Правило Лопиталя: теория и примеры решений. Предел 1 0 равен


Решение предела функции · Калькулятор Онлайн

Введите функцию и точку, для которых надо вычислить предел

Сайт предоставляет ПОДРОБНОЕ решение по нахождению предела функции.

Займемся вычислением (решением) пределов функций в точке. Дана функция f(x). Вычислим ее предел в точке x0

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x) Абсолютное значение x(модуль x или |x|) arccos(x) Функция - арккосинус от xarccosh(x) Арккосинус гиперболический от xarcsin(x) Арксинус от xarcsinh(x) Арксинус гиперболический от xarctg(x) Функция - арктангенс от xarctgh(x) Арктангенс гиперболический от xee число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e^x) log(x) or ln(x) Натуральный логарифм от x(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от xcos(x) Функция - Косинус от xsinh(x) Функция - Синус гиперболический от xcosh(x) Функция - Косинус гиперболический от xsqrt(x) Функция - квадратный корень из xsqr(x) или x^2 Функция - Квадрат xtg(x) Функция - Тангенс от xtgh(x) Функция - Тангенс гиперболический от xcbrt(x) Функция - кубический корень из xfloor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) sign(x) Функция - Знак xerf(x) Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции:

Действительные числа вводить в виде 7.5, не 7,52*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание

www.kontrolnaya-rabota.ru

Пределы

0)Постоянная величина (число) сама себе служит пределом:.

1а)Величина, обратная бесконечно большой, есть бесконечно малая величина, т.е. еслих → ∞, то.

1b)Величина, обратная бесконечно малой, есть бесконечно большая величина, т.е. еслих → 0, то.

2a)Если две переменные стремятся к одному и тому же пределу, а третья переменная заключена между ними, то и она стремится к этому же пределу. Еслиxn < yn < zn, причемxn → pиzn → p, тоyn → p.

2b)Если две функцииF(x)иФ(х)стремятся к одному и тому же пределуAприх→ p, а значения функцииf(x)заключены между значениямиF(x)иФ(х), тоf(x)стремится к этому же пределуAприх→ p.

Если F(x)≤f(x)≤Ф(х)и

, то.

3) Предел суммы (разности) конечного числа слагаемых равен сумме (разности) пределов этих слагаемых:

lim (u ± v ± … ± t) = lim u ± lim v ± … ± lim t.

4) Предел произведения конечного числа множителей равен произведению пределов этих множителей:

lim (u · v · … · t) = lim u ·lim v · … · lim t.

Постоянный множитель можно выносить за знак предела lim c·u = с · lim u.

5) Предел частного равен частному пределов, если только предел делителя (знаменателя) не равен нулю:, если lim v ≠ 0.

6)Если предел числителя не равен нулю, а предел знаменателя равен нулю, то предел дроби является бесконечно большой величиной (см. п.1b):

Если lim u ≠ 0, а lim v = 0, то . Если же lim u =0 и lim v =0, то для нахождения предела необходимы дополнительные исследования.

0)Постоянная величина (число) сама себе служит пределом:.

1а)Величина, обратная бесконечно большой, есть бесконечно малая величина, т.е. еслих → ∞, то.

1b)Величина, обратная бесконечно малой, есть бесконечно большая величина, т.е. еслих → 0, то.

2a)Если две переменные стремятся к одному и тому же пределу, а третья переменная заключена между ними, то и она стремится к этому же пределу. Еслиxn < yn < zn, причемxn → pиzn → p, тоyn → p.

2b)Если две функцииF(x)иФ(х)стремятся к одному и тому же пределуAприх→ p, а значения функцииf(x)заключены между значениямиF(x)иФ(х), тоf(x)стремится к этому же пределуA

при х→ p. ЕслиF(x)≤f(x)≤Ф(х)и

, то.

3) Предел суммы (разности) конечного числа слагаемых равен сумме (разности) пределов этих слагаемых:

lim (u ± v ± … ± t) = lim u ± lim v ± … ± lim t.

4) Предел произведения конечного числа множителей равен произведению пределов этих множителей:

lim (u · v · … · t) = lim u ·lim v · … · lim t.

Постоянный множитель можно выносить за знак предела

lim c·u = с · lim u.

5) Предел частного равен частному пределов, если только предел делителя (знаменателя) не равен нулю:, если lim v ≠ 0.

6)Если предел числителя не равен нулю, а предел знаменателя равен нулю, то предел дроби является бесконечно большой величиной (см. п.1b): Если lim u ≠ 0, а lim v = 0, то. Если же lim u =0 и lim v =0, то для нахождения предела необходимы дополнительные исследования.

Раскрытие некоторых типов неопределённостей.

7)Чтобы раскрыть неопределенность вида, заданную отношением двух многочленов, надо и числитель и знаменатель разделить на самую высокую входящую в них степеньх.

8)Чтобы раскрыть неопределенность вида, заданную в форме:, надо и в числителе и в знаменателе выделить критический множитель (х - а) и сократить на него дробь.

9)Чтобы раскрыть неопределенность вида, в которой числитель или знаменатель иррациональны, следует надлежащим образом избавиться от иррациональности.

Первый замечательный предел:

Второй замечательный предел:

Другие замечательные пределы

Понижение степени

Раскрытие некоторых типов неопределённостей.

7)Чтобы раскрыть неопределенность вида, заданную отношением двух многочленов, надо и числитель и знаменатель разделить на самую высокую входящую в них степеньх.

8)Чтобы раскрыть неопределенность вида, заданную в форме:, надо и в числителе и в знаменателе выделить критический множитель (х - а) и сократить на него дробь.

9)Чтобы раскрыть неопределенность вида, в которой числитель или знаменатель иррациональны, следует надлежащим образом избавиться от иррациональности.

Первый замечательный предел:

Второй замечательный предел:

Другие замечательные пределы

Понижение степени

studfiles.net

Правило Лопиталя: теория и примеры решений

Раскрытие неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций значительно упрощается с помощью правила Лопиталя (на самом деле двух правил и замечаний к ним).

Суть правил Лопиталя состоит в том, что в случае, когда вычисление предела отношений двух бесконечно малых или бесконечно больших функций даёт неопределённости видов 0/0 или ∞/∞, предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Перейдём к формулировкам правил Лопиталя.

Правило Лопиталя для случая предела двух бесконечно малых величин. Если функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, может быть, самой точки a, причём в этой окрестности g'(x)≠0 и если и если пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны нулю

(),

то предел отношения этих функций равен пределу отношения их производных

().

Правило Лопиталя для случая предела двух бесконечно больших величин. Если функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, может быть, самой точки a, причём в этой окрестности g'(x)≠0 и если и если пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности

(),

то предел отношения этих функций равен пределу отношения их производных

().

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный или бесконечный).

Замечания.

1. Правила Лопиталя применимы и тогда, когда функции f(x) и g(x) не определены при x = a.

2. Если при вычисления предела отношения производных функций f(x) и g(x) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).

3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a, а к бесконечности (x → ∞).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Пример 1. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x=2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем

В числителе вычисляли производную многочлена, а в знаменателе - производную сложной логарифмической функции. Перед последним знаком равенства вычисляли обычный предел, подставляя вместо икса двойку.

Пример 2. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Подстановка в заданную функцию значения x=0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Подстановка в заданную функцию значения x=0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 4. Вычислить

.

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Переходим к примерам, в которых правило Лопиталя приходится применять дважды, то есть приходить к пределу отношений вторых производных, так как предел отношения первых производных представляет собой неопределённость вида 0/0 или ∞/∞.

Пример 5. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 6. Вычислить

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида 0/0.

Пример 7. Вычислить

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида - ∞/∞, а затем неопределённость вида 0/0.

Пример 8. Вычислить

.

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида ∞/∞, а затем неопределённость вида 0/0.

Применить правило Лопиталя самостоятельно, а затем посмотреть решение

Пример 11. Вычислить

.

Решение. Получаем

(здесь неопределённость вида 0∙∞ мы преобразовали к виду ∞/∞, так как

а затем применили правила Лопиталя).

Пример 12. Вычислить

.

Решение. Получаем

В этом примере использовано тригонометрическое тождество .

Неопределённости вида , или обычно приводятся к виду 0/0 или ∞/∞ с помощью логарифмирования функции вида

Чтобы вычислить предел выражения , следует использовать логарифмическое тождество , частным случаем которого является и свойство логарифма .

Используя логарифмическое тождество и свойство непрерывности функции (для перехода за знак предела), предел следует вычислять следующим образом:

Отдельно следует находить предел выражения в показателе степени и возводить e в найденную степень.

Пример 13. Вычислить, пользуясь правилом Лопиталя

.

Решение. Получаем

Вычисляем предел выражения в показателе степени

.

Итак,

.

Пример 14. Вычислить, пользуясь правилом Лопиталя

.

Решение. Получаем

Вычисляем предел выражения в показателе степени

.

Итак,

.

Пример 15. Вычислить, пользуясь правилом Лопиталя

.

Решение. Получаем

Вычисляем предел выражения в показателе степени

Итак,

.

Это случаи, когда вычисление предела разности функций приводит к неопределённости "бесконечность минус бесконечность": .

Вычисление такого предела по правилу Лопиталя в общем виде выглядит следующим образом:

В результате таких преобразований часто получаются сложные выражения, поэтому целесообразно использовать такие преобразования разности функций, как приведение к общему знаменателю, умножение и деление на одно и то же число, использование тригонометрических тождеств и т.д.

Пример 16. Вычислить, пользуясь правилом Лопиталя

.

Решение. Пользуясь вышеперечисленными рекомендациями, получаем

Пример 17. Вычислить, пользуясь правилом Лопиталя

.

Решение. Пользуясь вышеперечисленными рекомендациями, получаем

Весь блок "Производная"

function-x.ru

Определение предела функции на бесконечности

Конечный предел функции на бесконечности

Предел функции на бесконечности:|f(x) – a| < ε  при  |x| > N

Определение предела по КошиПусть функция f(x) определена в некоторой окрестности бесконечно удаленной точки, при |x| > K, где K – положительное число. Число a называется пределом функции f(x) при x стремящемся к бесконечности (), если для любого, сколь угодно малого положительного числа ε > 0, существует такое число Nε> K, зависящее от ε, что для всех x, |x| > Nε, значения функции принадлежат ε - окрестности точки a:|f(x) – a| < ε.Предел функции на бесконечности обозначается так:.Или     при   .

Также часто используется следующее обозначение:.

Запишем это определение, используя логические символы существования и всеобщности:.Здесь подразумевается, что значения принадлежат области определения функции.

Односторонние пределы

Левый предел функции на бесконечности:|f(x) – a| < ε  при  x < –N

Часто встречаются случаи, когда функция определена только для положительных или отрицательных значений переменной x (точнее в окрестности точки или ). Также пределы на бесконечности для положительных и отрицательных значений x могут иметь различные значения. Тогда используют односторонние пределы.

Левый предел в бесконечно удаленной точке или предел при x стремящемся к минус бесконечности () определяется так:.Правый предел в бесконечно удаленной точке или предел при x стремящемся к плюс бесконечности ():.Односторонние пределы на бесконечности часто обозначают так:;   .

Бесконечный предел функции на бесконечности

Бесконечный предел функции на бесконечности:|f(x)| > M  при  |x| > N

Определение бесконечного предела по КошиПусть функция f(x) определена в некоторой окрестности бесконечно удаленной точки, при |x| > K, где K – положительное число. Предел функции  f(x)  при x стремящемся к бесконечности (), равен бесконечности, если для любого, сколь угодно большого числа M > 0, существует такое число NM> K, зависящее от M, что для всех x, |x| > NM, значения функции принадлежат окрестности бесконечно удаленной точки:|f(x)| > M.Бесконечный предел при x стремящемся к бесконечности обозначают так:.Или   при  .

С помощью логических символов существования и всеобщности, определение бесконечного предела функции можно записать так:.

Аналогично вводятся определения бесконечных пределов определенных знаков, равных и :..

Определения односторонних пределов на бесконечности.Левые пределы....Правые пределы....

Определение предела функции по Гейне

Пусть функция f(x) определена на некоторой окрестности бесконечно удаленной точки x0, где или или .Число a (конечное или бесконечно удаленное) называется пределом функции f(x) в точке x0:,если для любой последовательности {xn}, сходящейся к x0: ,элементы которой принадлежат окрестности , последовательность {f(xn)} сходится к a:.

Если в качестве окрестности взять окрестность бесконечно удаленной точки без знака: , то получим определение предела функции при x стремящемся к бесконечности, . Если взять левостороннюю или правостороннюю окрестность бесконечно удаленной точки x0: или , то получим определение предела при x стремящемся к минус бесконечности и плюс бесконечности, соответственно.

Определения предела по Гейне и Коши эквивалентны.

Примеры

Пример 1

Используя определение Коши показать, что.

Решение

Введем обозначения:.Найдем область определения функции . Поскольку числитель и знаменатель дроби являются многочленами, то функция определена для всех x кроме точек, в которых знаменатель обращается в нуль. Найдем эти точки. Решаем квадратное уравнение. ;.Корни уравнения:;   .Поскольку , то и .Поэтому функция определена при . Это мы будем использовать в дальнейшем.

Выпишем определение конечного предела функции на бесконечности по Коши:.Преобразуем разность:.Разделим числитель и знаменатель на и умножим на –1:.

Пусть .Тогда;;;.

Итак, мы нашли, что при ,.Вводим положительные числа и :.Отсюда следует, что  при ,    и  .

Поскольку всегда можно увеличить, то возьмем . Тогда для любого ,  при  .Это означает, что .

Пример 2

Пусть .Используя определение предела по Коши показать, что:1) ;2) .

1) Решение при x стремящемся к минус бесконечности

Поскольку , то функция определена для всех x.Выпишем определение предела функции при , равного минус бесконечности:.

Пусть  . Тогда;.

Итак, мы нашли, что при ,.Вводим положительные числа и :.Отсюда следует, что для любого положительного числа M, имеется число , так что при ,.

Это означает, что .

2) Решение при x стремящемся к плюс бесконечности

Преобразуем исходную функцию. Умножим числитель и знаменатель дроби на и применим формулу разности квадратов:.Имеем:.Выпишем определение правого предела функции при :.

Введем обозначение: .Преобразуем разность:.Умножим числитель и знаменатель на :.

Пусть.Тогда;.

Итак, мы нашли, что при ,.Вводим положительные числа и :.Отсюда следует, что  при   и  .

Поскольку это выполняется для любого положительного числа , то.

Использованная литература:С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Автор: Олег Одинцов.     Опубликовано: 17-05-2018

1cov-edu.ru

+: 1 Предел функции равен ...

+: 1 Предел функции равен ...

2f7e00.gif" ALIGN=BOTTOM> равен ...

+: 1

Предел функции равен ...

+: 5

Предел функции равен ...

+: 5

Предел функции равен ...

+: 2

Предел функции равен ...

+: 1/2

Предел функции равен ...

+: 3

Предел функции равен ...

+: 2

Предел функции равен ...

+: 4

Предел функции равен ...

+: 2

Предел функции равен ...

+: -1

Предел функции равен ...

+: -2

Предел функции равен ...

+: 3

Предел функции равен ...

+: бесконечность

Предел функции равен ...

+: бесконечность

Предел функции равен ...

+: бесконечность

Предел функции равен ...

+: бесконечность

Предел функции равен ...

+: бесконечность

Предел функции равен ...

+: бесконечность

Предел функции равен ...

+: бесконечность

Предел функции равен ...

+: бесконечность

Предел функции равен ...

+: бесконечность

Предел функции равен ...

+: 0

Предел функции равен ...

+: 0

Предел функции равен ...

+: 0

Предел функции равен ...

+: 0

Предел функции равен ...

+: 0

Предел функции равен ...

+: 0

Предел функции равен ...

+: 0

Предел функции равен ...

+: 0

Предел функции равен ...

+: 0

ignorik.ru

Правило Лопиталя раскрытия неопределенностей 0/0 и ∞/∞ (Лекция №8)

Ранее мы познакомились с примерами нахождения пределов отношения двух бесконечно малых или бесконечно больших функций, то есть раскрытия неопределенностей вида 0/0 и ∞/∞. Сейчас рассмотрим новое правило раскрытия этих неопределенностей.

Теорема (правило Лопиталя). Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, быть может, самой точки a, и пусть или . Тогда, если существует предел отношения производных этих функций , то существует и предел отношения самих функций f(x)/g(x) при x→а, причем

(1)

Таким образом, коротко правило Лопиталя можно сформулировать следующим образом: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

Замечание. Отметим, что формула (1) справедлива только в том случае, если предел, стоящий справа, существует. Может случиться, что предел, стоящий слева существует, в то время как предел, стоящий в правой части равенства, не существует.

Например, найти . Этот предел существует . Но отношение производных (1+cosx)/1=1+cos x при x→∞ не стремится ни к какому пределу.

Заметим, что если отношение производных опять представляет собой неопределенность вида 0/0 или ∞/∞, то можно снова применить сформулированную теорему, то есть перейти к отношению вторых производных и так далее.

Вспомним, что к этим двум случаям сводятся случаи других неопределенностей: ∞·∞; 0·∞.

Для раскрытия неопределенностей 1∞, 10, ∞0 нужно прологарифмировать данную функцию и найти предел ее логарифма.

Примеры.

  1. .
  2. .
  3. .
  4. Обозначим .

    Прологарифмируем это равенство . Найдем .

    Так как lny функция непрерывная, то . Следовательно, или .

ФОРМУЛА ТЕЙЛОРА

Пусть функция y= f(x) задана на (a, b) и x0 Î (a, b). Поставим следующую задачу: найти многочлен P(x), значения которого в окрестности точки x0 приближенно совпадали бы со значениями функции f(x) в соответствующих точках. Тогда можно будет считать, что f(x)≈P(x) и задачу вычисления значенийf(x) в окрестности точки x0 можно заменить более легкой задачей вычисления значений P(x).

Пусть искомый многочлен имеет степень n P(x) = Pn(x). Будем искать его в виде

(1)

В этом равенстве нам нужно найти коэффициенты .

Для того чтобы этот многочлен был "близок" к функции f(x) потребуем выполнения следующих равенств:

Пусть функция y= f(x) имеет производные до n-ого порядка. Найдем коэффициенты многочлена Pn(x) исходя из условия равенства производных.

Введем обозначение n! = 1·2·3…n, 0! = 1, 1! = 1.

Подставим в (1) x = x0 и найдем , но с другой стороны . Поэтому

Далее найдем производную и вычислим Следовательно, .

Учитывая третье условие и то, что

,

получим , т.е. .

Далее . Значит, , т.е. .

Очевидно, что и для всех последующих коэффициентов будет верна формула

Подставляя найденные значения коэффициентов в формулу (1), получим искомый многочлен:

Обозначим и назовем эту разность n-ым остаточным членом функции f(x) в точке x0. Отсюда и, следовательно, если остаточный член будет мал.

Оказывается, что если x0 Î (a, b) при всех x Î (a, b) существует производная f (n+1)(x), то для произвольной точки x Î (a, b) существует точка, лежащая между x0 и x такая, что остаток можно представить в виде:

Это так называемая формула Лагранжа для остаточного члена.

Формула

где x Î (x0, x) называется формулой Тейлора.

Если в этой формуле положить x0 = 0, то она запишется в виде

где x Î ( x0, x). Этот частный случай формулы Тейлора называют формулой МакЛорена.

РАЗЛОЖЕНИЕ ПО ФОРМУЛЕ МАКЛОРЕНА НЕКОТОРЫХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ

  1. Рассмотрим функцию f(x)=ex. Представим ее по формуле МакЛорена в виде суммы многочлена и некоторого остатка. Для этого найдем производные до (n+1) порядка:

    Таким образом, получаем

    Используя эту формулу и придавая x различные значения, мы сможем вычислить значение ex.

    Например, при x=1, ограничиваясь n=8, получим формулу, позволяющую найти приближенное значение числа e:

    причем остаток

    Отметим, что для любого x Î R остаточный член

    Действительно, так как ξ Î (0; x), то величина eξ ограничена при фиксированном x. При x> 0 eξ < ex. Докажем, что при фиксированном x

    Имеем

    Если x зафиксировано, то существует натуральное число N такое, что |x|<N.

    Обозначим Заметив, что 0<q<1, при n>N можем написать

    Но , не зависящая от n, а так как q<1. Поэтому Следовательно,

    Таким образом, при любом x, взяв достаточное число слагаемых, мы можем вычислить ex с любой степенью точности.

  2. Выпишем разложение по формуле МакЛорена для функции f(x)=sin x.

    Найдем последовательные производные от функции f(x)=sin x.

    Подставляя полученные значения в формулу МакЛорена, получим разложение:

    Несложно заметить, что преобразовав n-й член ряда, получим

    .

    Так как , то аналогично разложению ex можно показать, что для всех x.

    Пример. Применим полученную формулу для приближенного вычисления sin 20°. При n=3 будем иметь:

    Оценим сделанную погрешность, которая равна остаточному члену:

    Таким образом, sin 20°= 0,342 с точностью до 0,001.

  3. f(x) = cos x. Аналогично предыдущему разложению можно вывести следующую формулу:

    Здесь также для всех x. Докажите формулу самостоятельно.

  4. f(x)=ln (1+x). Заметим, что область определения этой функции D(y)=(–1; +∞).

    Найдем формулу МакЛорена для данной функции.

    Подставим все найденные производные в ряд МакЛорена.

    Можно доказать, что если x Î (–1;1],то , т.е. выведенная формула справедлива при x Î ( –1;1].

  5. f(x) = (1+x)m, где m Î R, m≠0.

    При m≠Z данная функция определена при x> –1. Найдем формулу МакЛорена для этой функции:

    И следовательно,

    Можно показать, что при |x|<1

ПРИМЕНЕНИЕ ПРОИЗВОДНЫХ К ИССЛЕДОВАНИЮ ФУНКЦИЙ И ПОСТРОЕНИЮ ГРАФИКОВ

НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ ВОЗРАСТАНИЯ И УБЫВАНИЯ ФУНКЦИИ

Вспомним сначала определения возрастающей и убывающей функций.

Функция y=f(x), определенная на некотором отрезке [a, b] (интервале (a, b)), называется возрастающей на этом отрезке, если большему значению аргумента x из [a, b] соответствует большее значение функции, то есть если x1 < x2, то f(x1) < f(x2).

Функцияy=f(x) называется убывающей на некотором отрезке [a, b], если меньшему значению аргумента x из [a, b]соответствует большее значение функции, то есть если x1 < x2, то f(x1) > f(x2).

Функция, только возрастающая или только убывающая на отрезке, называется монотонной на этом отрезке.

Функция y=f(x) называется постоянной на некотором отрезке [a, b], если при изменении аргумента x она принимает одни и те же значения.

Рассмотрим график функции изображенной на рисунке и определим промежутки возрастания и убывания функции.

(-∞, a), (c, +∞) – убывает;

(a, b) – постоянная;

(b, c) – возрастает.

Применим понятие производной для исследования возрастания и убывания функции.

Теорема 1. (Необходимое и достаточное условия возрастания функции)

  1. Если дифференцируемая функция y=f(x) возрастает на [a, b], то ее производная неотрицательна на этом отрезке, f '(x)≥ 0.
  2. Обратно. Если функция y=f(x) непрерывна на [a, b], дифференцируема на (a, b) и ее производная положительна на этом отрезке,f ' (x)≥ 0 для a<x<b, то f(x) возрастает на[a, b].

    Доказательство.

    1. Докажем первую часть теоремы. Итак, пусть функция y=f(x) возрастает на [a, b]. Зафиксируем на этом отрезке произвольную точку x, придадим ей приращение Δx. Тогда если Δx>0, то x<x+Δx. Поэтому по определению возрастающей функции f(x)<f(x+Δx), то есть f(x+Δx) - f(x)>0. Но тогда и Аналогично, если Δx<0, то x>x+Δx и значит f(x+Δx)-f(x)<0, а

      Переходя в этом равенстве к пределу при Δx→0, получим , то есть f '(x)≥0.

    2. Докажем вторую часть теоремы. Пусть f '(x)>0при всех x Î (a,b). Рассмотрим два любых значения x1 и x2 таких, что x1 < x2. Нужно доказать, что f(x1)< f(x2). По теореме Лагранжа существует такое число c Î (x1, x2), что . По условию f '(x)>0, x1 – x2>0Þ , а это и значит, что f(x) – возрастающая функция.

    Аналогичная теорема имеет место и для убывающих функций.

    Теорема 2. Если f(x) убывает на[a,b], то на этом отрезке. Если на (a; b), то f(x) убывает на [a, b],в предположении, чтоf(x) непрерывна на [a, b].

    Доказанная теорема выражает очевидный геометрический факт. Если на [a, b] функция возрастает, то касательная к кривой y=f(x) в каждой точке этого отрезке образует острый угол с осью Ox или горизонтальна, т.е. tga≥0, а значит f '(x)≥0.

    Аналогично иллюстрируется и вторая часть теоремы.

    Таким образом, возрастание и убывание функции характеризуется знаком ее производной. Чтобы найти на каком промежутке функция возрастает или убывает, нужно определить, где производная этой функции только положительна или только отрицательна, то есть решить неравенства f '(x)>0 – для возрастания или f '(x)<0 – для убывания.

    Примеры. Определить интервалы монотонности функции.

    1. . Область определения заданной функции D(y) = (-∞; 0)È(0; +∞).

      . Следовательно, f(x) – убывает на (-∞; 0) и (0; +∞).

    2.  

      Найдем промежутки, на которых производная заданной функции положительна или отрицательна методом интервалов.

      Итак, f(x) – убывает на (–∞; –1] и [1; +∞), возрастает на отрезке [–1; 1].

    3.  

      .

      Используя метод интервалов, получим f(x) убывает на (0; 1) и (1; e], возрастает на [e; +∞).

www.toehelp.ru

Первый и второй замечательный предел

Найти замечательные пределы трудно не только многим студентам первого, второго курса обучения которые изучают теорию пределов, но и некоторым преподавателям.

Формула первого замечательного предела

Следствия первого замечательного предела запишем формулами1. 2. 3. 4. Но сами по себе общие формулы замечательных пределов никому на экзамене или тесте не помогают. Суть в том что реальные задания построены так что к записанным выше формулам нужно еще прийти. И большинство студентов, которые пропускают пары, заочно изучают этот курс или имеют преподавателей, которые сами не всегда понимают о чем объясняют, не могут вычислить самых элементарных примеров на замечательные пределы. Из формул первого замечательного предела видим, что с их помощью можно исследовать неопределенности типа ноль разделить на ноль для выражений с тригонометрическими функциями. Рассмотрим сначала ряд примеров на первый замечательный пределу, а потом изучим второй замечательный предел.

Пример 1. Найти предел функции sin(7*x)/(5*x) Решение: Как видите функция под пределом близка к первому замечательному пределу, но сам предел функции точно не равен единице. В такого рода заданиях на пределы следует в знаменателе выделить переменную с таким же коэффициентом, который содержится при переменной под синусом. В данном случае следует разделить и умножить на 7Некоторым такая детализация покажется лишней, но большинству студентов которым трудно даются пределы поможет лучше понять правила и усвоить теоретический материал.Также, если есть обратный вид функции - это также первый замечательный предел. А все потому, что замечательный предел равен единицеЭто же правило касается и следствий 1 замечательного предела. Поэтому если Вас спросят "Чему равен первый замечательный предел?" Вы без колебаний должны ответить, что это - единица.

Пример 2. Найти предел функции sin(6x)/tan(11x)Решение: Для понимания конечного результата распишем функцию в виде Чтобы применить правила замечательного предела умножим и разделим на множителиДалее предел произведения функций распишем через произведение пределовБез сложных формул мы нашли предел часки тригонометрических функций. Для усвоения простых формул попробуйте придумать и найти предел на 2 и 4 формулу следствия 1 замечательного предела. Мы рассмотрим более сложные задачи.

Пример 3. Вычислить предел (1-cos(x))/x^2 Решение: При проверке подстановкой получим неопределенность 0/0. Многим неизвестно, как свести такой пример до 1 замечательного предела. Здесь следует использовать тригонометрическую формулу При этом предел преобразится к понятному виду Нам удалось свести функцию к квадрату замечательного предела.

Пример 4. Найти пределРешение: При подстановке получим знакомую особенность 0/0. Однако переменная стремится к Pi, а не к нулю. Поэтому для применения первого замечательного предела выполним такую замену переменной х, чтобы новая переменная направлялась к нулю. Для этого знаменатель обозначим за новую переменную Pi-x=y Таким образом использовав тригонометрическую формулу, которая приведена в предыдущем задании, пример сведен к 1 замечательному пределу.

Пример 5. Вычислить пределРешение: Сначала неясно как упростить пределы. Но раз есть пример, значит должен быть и ответ. То что переменная направляется к единице дает при подстановке особенность вида ноль умножить на бесконечность, поэтому тангенс нужно заменить по формулеПосле этого получим нужную неопределенность 0/0. Далее выполняем замену переменных в пределе, и используем периодичность котангенсаПоследние замены позволяют использовать следствие 1 замечательного предела.

Второй замечательный предел равен экспоненте

Это классика к которой в реальных задачах на пределы не всегда легко прийти.В вычислениях Вам понадобятся пределы - следствия второго замечательного предела: 1. 2. 3. 4. Благодаря второму замечательному пределу и его последствиям можно исследовать неопределенности типа ноль разделить на ноль, единица в степени бесконечность, и бесконечность разделить на бесконечность, да еще и в таком же степениНачнем для ознакомления с простых примеров.

Пример 6. Найти предел функции Решение: Напрямую применить 2 замечательный пределу не получится. Сначала следует превратить показатель, чтобы он имел вид обратный к слагаемому в скобкахЭто и есть техника сведения к 2 замечательному пределу и по сути - вывода 2 формулы следствия предела.

Пример 7. Найти предел функцииРешение: Имеем задания на 3 формулу следствия 2 замечательного предела. Подстановка нуля дает особенность вида 0/0. Для возведения предела под правило превратим знаменатель, чтоб при переменной был тот же коэффициент что и в логарифмЭто также легко понять и выполнить на экзамене. Трудности у студентов при исчислении пределов начинаются с следующих задач.

Пример 8. Вычислить предел функции [(x+7)/(x-3)]^(x-2)Решение: Имеем особенность типа 1 в степени бесконечность. Если не верите, можете везде вместо "икс" подставить бесконечность и убедиться в этом. Для возведения под правило поделим в скобках числитель на знаменатель, для этого предварительно выполним манипуляцииПодставим выражение в предел и превратим к 2 замечательному пределуПредел равен экспоненте в 10 степени. Константы, которые являются слагаемыми при переменной как в скобках так и степени никакой "погоды" не вносят - об этом следует помнить. А если Вас спросят преподаватели - "Почему не превращаете показатель?" (Для этого примера в x-3), то скажите что "Когда переменная стремится к бесконечности то к ней хоть добавляй 100 хоть отнимай 1000, а предел останется такой как и был!".Есть и второй способ вычислять пределы такого типа. О нем расскажем в следующем задании.

Пример 9. Найти предел Решение: Теперь вынесем переменную в числителе и знаменателе и превратим оду особенность на другую. Для получения конечного значения используем формулу следствия 2 замечательного предела

Пример 10. Найти предел функцииРешение: Заданный предел найти под силу не каждому. Для возведения под 2 предел представим, что sin (3x) это переменная, а нужно превратить показательДалее показатель запишем как степень в степениВ скобках описаны промежуточные рассуждения. В результате использования первого и второго замечательного предела получили экспоненту в кубе.

Пример 11. Вычислить предел функции sin(2*x)/ln(3*x+1) Решение: Имеем неопределенность вида 0/0. Кроме этого видим, что функцию следует превращать к использованию обеих замечательных пределов. Выполним предыдущие математические преобразования Далее без труда предел примет значение Вот так свободно Вы будете чувствовать себя на контрольных работах, тестах, модулях если научитесь быстро расписывать функции и сводить под первый или второй замечательный предел. Если заучить приведенные методики нахождения пределов Вам трудно, то всегда можете заказать контрольную работу на пределы у нас.Для этого заполните форму, укажите данные и вложите файл с примерами. Мы помогли многим студентам - сможем помочь и Вам!

yukhym.com