расщепления этих сложных по структуре веществ являются мочевая кислота, мочевина, вода и углекислый газ. Таким образом, мы увидели, где осуществляется энергетическая функция белков. Она не имеет конкретного места локализации аминокислот. Но осуществляется она от начала и до полного расщепления белка.

Клеточная энергия

Энергетическую функцию в клетке выполняют такие органеллы, как митохондрии. На мембране клеток есть молекулы-переносчики, которые перетаскивают продукты распада белков с молекул. В этом случае также выделяется энергия, которая помогает синтезировать молекулы АТФ и взаимодействует с кислородом. Даже на клеточном уровне можно ответить на вопрос о том, какие белки выполняют энергетическую функцию. Это такие вещества, которые не задействованы в ферментативной работе и строительной, так как в строительстве клеток организма принимают участие более уцелевшие во время расщепления полипептиды. Но и они в дальнейшем могут приносить маленькую долю энергии на клеточном уровне с помощью митохондрий и образовавшихся молекул АТФ (уникальный источник энергии для всех процессов в организме).

fb.ru

В чем заключается ферментативная функция белков? Ферментативная функция белков: примеры

Работа нашего организма – чрезвычайно сложный процесс, в котором задействованы миллионы клеток, тысячи самых разнообразных веществ. Но есть одна область, которая целиком и полностью зависит от особых белков, без которых жизнь человека или животного окажется совершенно невозможной. Как вы наверняка догадались, говорим мы сейчас о ферментах.

Сегодня нами будет рассмотрена ферментативная функция белков. Это важнейшая область биохимии.

Так как в основе этих веществ лежат преимущественно белки, то они сами могут считаться ими. Нужно знать, что впервые ферменты были открыты еще в 30-е годы 19-го века, вот только ученым понадобилось более века, дабы прийти к более-менее единому определению для них. Так какую функцию выполняют белки-ферменты? Об этом, а также об их строении и примерах реакций вы узнаете из нашей статьи.

Нужно понимать, что далеко не всякий белок может быть ферментом даже теоретически. Только белки глобулярной формы способны проявлять каталитическую активность в отношении других органических соединений. Как и все природные соединения этого класса, ферменты состоят из аминокислотных остатков. Запомните, что ферментативная функция белков (примеры которой будут в статье) может выполняться только теми из них, чья молярная масса не меньше 5000.

Энзимы – это катализаторы биологического происхождения. Они обладают способностью ускорять реакции за счет теснейшего соприкосновения между двумя участвующими в реакции веществами (субстратами). Можно сказать, что ферментативная функция белков - это процесс катализа некоторых биохимических реакций, которые характерны только для живого организма. Лишь незначительная их часть может быть воспроизведена в условиях лаборатории.

Следует заметить, что в последние годы в этом направлении наметился некоторый прорыв. Ученые постепенно вплотную подходят к созданию искусственных ферментов, которые можно будет использовать не только для целей народного хозяйства, но и медицины. Ведутся разработки энзимов, которые могут эффективно уничтожать даже небольшие участки начинающегося онкологического заболевания.

Какие части энзима непосредственно участвуют в реакции?

Заметим, что в контакт с субстратом входит не все тело фермента, а лишь его небольшой участок, который называется активным центром. В этом заключается их главное свойство, комплементарность. Это понятие подразумевает, что фермент идеально подходит к субстрату по форме и своим физико-химическим свойствам. Можно сказать, что функция белков-ферментов в этом случае состоит в следующем:

  • Их водная оболочка сходит с поверхности.
  • Происходит определенная деформация (поляризация, к примеру).
  • После чего они особым образом располагаются в пространстве, одновременно сближаясь друг с другом.

Именно эти факторы приводят к ускорению реакции. А сейчас давайте проведем сравнение между энзимами и неорганическими катализаторами.

Сравниваемая характеристика

Ферменты

Неорганические катализаторы

Ускорение прямой и обратной реакции

Одинаковое

Одинаковое

Специфичность (комплементарность)

Подходят только к определенному типу веществ, высокая специфичность

Могут быть универсальными, ускоряя сразу несколько схожих реакций

Скорость реакции

Увеличивают интенсивность реакции в несколько миллионов раз

Ускорение в сотни и тысячи раз

Реакция на нагревание

Реакция сходит на «нет» из-за полной или частичной денатурации участвующих в ней белков

При нагревании большинство каталитических реакций многократно ускоряются

Как видите, ферментативная функция белков предполагает специфичность. От себя также добавим, что многие из этих белков обладают еще и видовой специфичностью. Проще говоря, ферменты человека вряд ли подойдут для морской свинки.

Важные сведения о строении ферментов

В строении этих соединений выделяют сразу три уровня. Первичную структуру можно выявить по тем аминокислотным остаткам, которые входят в состав энзимов. Так как ферментативная функция белков, примеры которой мы неоднократно приводим в этой статье, может осуществляться только некоторыми категориями соединений, определить их именно по этому признаку вполне реально.

Что же касается вторичного уровня, то принадлежность к нему определяется при помощи дополнительных типов связей, которые могут возникать между этими аминокислотными остатками. Это связи водородные, электростатические, гидрофобные, а также Ван-дер-Ваальсовы взаимодействия. В результате того напряжения, которое эти связи вызывают, в различных частях фермента образуются α-спирали, петли и β-тяжи.

Третичная структура появляется в результате того, что сравнительно большие участки полипептидной цепи попросту сворачиваются. Образовавшиеся в результате этого тяжи называются доменами. Наконец, окончательное формирование этой структуры происходит только после того, как между различными доменами устанавливается устойчивое взаимодействие. Следует помнить, что образование самих доменов происходит в абсолютно независимом друг от друга порядке.

Некоторые характеристики доменов

Как правило, полипептидная цепь, из которой они образуются, состоит приблизительно из 150 аминокислотных остатков. Когда домены взаимодействуют друг с другом, образуется глобула. Так как ферментативную функцию выполняют активные центры на их основе, следует понимать важность данного процесса.

Сам домен отличается тем, что между аминокислотными остатками в его составе наблюдаются многочисленные взаимодействия. Их число намного больше таковых для реакций между самими доменами. Таким образом, полости между ними сравнительно «уязвимы» для действия различных органических растворителей. Объем их составляет порядка 20-30 кубических ангстрем, которые умещают несколько молекул воды. Разные домены чаще всего имеют совершенно уникальную пространственную структуру, что связано с выполнением ими совершенно различных функций.

Активные центры

Как правило, активные центры располагаются строго между доменами. Соответственно, каждый из них играет весьма важную роль в протекании реакции. Вследствие такого расположения доменов обнаруживается значительная гибкость, подвижность этой области фермента. Это чрезвычайно важно, так как ферментативную функцию выполняют только те соединения, которые могут соответствующим образом изменять свое пространственное положение.

Между длиной полипептидной связи в теле энзима и тем, насколько сложные функции им выполняются, существует прямая связь. Усложнение роли достигается как за счет формирования активного центра реакции между двумя каталитическими домена, так и благодаря образованию совершенно новых доменов.

Некоторые белки-ферменты (примеры - лизоцим и гликогенфосфорилаза) могут очень сильно различаться по своим размерам (129 и 842 аминокислотных остатка соответственно), хоть и катализируют реакцию расщепления одинаковых типов химических связей. Отличие состоит в том, что более массивные и крупные энзимы способны лучше контролировать свое положение в пространстве, чем обеспечивается большая стабильность и скорость реакции.

Основная классификация ферментов

В настоящее время общепринятой и распространенной во всем мире является стандартная классификация. Согласно ей, выделяется шесть основных классов, с соответствующими подклассами. Мы рассмотрим только основные. Вот они:

1. Оксидоредуктазы. Функция белков-ферментов в этом случае – стимуляция окислительно-восстановительных реакций.

2. Трансферазы. Могут осуществлять перенос между субстратами следующих групп:

  • Одноуглеродные остатки.
  • Остатки альдегидов, а также кетонов.
  • Ацильные и гликозильные компоненты.
  • Алкильные (в виде исключения не могут переносить СН3) остатки.
  • Азотистые основания.
  • Группы, содержащие фосфор.

3. Гидролазы. В этом случае значение ферментативной функции белков состоит в расщеплении следующих типов соединений:

  • Сложных эфиров.
  • Гликозидов.
  • Эфиров, а также тиоэфиров.
  • Связей пептидного типа.
  • Связей типа C-N (кроме все тех же пептидов).

4. Лиазы. Обладают способностью к отцеплению групп с последующим образованием двойной связи. Кроме того, могут выполнять и обратный процесс: присоединение отдельных групп к двойным связям.

5. Изомеразы. В данном случае ферментативная функция белков заключается в катализе сложных изомерных реакций. К этой группе относятся следующие энзимы:

  • Рацемазы, эпимеразы.
  • Цистрансизомеразы.
  • Внутримолекулярные оксидоредуктазы.
  • Внутримолекулярные трансферазы.
  • Внутримолекулярные лиазы.

6. Лигазы (иначе известные как синтетазы). Служат для расщепления АТФ с одновременным образованием некоторых связей.

Нетрудно заметить, что ферментативная функция белков невероятно важна, так как они в той или иной степени контролируют практически все реакции, ежесекундно протекающие в вашем организме.

Что остается от фермента после взаимодействия с субстратом?

Нередко ферментом бывает белок глобулярного происхождения, активный центр которого представлен его же аминокислотными остатками. Во всех прочих случаях в состав центра входит прочно связанная с ним простетическая группа или же кофермент (АТФ, к примеру), связь которого намного слабее. Целый катализатор называется холоферментом, а его остаток, образовавшийся после удаления АТФ, апоферментом.

Таким образом, по этому признаку ферменты подразделяются на следующие группы:

  • Простые гидролазы, лиазы и изомеразы, которые вообще не содержат коферментной базы.
  • Белки-ферменты (примеры – некоторые трансаминазы), содержащие простетическую группу (липоевую кислоту, к примеру). К этой группе относятся также многие пероксидазы.
  • Энизмы, для которых обязательна регенерация кофермента. К ним относятся киназы, а также большая часть оксидоредуктаз.
  • Прочие катализаторы, состав которых пока не до конца изучен.

Все вещества, которые входят в состав первой группы, широко используются в пищевой промышленности. Все прочие катализаторы требуют очень специфических условий для своей активизации, а потому работают только в организме или в некоторых лабораторных опытах. Таким образом, ферментативная функция – это очень специфическая реакция, которая состоит в стимулировании (катализе) некоторых типов реакций в строго определенных условиях организма человека или животного.

Что происходит в активном центре, или Почему ферменты работают настолько эффективно?

Мы уже не раз говорили о том, что ключом к пониманию ферментативного катализа является создание ими активного центра. Именно там происходит специфическое связывание субстрата, который в таких условиях намного активнее вступает в реакцию. Для того чтобы вы понимали всю сложность проводимых там реакций, приведем простой пример: чтобы произошло сбраживанию глюкозы, необходимо сразу 12 ферментов! Столь непростое взаимодействие становится возможным исключительно из-за того что белок, выполняющий ферментативную функцию, обладает высочайшей степенью специфичности.

Виды специфичности ферментов

Она бывает абсолютной. В этом случае проявляется специфичность только к одному, строго определенному типу фермента. Так, уреаза взаимодействует только с мочевиной. С лактозой молока в реакцию она не вступит ни при каких условиях. Вот какую функцию выполняют белки-ферменты в организме.

Кроме того, нередко встречается абсолютная групповая специфичность. Как можно понять из названия, в этом случае присутствует «восприимчивость» строго к одному классу органических веществ (эфиры, в том числе сложные, спирты или альдегиды). Так, пепсин, который является одним из основных ферментов желудка, проявляет специфичность только в отношении гидролиза пептидной связи. Алкогольдегидраза взаимодействует исключительно со спиртами, а лактикодегидраза не расщепляет ничего, кроме α-оксикислот.

Бывает также, что ферментативная функция характерна для какой-то определенной группы соединений, но при определенных условиях энзимы могут действовать и на довольно отличные от своей основной «цели» вещества. В этом случае катализатор «тяготеет» к определенному классу веществ, но при определенных условиях он может расщеплять и прочие соединения (не обязательно аналогичные). Правда, в этом случае реакция будет идти во много раз медленнее.

Широко известна способность трипсина действовать на пептидные связи, но мало кто знает о том, что этот белок, выполняющий ферментативную функцию в желудочно-кишечном тракте, вполне может вступать во взаимодействие с различными сложноэфирными соединениями.

Наконец, специфичность бывает оптической. Эти ферменты могут взаимодействовать с широчайшим перечнем совершенно разнообразных веществ, но только при том условии, что они имеют строго определенные оптические свойства. Таким образом, ферментативная функция белков в этом случае во многом схожа с принципом действия не ферментов, а катализаторов неорганического происхождения.

Какие факторы определяют эффективность катализа?

Сегодня считается, что факторами, которые определяют крайне высокую степень эффективности ферментов, являются:

  • Эффект концентрирования.
  • Эффект пространственного ориентирования.
  • Многофункциональность активного центра реакции.

В общем-то, суть концентрационного эффекта ничем не отличается от такового в реакции неорганического катализа. В этом случае в активном центре создается такая концентрация субстрата, которая в несколько раз превышает аналогичное значение для всего прочего объема раствора. В центре реакции селективно сортируются молекулы вещества, которое должно прореагировать между собой. Нетрудно догадаться, что именно этот эффект ведет к повышению скорости химической реакции на несколько порядков.

Когда протекает стандартный химический процесс, чрезвычайно важно, какой именно частью взаимодействующие молекулы будут сталкиваться друг с другом. Проще говоря, молекулы вещества в момент столкновения обязательно должны быть строго ориентированы друг относительно друга. За счет того, что в активном центре фермента такой разворот выполняется в принудительном порядке, после чего все участвующие компоненты выстраиваются в определенную линию, реакция катализа ускоряется приблизительно на три порядка.

Под многофункциональностью в данном случае понимается свойство всех составных частей активного центра одновременно (или строго согласованно) действовать на молекулу «обрабатываемого» вещества. При этом она (молекула) не только соответствующим образом фиксируется в пространстве (см. выше), но и в значительной степени изменяет свои характеристики. Все это в совокупности приводит к тому, что ферментам становится куда проще действовать на субстрат необходимым образом.

fb.ru

Ответы@Mail.Ru: Приведите примеры белков

3. Рецепторные белки Сигнальные молекулы (гормоны, нейромедиаторы) действуют на внутриклеточные процессы 59 через взаимодействие со специфическими белками-рецепторами. Так, гормоны, циркулирующие в крови, находят клетки-мишени и воздействуют на них, специфично связываясь с белками-рецепторами, обычно встроенными в клеточную мембрану. Для гидрофобных регуляторных молекул, проходящих через клеточную мембрану, рецепторы локализуются в цитоплазме клеток. 4. Транспортные белки Многие белки крови участвуют в переносе специфических лигандов из одного органа к другому. Часто в комплексе с белками переносятся молекулы, плохо растворимые в воде. Так, белок плазмы крови альбумин переносит жирные кислоты и билирубин (продукт распада тема) , а гемоглобин эритроцитов участвует в переносе О2 от лёгких к тканям. Стероидные гормоны переносятся в крови специфическими транспортными белками. Транспортные белки участвуют также в переносе гидрофильных веществ через гидрофобные мембраны. Так как транспортные белки обладают свойством специфичности взаимодействия с лигандами, их набор в клеточной мембране определяет, какие гидрофильные молекулы могут пройти в данную клетку. С помощью белков-переносчиков в клетку проникают глюкоза, аминокислоты, ионы и другие молекулы. 5. Структурные белки Некоторые белки, расположенные определённым образом в тканях, придают им форму, создают опору, определяют механические свойства данной ткани. Например, как уже говорилось выше, главным компонентом хрящей и сухожилий является фибриллярный белок коллаген, имеющий высокую прочность. Другой структурный белок (эластин) благодаря своему уникальному строению обеспечивает определённым тканям свойство растягиваться во всех направлениях (сосуды, лёгкие) . 6. Защитные белки Некоторые белки, в частности иммуноглобулины, обладают способностью узнавать и связывать чужеродные молекулы, вирусные частицы и бактерии, в результате чего происходит их нейтрализация. Кроме того, комплекс чужеродной частицы с иммуноглобулином легко узнаётся и уничтожается клетками иммунной системы. Защитными свойствами обладают белки свёртывающей системы крови, например фибриноген, тромбин. Они участвуют в формировании тромба, который закупоривает повреждённый сосуд и препятствует потере крови. 7. Сократительные белки Некоторые белки при выполнении своих функций наделяют клетку способностью либо сокращаться, либо передвигаться. К таким белкам относят актин и миозин - фибриллярные белки, участвующие в сокращении скелетных мышц. Другой пример таких белков - тубулин, из которого построены клеточные органеллы - микротрубочки. Микротрубочки в период деления клетки регулируют расхождение хроматид. Микротрубочки - важные элементы ресничек и жгутиков, с помощью которых клетки передвигаются. Однако существует большое количество белков, имеющих уникальные функции, которые не вошли в эту довольно простую классификацию.

альбумин, меланин

Структурные - Некоторые белки, расположенные определённым образом в тканях, придают им форму, создают опору, определяют механические свойства данной ткани. Энергетические - любой белок может выполнять энергетическую функцию Рецепторные белки Сигнальные молекулы (гормоны) действуют на внутриклеточные процессы через взаимодействие со специфическими белками-рецепторами. Транспортные белки Многие белки крови участвуют в переносе специфических лигандов из одного органа к другому. Часто

touch.otvet.mail.ru