№94 Плутоний. Плутоний химический элемент


Плутоний — Мегаэнциклопедия Кирилла и Мефодия — статья

Плуто́ний (лат. Plutonium, от названия планеты Плутон), Pu (читается «плутоний»), радиоактивный искусственно полученный химический элемент, атомный номер 94. Стабильных нуклидов не имеет. Относится к актиноидам, расположен в IIIB группе, в 7 периоде периодической системы. Электронная конфигурация трех внешних слоев невозбужденного атома 5s2p6d10f66s2p67s2. В соединениях проявляет степени окисления +3, +4 (наиболее устойчива), +5, +6 и +7 (валентности III, IV, V, VI и VII).

Радиус нейтрального атома Pu 0, 160 нм, ионов Pu3+ 0, 0974 нм, Pu4+ 0, 0896 нм, Pu 5+ 0, 087 нм, Pu 6+0, 081 нм. Энергия ионизации нейтрального атома 5, 71 эВ. Электроотрицательность по Полингу 1, 2.Впервые Pu получили в 1940 американские исследователи Г. Сиборг , Э. М. Макмилан, Дж. Кеннеди и А. Валь облучением 238U разогнанными на ускорителе ядрами дейтерия:

23892U + 21H = 23893Np + 21n.

Образующийся 238Np за счет быстрого β−превращения (Т1/2 2, 117 сут) дает 238Pu (α-радиоактивен, Т1/2 87, 74 года). Из опасения создания ядерного оружия в годы Второй мировой войны сведения о получении плутония были опубликовали только в 1946. В 1942 американские физики получили 239Pu облучением нейтронами 238U. К настоящему времени получены 15 изотопов Pu с массовыми числами 232-246. Наиболее устойчивы 244Pu (α-распад, Т1/2 = 8, 26.107 лет) и 242Pu (α-распад, Т1/2 = 3, 76.105 лет).

В природе встречается в ничтожных количествах в урановых рудах (239Pu), он образуется из урана под действием нейтронов, источником которых является спонтанное деление ядер U и космическое излучение.

В настоящее время плутоний (его радионуклид 239Pu в смеси с небольшой примесью 240Pu) получают из продуктов облучения урана в ядерных реакторах. При отделении плутония от урана и нептуния используют различия в устойчивости степеней окисления +4, +5 и +6 для Pu (наиболее устойчив в растворе в степени окисления +4), Np (наиболее устойчив в растворе в степени окисления +5) и U (наиболее устойчив в растворе в степени окисления +6). Мировое производство плутония составляет несколько десятков тонн в год.

Для получения металлического плутония тетрафторид PuF4 или трихлорид плутония PuCl3 восстанавливают магнием или кальцием при нагревании:

PuF4 + 2Са = 2СаF2 + Pu

Плутоний — хрупкий серебристый металл.

До температуры плавления, 640°C, существует в шести полиморфных модификациях: α, β, γ, δ, δ' (иногда обозначается η) и ε. Каждое полиморфное превращение сопровождается перестройкой атомов плутония в кристаллической решетке и изменением плотности (кроме превращения модификаций δ δ'). При 320-480°C плутоний не расширяется, как другие металлы, а сжимается.

Устойчивая при температурах до 122°C α-модификация имеет моноклинную решетку, с а = 0, 6183 нм, в = 0, 4822 нм и с = 0, 1, 096 нм, угол 101, 79°. Плотность Pu при 20°C 19, 86 кг/дм3. Температура кипения 3352°C.

Компактный плутоний медленно окисляется на воздухе, порошок загорается при нагревании до 300°C. Медленно взаимодействует с водой. Легко растворяется в соляной, фосфорной и хлорной кислотах, пассивируется концентрированными серной, уксусной и азотной кислотами. В щелочах не растворяется.

При прокаливании на воздухе соединений плутония (кроме фторида) образуется диоксид PuO2. Восстановление водородом при нагревании или нагревание диоксида в вакууме дает Pu2O3. Получены оксиды плутония переменных составов PuO2-Pu2O3.

Плутоний реагирует с галогенами. С фтором образует фториды PuF6, PuF4, PuF3. Для остальных галогенов получены тригалогениды составов PuX3. Получены также оксигалогениды составов PuOX и соединения Pu с S, P, Si и другими неметаллами.

В кислых водных растворах Pu существует в виде катионов Pu3+(цвет в растворе сине-фиолетовый), Pu4+(цвет желто-коричневый), PuО2+?, плутоноил-ион (цвет светло-розовый), PuО22+, плутонил-ион (цвет розово-оранжевый). Для ионов Pu4+ и PuО2+ в растворах характерны реакции диспропорционирования:

3Pu4+ + 2Н2О = 2Pu3+ + PuО22+ +4Н+

2PuО2+ + 4Н+ = Pu4+ + PuО22+ + Н2О

Плутоний в степени окисления +7 впервые получили в 1967 советские химики Н. Н.Крот и А. Д.Гельман окислением PuО22+ озоном в щелочной среде.

Плутоний в степени окисления +4 в растворах образует устойчивые комплексы с разными лигандами (с ацетилацетонатом, цитратом, ацетатом).

При действии щелочей на растворы, содержащие Pu4+, выпадает осадок гидроксида плутония Pu(OH)4·xh3O, обладающий основными свойствами. При действии щелочей на растворы солей, содержащих PuO2+, выпадает амфотерный гидроксид PuO2OH. Ему отвечают соли — плутониты, например, Na2Pu2O6.

При добавлении щелочи к раствору соли Pu(VI) образуются соли плутониевых кислот плутонаты типа Na2PuO4 и полиплутонаты.

Стандартный окислительный потенциал пары Pu(IV)/Pu(III) +0, 982 B, пары Pu(V)/Pu(IV) +1, 170 B, пары Pu(VI)/Pu(IV) +1, 043 B, пары Pu(VI)/Pu(III) +1, 023 B.

239Pu используют в качестве ядерного горючего в ядерных реакторах, при изготовлении плутониевых бомб. Критическая масса 239Pu в виде металла составляет 5, 6 килограмм. Изотоп 239Pu является исходным веществом для получения в ядерных реакторах трансплутониевых элементов (америция, кюрия).

238Pu используют в малогабаритных ядерных источниках электрического тока, используемых в космических исследованиях и стимуляторах сердечной деятельности.

Плутоний и его соединения высокотоксичны. Для 239Pu ПДК в воздухе рабочих помещений 3, 3·10-2 Бк/м3, в воде открытых водоемов 8, 14·10-4 Бк/л.

  • Келлер К. Химия трансурановых элементов. М., 1976.
  • Несмеянов Ан. Н. Радиохимия. М., 1978.
  • Плутоний. Справочник / Под ред. О. Вика (пер. с англ.). М., 1971.
  • Плутоний. Радиационная безопасность. - М.: ИздАТ, 2005.
  • Плутоний в России. Экология, экономика, политика. - М.: Социал.-экол. союз, 1994.

megabook.ru

Плутоний - это... Что такое Плутоний?

        Pu, искусственно полученный радиоактивный химический элемент, атомный номер 94; относится к актиноидам (См. Актиноиды). Открыт в 1940—41 американскими учёными Г. Сиборгом, Э. Макмилланом, Дж. Кеннеди и А. Валем, которые получили изотоп 238Pu в результате облучения урана ядрами тяжёлого водорода — дейтонами. Назван в честь планеты Плутон, как и предшественники П. в таблице Менделеева — уран и нептуний, названия которых также произошли от планет Урана и Нептуна. Известны изотопы П. с массовыми числами от 232 до 246. Следы изотопов 247Pu и 255Pu обнаружены в пыли, собранной после взрывов термоядерных бомб. Самым долгоживущим изотопом П. является α-радиоактивный 244Pu (период полураспада T1/2 около 7,5․102 лет). Величины T1/2 всех изотопов П. много меньше возраста Земли, и поэтому весь первичный П. (существовавший на нашей планете при её формировании) полностью распался. Однако ничтожные количества 239Pu постоянно образуются при β-распаде 239Np, который, в свою очередь, возникает при ядерной реакции урана с нейтронами (например, нейтронами космического излучения). Поэтому следы П. обнаружены в урановых рудах.          П. — блестящий белый металл, при температурах от комнатной до 640° С (tпл) существует в шести аллотропных модификациях. Аллотропные превращения П. сопровождаются скачкообразными изменениями плотности (см. рис.). Уникальная особенность металлического П. состоит в том, что при нагревании от 310 до 480 °С он не расширяется, как другие металлы, а сжимается. Конфигурация трёх внешних электронных оболочек атома Pu 5s25p65d105f66s26p27s2. Химические свойства П. во многом сходны со свойствами его предшественников в периодической системе — Ураном и нептунием (См. Нептуний). П. образует соединения со степенями окисления от +2 до +7. Известны окислы PuO, Pu2O3, PuO2 и фаза переменного состава Pu2O3 — Pu4O7. В соединениях с галогенами П. обычно проявляет степень окисления +3, но известны также галогениды PuF4, PuF4 и PuCl4. В растворах П. существует в формах Pu3+, Pu4+, PuO2+ (плутоноил — ион), PuO22+ (плутонил — ион) и PuO53-, отвечающих степеням окисления от +3 до +7. Указанные ионы (кроме PuO53-) могут находиться в растворе одновременно в равновесии. Ионы П. всех степеней окисления склонны к гидролизу и комплексообразованию.

         Из всех изотопов П. наиболее важен α-радиоактивный 239Pu (T1/2 = 2,4․104 лет). Ядра 239Pu способны к цепной реакции деления под действием нейтронов, поэтому 239Pu можно использовать как источник атомной энергии (энергия, освобождающаяся при расщеплении 1 г 239Pu, эквивалентна теплоте, выделяющейся при сгорании 4000 кг угля). В СССР первые опыты по получению 239Pu были начаты в 1943—44 под руководством академиков И. В. Курчатова и В. Г. Хлопина. Впервые П. в СССР был выделен из облученного нейтронами урана в 1945. В предельно сжатые сроки были выполнены обширные исследования свойств П., и в 1949 в СССР начал работать первый завод по радиохимическому выделению П.

         Промышленное производство 239Pu основано на взаимодействии ядер 238U с нейтронами в ядерных реакторах. Последующее отделение Pu от U, Np и высокорадиоактивных продуктов деления осуществляют радиохимическими методами (соосаждением, экстракцией, ионным обменом и др.). Металлический П. обычно получают восстановлением PuF3, PuF4 или PuO2 парами бария, кальция или лития. Как делящийся материал, 239Pu используют в атомных реакторах и в атомных и термоядерных бомбах. Изотоп 238Pu применяют для изготовления атомных электрических батареек, срок службы которых достигает 5 лет и более. Такие батарейки могут применяться, например, в генераторах тока, стимулирующих работу сердца.

         Лит.: Бэгли К., Плутоний и его сплавы, пер. с англ., М., 1958; Вдовенко В. М. и Курчатов Б. В., Первый советский плутоний, «Радиохимия», 1968, т. 10, в. 6, с. 696; Плутоний. Справочник, под ред. О. Вика, пер. с англ., т. 1—2, М., 1971—73. См. также лит. при ст. Актиноиды.

         С. С. Бердоносов.

        

         Плутоний в организме. П. концентрируется морскими организмами: его коэффициент накопления (т. е. отношение концентраций в организме и во внешней среде) для водорослей составляет 1000—9000, для планктона (смешанного) — около 2300, для моллюсков — до 380, для морских звёзд — около 1000, для мышц, костей, печени и желудка рыб — 5, 570, 200 и 1060 соответственно. Наземные растения усваивают П. главным образом через корневую систему и накапливают его до 0,01% от своей массы. В организме человека П. задерживается преимущественно в скелете и печени, откуда почти не выводится (особенно из костей). Наиболее токсичный 239Pu вызывает нарушения кроветворения, остеосаркомы, рак лёгких. С 70-х гг. 20 в. доля П. в радиоактивном загрязнении (См. Радиоактивное загрязнение) биосферы возрастает (так, облученность морских беспозвоночных за счёт П. становится больше, чем за счёт 90Sr и 137Cs).

         Лит.: Проблемы токсикологии плутония, М., 1969: Радиоактивные вещества и кожа. (Метаболизм и дезактивация), М., 1972: Uranium, Plutonium, Transplutonis Elements B.—Hdlb.—N. Y., 1973.

         Г. Г. Поликарпов.

        

        Изменение плотности металлического плутония при нагревании.

dic.academic.ru

Интересные факты про плутоний. Интересно знать

Плутоний — это химический элемент таблицы Менделеева под атомным числом 94. Это тяжелый, но хрупкий и самый радиоактивный металл серебристо-белого цвета. Интересные факты про плутоний расскажут об истории открытия этого элемента и его необычных свойствах.

  1. Плутоний относится к трансурановым элементам. Это химические радиоактивные элементы, которые в таблице Менделеева следуют за ураном и имеют атомный номер выше 92. Теоретическим первооткрывателем элемента с атомным числом 94 стал итальянский физик Энрико Ферми, известный также как создатель первого в мире ядерного реактора и один из «отцов» атомной бомбы. Он обнаружил элемент с порядковым номером 94 в 1934 году и назвал его гесперием.
  2. В 1938 году после открытия понятия деление ядер ученые установили, что Ферми на самом деле открыл не отдельный элемент, а смесь бария, криптона и других элементов. Плутоний открыли в 1940 году, а экспериментальным путем доказать существование нового элемента физикам удалось в ночь с 23 на 24 февраля 1941 года. Такое открытие сделали американские ученые Калифорнийского университета в Беркли под руководством Гленна Сиборга. Параллельно с этим немецкие ученые также разработали методы получения 94-го элемента. Сразу после открытия исследователи оценили потенциал использования плутония в осуществлении цепной ядерной реакции и создании ядерной бомбы.
  3. Плутоний имеет существенно отличающиеся от остальных элементов физико-химические свойства. Так, в отличие от большинства материалов его плотность при нагревании увеличивается, в то время как у обычных металлов она уменьшается. Когда плутоний приближается к точке плавления, он имеет самую высокую вязкость среди других материалов.
  4. Плутоний существует в природе только в виде диоксида, который практически не растворим в воде, но количество такого элемента настолько мало, что его добыча нецелесообразна. В то же время плутоний как искусственный химический элемент существует в мире в разных формах в количестве до 2000 т (по данным 2010 года).
  5. Плутоний плавится при температуре 639,7 °C, а закипает при температуре 3235 °C.
  6. На протяжении Второй мировой войны велись исследования плутония на людях и животных. В результате этих исследований стало ясно, что всего несколько микрограмм (миллионная доля грамма) на килограмм массы — смертельная доза для живого существа. Этот элемент еще более опасный, чем радий, так как накапливается в костях.
  7. Как уже упоминалось, плутоний — это тяжелый металл. Например, свинец легче плутония в два раза.
  8. Оставленный на открытом воздухе плутоний серебристого цвета меняет оттенок на бронзовый, затем на синий и на тусклый черный или зеленый.
  9. Плутоний в виде металла не обрабатывают на открытом воздухе, так как из-за реакции с кислородом он самовозгорается, поэтому его обрабатывают в инертной атмосфере аргона или азота, а расплавленный плутоний хранят в вакууме или атмосфере инертного газа.
  10. Один из самых важных изотопов плутония, Pu-239, имеет период полураспада 24360 лет.

anydaylife.com

№94 Плутоний

Таблица   ^   =>>

Плутоний

Поделиться в

История открытия:

Изотоп плутония 238Pu впервые искусственно получен 23.02.1941 года группой американских ученых во главе с Г. Сиборгом путем облучения ядер урана дейтронами. Только затем плутоний был обнаружен в природе: в ничтожно малых количествах 239Pu обычно содержится в урановых рудах как продукт радиоактивного превращения урана. Плутоний - первый искусственный элемент, полученный в доступных для взвешивания количествах (1942г.) и первый, производство которого началось в промышленных масштабах.В названии элемента продолжена астрономическая тема: он назван в честь Плутона, второй планеты, следующей за Ураном.

Нахождение в природе, получение:

В урановых рудах в результате захвата нейтронов (например, нейтронов из космического излучения) ядрами урана образуется нептуний(239Np), продуктом b-распада которого и является природный плутоний-239. Однако плутоний образуется в таких микроскопических количествах (0,4—15 частей Pu на 1012 частей U), что о его добыче из урановых руд не может быть и речи.Плутоний получают в ядерных реакторах. В мощных потоках нейтронов происходит та же реакция, что и в урановых рудах, но скорость образования и накопления плутония в реакторе намного выше – в миллиард миллиардов раз. Для реакции превращения балластного урана-238 в энергетический плутоний-239 создаются оптимальные (в пределах допустимого) условия.Плутоний-244 также накопили в ядерном реакторе. Изотоп элемента №95 – америция, 243Am захватив нейтрон, переходил в америций-244; америций-244 переходил в кюрий, но в одном из 10 тыс. случаев происходил переход в плутоний-244. Из смеси америция с кюрием выделили препарат плутония-244 весом всего несколько миллионных долей грамма. Но их хватило для того чтобы определить период полураспада этого интереснейшего изотопа - 75 млн лет. Позднее он был уточнен и оказался равным 82,8 млн лет. В 1971 г. следы этого изотопа нашли в редкоземельном минерале бастнезите. 244Pu – это самый долгоживущий из всех изотопов трансурановых элементов.

Физические свойства:

Серебристо-белый металл, имеет 6 аллотропных модификаций. Температура плавления 637°C, кипения - 3235°C. Плотность: 19,82 г/см3.

Химические свойства:

Плутоний способен реагировать с кислородом, с образованием оксида(IV), который, как у всех первых семи актиноидов, имеет слабый основный характер.Pu + O2 = PuO2Реагирует с разбавленной серной, соляной, хлорной кислотами. Pu + 2HCl(p) = PuCl2 + h3;      Pu + 2h3SO4 = Pu(SO4)2 + 2h3Не реагирует с азотной и концентрированной серной кислотами. Валентность плутония меняется от трех до семи. Химически наиболее стабильны (а следовательно, наиболее распространены и наиболее изучены) соединения четырехвалентного плутония. Разделение близких по химическим свойствам актиноидов – урана, нептуния и плутония – может быть основано на разнице в свойствах их четырех- и шестивалентных соединений.

Важнейшие соединения:

Оксид плутония(IV), PuO2, имеет слабый основный характер. ......

Применение:

Плутоний широко использовался в производстве ядерного оружия (т. н. «оружейный плутоний»). Первый ядерный заряд на основе плутония был взорван 16 июля 1945 года на полигоне Аламогордо (испытание под кодовым названием "Тринити").Находит применение (экспериментально) в качестве ядерного топлива для атомных реакторов гражданского и исследовательского назначения.Плутоний-242 важен как «сырье» для сравнительно быстрого накопления высших трансурановых элементов в ядерных реакторах. Если в обычном реакторе облучать плутоний-239, то на накопление из граммов плутония микрограммовых количеств, к примеру, калифорния-251 потребуется около 20 лет. Плутоний-242 тепловыми нейтронами не делится, его и в больших количествах можно облучать в интенсивных нейтронных потоках. Поэтому в реакторах из этого изотопа «делают» и накапливают в весовых количествах все элементы от калифорния до эйнштейния.

Коваленко О.А.ХФ ТюмГУ

Источники:"Вредные химические вещества: Радиоактивные вещества" Справочник Л. 1990 стр. 197Рабинович В.А., Хавин З.Я. "Краткий химический справочник" Л.: Химия, 1977 стр. 90, 306-307.

www.kontren.narod.ru

Плутоний - Свойства

Химия - Плутоний - Свойства

01 марта 2011

Оглавление:1. Плутоний2. История3. Свойства4. Нахождение в природе5. Изотопы6. Сплавы7. Меры предосторожности8. Методы отделения9. Применение10. Плутоний в художественных произведениях

Физические свойства

Плутоний в пакете.

Плутоний, как и большинство металлов, имеет яркий серебристый цвет, похожий на никель или железо, но на воздухе окисляется, меняя свой цвет сначала на бронзовый, затем на синий цвет закаленного металла и после превращается в тусклый черный или зеленый цвета из-за образования рыхлого окисного покрытия. Также есть сообщения об образовании жёлтого и оливкового цвета оксидной плёнки. При комнатной температуре плутоний находится в α-форме — это наиболее распространённая для плутония аллотропная модификация. Данная структура примерно такая же жёсткая как серый чугун, если она не легирована другими металлами, которые придадут сплаву пластичность и мягкость. В отличие от большинства металлов, он не является хорошим проводником тепла и электричества.

Плутоний имеет аномально низкую для металлов температуру плавления и необычно высокую температуру кипения. Свинец является более легким металлом, чем плутоний, примерно в два раза.

Некоторые физические свойства плутония
Атомные радиусы различных модификаций плутония при 298 K и при температурах их существования
Фаза α β γ δ δ’ ε
T, K 298 366 508 593 738 763
Атомный радиус, нм 0,158 0,160 0,1601 0,1640 0,1638 0,1622
Радиус при 298 K, нм 0,158 0,159 0,1589 0,1644 0,1644 0,1594
Эффективное поперечное сечение захвата тепловых нейтронов для некоторых изотопов плутония
Изотоп Pu Pu Pu Pu Pu
Эффективное поперечное сечение, 10 м² 403±10 1028±13 287±7 1400±80 18,6±0,8
Удельное электрическое сопротивление различных фаз плутония и их температурный коэффициент электрического сопротивления
Фаза T, K ρ, мкОм·м α·10, K
αααααα 2650100150273376 0,6481,2801,5691,5351,4651,414 +18,405и −0,418

——

β 420 1,085 −0,62
γ 505 1,078 −0,50
δ 625 1,004 +0,72
δ’ 735 1,021 +4,43
Абсолютный коэффициент термоэлектродвижущей силы плутония e в зависимости от температуры и модификации
Фаза T, K среднее значениеe, мкВ/K
ααα 20100300 1,759,811,5
β 400 9,1
γ 500 8,4
δ 600 3,0
δ’ 725 2,3
ε 800 3,5

Актиноиды, как и лантаноиды, имеют примерно равные энергии ионизации.

Как и у остальных металлов, коррозия плутония увеличивается с увеличением влажности. Некоторые исследования утверждают, что влажный аргон может быть более корродирующим элементом, чем кислород; это связано с тем, что аргон не реагирует с плутонием, и как следствие плутоний начинает растрескиваться.

Диаграмма плотности плутония.

Альфа-распад, который сопровождается испусканием ядер гелия, является наиболее распространённым видом радиоактивного распада изотопов плутония. Типичный ядерный боеприпас имеет около 5 кг плутония, в котором находится примерно 12,5×10 атомов. С периодом полураспада 24,000 лет, около 11,5×10 атомов распадаются, выделяя 5,157 МэВ благодаря альфа-частицам. В пересчёте на количество энергии, это составляет 9,58 ватт. Тепло, производимое благодаря распаду ядер и испусканию ими альфа-частиц делает плутоний тёплым на ощупь.

Строение атома плутония. Электронная конфигурация внешних оболочек 5spdf6sp7s .

Как известно, электрическое сопротивление характеризует способность материала проводить электрический ток. Удельное сопротивление плутония при комнатной температуре очень велико для металла, и эта особенность будет усиливаться с понижением температуры, что для металлов не свойственно. Эта тенденция продолжается вплоть до 100 K; ниже этой отметки электрическое сопротивление будет уменьшаться. С понижением отметки до 20 K сопротивление начинает возрастать из-за радиационной активности металла, причём данное свойство будет зависеть от изотопного состава металла.

Плутоний обладает самым высоким удельным электрическим сопротивлением среди всех изученных актиноидов, которое составляет 150 мкОм·см. Его твёрдость составляет 261 кг/мм³.

Благодаря тому, что плутоний радиоактивен он со временем претерпевает изменения в своей кристаллической решётке. Плутоний претерпевает некое подобие отжига так же благодаря самооблучению из-за повышения температуры выше 100 K.

В отличие от большинства материалов плотность плутония увеличивается при нагревании его до температуры плавления на 2,5 %, в то время как у обычных металлов наблюдается уменьшение плотности при повышении температуры. Ближе к точке плавления жидкий плутоний имеет очень высокий показатель поверхностного натяжения и самую высокую вязкость среди других металлов. Характерной особенностью плутония является его уменьшение в объёме в диапазоне температур от 310 до 480 °C в отличие от других металлов.

Аллотропические модификации

Плутоний имеет семь аллотропных модификаций. Шесть из них существуют при обычном давлении, а седьмая только при высокой температуре и определенном диапазоне давления. Эти аллотропы, которые различаются по своим структурным характеристикам и показателями плотности, имеют очень похожие значения внутренней энергии. Это свойство делает плутоний очень чувствительным к колебаниям температуры и давления, и приводит к скачкообразному изменению своей структуры. Показатель плотности всех аллотропных модификаций плутония варьируется от 15,9 г/см³ до 19,86 г/см³. Наличие многих аллотропных модификаций у плутония делает его трудным металлом в обработке и выкатывании, так как он претерпевает фазовые переходы. Причины существования столь разных аллотропных модификаций у плутония не совсем ясны.

Свойства кристаллических решеток плутония
Фаза Изображение Область устойчивости, °C Симметрия и пространственная группа Параметры решётки, Å Число атомов в элементарной ячейке Рентгеновская плотность, г/см³ Температура перехода, °C ΔHперехода,Дж/моль
a b c β
α Ниже 122 ПМ, P21/m При 21 °C 16 19,86 —
6,183 4,882 10,963 101,79°
β — 122—207 ОЦМ, 12/m При 100 °C 34 17,7 α→β122±4 3430
9,284 10,463 7,859 93,13°
γ 207—315 ГЦО, Fddd При 235 °C 8 17,14 β→γ207±5 565
3,159 5,768 10,162
δ 315—457 ГЦК, Fm3m При 320 °C 4 15,92 γ→δ315±3 586
4,6371
δ’ 457—479 ОЦТ, 14/mmm При 465 °C 2 16 δ→δ’457±2 84
3,34 4,44
ε 479—640 ОЦК, Im3m При 490 °C 2 16,51 δ’→ε479±4 1841
3,634

Первые три кристаллические модификации — α-, β- и γ-Pu — обладают сложной кристаллической структурой с четырьмя ярко выраженными связями ковалентного характера. Другие — δ-, δ’- и ε-Pu — более высокотемпературные модификации характеризуются более простой структурой.

Альфа-форма существует при комнатной температуре в виде нелегированного и необработанного плутония. Она имеет схожие свойства с чугуном, однако имеет свойство изменяеться и превращаться в пластичный материал, и образовывать ковкую β-форму при более высоких интервалах температуры. Альфа-форма плутония имеет низкосимметричную моноклинную структуру, отсюда становится ясным, что она является прочной и плохо проводящей электрический ток модификацией. В данной форме плутоний очень хрупок, однако имеет самую высокую плотность из всех аллотропных модификаций. Фазы плутония характеризуются резким изменением механических свойств — от совершенно хрупкого до пластичного металла.

Плутоний в δ-форме обычно существует при значениях температуры от 310 °C до 452 °C, однако может быть стабилен и при комнатной температуре, если он легирован с малопроцентным содержанием галлия, алюминия или церия. Если он находится в сплаве с этими металлами, то это позволяет ему быть использованным при сварке. Дельта-форма имеет более ярко выраженные характеристики металла, и примерно настолько же прочна и способна быть использована при ковке как и алюминий. В ядерной промышленности ударная волна после микроядерного взрыва используется для того, чтобы сжать плутониевое ядро, основным свойством которого будет увеличение плотности по сравнению с α-формой. Данные действия позволят достичь критической массы плутония для его дальнейшего использования. Последняя эпсилон-фаза показывает аномально высокий показатель атомной самодиффузии .

Плутоний начинает уменьшаться в объеме когда переходит в δ и δ’-фазы, что объясняется отрицательным коэффициентом термического расширения.

Соединения и химические свойства

Изученный ионный и металлический радиусы для плутония.

Различные степени окисления плутония в водных растворах.

Актиноиды имеют схожие между собой химические свойства. Меньше всего степеней окисления имеют первые два актиноида и актиний, далее эти значения увеличиваются и достигают своего пика у плутония и нептуния, затем, после америция, это число опять уменьшается. Данное свойство можно объяснить сложностью поведения электронов у ядер элементов. В 1944 году Гленном Сиборгом была выдвинута гипотеза об актиноидном сжатии, которая предполагает постепенное уменьшение радиусов ионов актиноидов. До ее выдвижения первые актиноиды относили к элементам 4, 5 и 6-й групп соответственно.

Плутоний является химически активным металлом. В 1967 году советские ученые установили, что высшая степень окисления нептуния и плутония не 6, а 7. Для этого ученым пришлось окислять озоном PuO2 в щелочной среде. Плутоний проявляет четыре степени окисления в водных растворах и одну очень редкую:

  • Pu, в качестве Pu,
  • Pu, в качестве Pu,
  • Pu, в качестве PuO2,
  • Pu, в качестве PuO2,
  • Pu, в качестве PuO5 — также присутствуют семивалентные ионы.

Цвета водных растворов плутония зависят от степени окисления и солей кислот. В них плутоний может находится сразу в нескольких степенях окисления, что объясняется близостью его редокс-потенциалов, что в свою очередь объясняется наличием 5f-электронов, которые расположены на локализованной и делокализованной зоне электронной орбитали. При pH 5—8 доминирует четырёхвалентный плутоний, который наиболее устойчив среди остальных валентностей.

Металлический плутоний получается благодаря реакции его тетрафторида с барием, кальцием или литием при температуре 1200 °C:

Он реагирует с кислотами, кислородом и их парами, но только не с щелочами. Быстро растворяется в хлороводороде, иодоводороде, бромоводороде, 72 % хлорной кислоте, 85 % ортофосфорной кислоте, концентрированной CCl3COOH, сульфаминовой кислоте и кипящей концентрированной азотной кислоте. Плутоний инертен к концентрированным серной и уксусной кислотам; в их растворах медленно растворяется, то есть реагирует и образует соответствующие соли. При температуре 135 °C металл самовоспламенится благодаря реакции с кислородом, а если его поместить в атмосферу тетрахлорметана, то взорвётся.

Реакционная способность плутония в растворах
Раствор Реакционная способность
Вода При комнатной температуре реагирует очень медленно, не намного быстрее при температуре кипения; образуется h3 и черный порошок PuH
NaCl  Дает h3 и черный порошок PuH
HNO3 Не реагирует при любых концентрациях из-за пассивации; в присутствии 0,005 М HF кипящая концентрированная кислота сравнительно быстро растворяет плутоний
HCl, HBr Очень быстро растворяется в концентрированных и умеренно разбавленных кислотах
HF Реагирует очень медленно. Брикеты, полученные прессованием стружки металлического плутония, часто растворяются быстро и полностью с образованием нерастворимого PuF3
72%-ая HClO4 Быстрое растворение
h3SO4 Концентрированная кислота образует на металле защитное покрытие, которое останавливает начавшуюся медленную реакцию. Умеренно разбавленная медленно взаимодействует с металлом; образцы металла, содержащие примеси, могут полностью раствориться в 5 н. кислоте
85%-ая h4PO4 Реагирует сравнительно быстро
Уксусная кислота Не взаимодействует с ледяной уксусной кислотой, даже с горячей; медленно взаимодействует с разбавленной кислотой
Трихлоруксусная кислота Быстро растворяется в концентрированной кислоте; с разбавленной реагирует медленнее
Трифторуксусная кислота Медленно растворяется в концентрированной кислоте; часто образуется остаток нерастворившегося оксида
Сульфаминовая кислота Довольно быстро растворяется в 1,7 М кислоте, причем температура должна быть ниже 40 °C, чтобы избежать разложения кислоты. Остается небольшое количество потенциально пирофорного осадка; в присутствии HNO3 количество осадка больше

Во влажном кислороде металл быстро окисляется, образуя оксиды и гидриды. Металлический плутоний реагирует с большинством газов при повышенных температурах. Если металл достаточно долго подвергается воздействию малых количеств влажного воздуха, то на его поверхности образуется диоксид плутония. Кроме того, может образоваться и его дигидрид, но только при недостатке кислорода. Ионы плутония во всех степенях окисления склонны к гидролизу и комплексообразованию. Способность образовывать комплексные соединения увеличивается в ряду Pu < Pu < Pu < Pu .

При комнатной температуре свежий срез плутония имеет серебристый цвет, который затем тускнеет до серого. Благодаря тому, что поверхность металла становится пассивированной он становится пирофорным, то есть способным к самовозгоранию, поэтому металлический плутоний как правило обрабатывается в инертной атмосфере аргона или азота. Расплавленный металл должен храниться в вакууме, либо в атмосфере инертного газа, чтобы избежать реакции с кислородом.

Плутоний обратимо реагирует с чистым водородом, образуя гидрид плутония при температурах 25—50 °C. Кроме того, он легко взаимодействует с кислородом, образовывая монооксид и диоксид плутония, а также оксиды переменного состава. Оксиды расширяют плутоний на 40 % от его изначального объёма. Металлический плутоний энергично реагирует с галогеноводородами и галогенами, в соединениях с которыми обычно проявляет степень окисления +3, однако известны галогениды состава PuF4 и PuCl4 . При реакции с углеродом образует его карбид, с азотом — нитрид, с кремнием — силицид. Карбид, нитрид, диоксид плутония имеют температуру плавления больше 2000 °C и потому применяются в качестве ядерного топлива.

Тигли, используемые для хранения плутония, должны выдерживать его сильные окислительно-восстановительные свойства. Тугоплавкие металлы, такие как тантал и вольфрам, наряду с более стабильными оксидами, боридами, карбидами, нитридами и силицидами, также могут выдержать свойства плутония. Плавка в электродуговой печи может быть использована для получения малых количеств металла без применения тиглей.

Четырёхвалентный церий применяется в качестве химического симулянта плутония.

Электронная структура: 5f-электроны

Плутоний является элементом, в котором 5f-электроны расположены на границе локализованных и делокализованных электронов, поэтому он считается одним из самых комплексных и трудных элементов для изучения.

Аномальное поведение плутония обусловлено его электронной структурой. Энергетическая разница между 6d и 5f-электронами очень мала. Размеров 5f-оболочки вполне достаточно для того, чтобы они формировали атомную решётку между собой; это происходит на самой границе между локализованными и соединёнными между собой электронами. Близость электронных уровней приводит к формированию низкоэнергетической электронной конфигурации, с примерно одинаковыми уровнями энергии. Это приводит к формированию 5f7s и 5f7s6d электронных оболочек, что приводит к сложности его химических свойств. 5f-электроны участвуют в формировании ковалентных связей и комплексных соединений у плутония.

Бинарные соединения плутония.

Просмотров: 15508

4108.ru

Плутоний химический элемент — Знаешь как

(Plutonium; от назв. планеты Плутон), Рu — искусственно полученный радиоактивный хим. элемент; ат. н. 94; относится к актиноидам. Металл серебристо-белого цвета. В соединениях проявляет степени окисления от + 3 до + 7, наиболее характерна степень окисления + 4. Плутоний в виде изотопа 238Рu впервые получили (1940) амер. ученые Г. Сиборг, Э. Макмиллан, Дж. Кеннеди и А. Валем, облучая уран ядрами тяжелого водорода — дейтронами.

 

Идентифицировано около 15 изотопов плутония с массовыми числами от 232 до 246. Период полураспада практически важного долгоживущего изотопа 239Pu составляет 24 360 лет. В ничтожных количествах он обнаружен в урановых рудах. В интервале т-р от комнатной до т-ры плавления ,существует в виде полиморфных модификаций альфа, бета, гамма, дельта, эта и эпсилон. Из них низкотемпературная альфа-модификация с простой моноклинной решеткой устойчива ниже т-ры 122° С, наиболее высокотемпературная эпсилон-модификация с кубической объемноцент-рированной решеткой — выше т-ры 476° С. Плотность альфа-плутония (т-ра 20° С) 19,8 г/см3; tпл 639,5° С; tкип 3235° С; удельная теплоемкость 0,032  кал/г • град  (в  интервале т-р 0—100° С).

 

При нагревании на воздухе плутоний быстро окисляется. В тонко-измельченном состоянии пирофорен. Образует соединения с галогенами, кислородом, водородом, углеродом, азотом, серой, фосфором и др. неметаллами; со многими металлами — интерметаллические соединения. Сероводородом плутония из водных растворов не осаждается. Его сульфид получают нагреванием двуокиси с газообразным сероводородом. При прокаливании соединений плутония на воздухе образуется двуокись  Pu02 — желто-коричневый кристаллический порошок.

 

В водных растворах соединения плутоний дают характерно окрашенные ионы: Рu3+ — синий, Рu4+ — от желтого до коричневого, PuO⁺2 — красно-фиолетовый, PuО⁺2² — розово-коричневый. Более электроположительные, чем плутоний, металлы (напр., барий, кальций) восстанавливают галогениды плутония до металла. Наибольшее практическое значение имеет изотоп 239Рu. В пром-сти его получают в больших количествах в урановых ядерных реакторах. Он имеет большое сечение деления на медленных нейтронах, поэтому его используют в качестве делящегося материала. Плутоний очень токсичен, при попадании внутрь организма накапливается гл. обр. в костях.

 

Лит. Актиниды. Пер. с англ. Сиборг Г.

Статья на тему Плутоний химический элемент

znaesh-kak.com

Плутоний - Госстандарт

Плутоний, элемент с порядковым номером 94, открыт Гленом Сиборгом (Glenn Seaborg), Эдвином Макмилланом (Edwin McMillan), Кеннеди (Kennedy), и Артуром Уолхом (Arthur Wahl) в 1940 году в Беркли при бомбардировки мишени из урана дейтронами из шестидесятидюймового циклотрона. В мае 1940 свойства плутония были предсказаны Льюисом Тернером (Louis Turner).     В декабре 1940 года был открыт изотоп плутония Pu-238, с периодом полураспада ~90 лет, через год - более важный Pu-239 с периодом полураспада ~24 000 лет.     Pu-239 присутствует в природном урана в виде следов (количество - одна часть на 1015), образуется он там в результате захвата нейтрона ядром U-238. Чрезвычайно малые количества Pu-244 (самого долгоживущего изотопа плутония, период полураспада 80 миллионов лет) были обнаружены в цериевой руде, по видимому, оставшиеся там со времен формирования Земли.     Всего известно 15 изотопов плутония, все радиоактивны. Самые значимые для проектирования ядерного оружия: Pu238 -> (86 лет, альфа-распад) -> U234 Pu239 -> (24 360 лет, альфа-распад) -> U235 Pu240 -> (6580 лет, альфа-распад) -> U236 Pu241 -> (14.0 лет, бета-распад) -> Am241 Pu242 -> (370 000 лет, альфа-распад) -> U238

Физические свойства плутония

    Плутоний - очень тяжелый серебристый металл, блестящий подобно никелю, когда только что очищен. Это крайне электроотрицательный, химически активный элемент, гораздо в большей степени, чем уран. Он быстро тускнеет, образую радужную пленку (подобно радужной масляной пленки), вначале светло-желтую, со временем переходящую в темно-пурпурную. Если окисление довольно велико, на его поверхности появляется оливково-зеленый порошок оксида (PuO2).     Плутоний охотно окисляется, и быстро коррозирует даже в присутствии незначительной влажности. Странно, но он покрывается ржавчиной в атмосфере инертного газа с парами воды гораздо быстрее, чем на сухом воздухе или в чистом кислороде. Причина этого - прямое действие кислорода формирует на поверхности плутония слой оксида, мешающий дальнейшему окислению. Воздействие же влаги производит рыхлую смесь из оксида и гидрида. Для предотвращения оксидирования и коррозии требуется сушильная печь.     Плутоний имеет четыре валентности, III-VI. Хорошо растворяется только в очень кислых средах, таких как азотная или соляная кислоты, так же хорошо растворяется в иодистоводородной и хлорной кислотах. Плутониевые соли легко гидролизируются при контакте с нейтральными или щелочными растворами, создавая нерастворимую гидроокись плутония. Концентрированные растворы плутония нестабильны, в следствии радиолитического разложения, ведущего к выпадению осадка.     Вследствии своей радиоактивности, плутоний теплый на ощупь. Большой кусок плутония в термоизолированной оболочке разогревается до температуры, превышающей температуру кипения воды.      Основные физические свойства плутония: Температура плавления: 641 °C; Температура кипения: 3232 °C; Плотность: 19.84 (в альфа-фазе).      Плутоний имеет множество специфических свойств. Он обладает самой низкой теплопроводностью изо всех металлов, самой низкой электропроводностью, за исключением марганца (по другим данным все же самой низкой из всех металлов). В своей жидкой фазе это самый вязкий металл.     При изменении температуры плутоний подвергается самым сильным и неестественным изменениям плотности. Плутоний обладает шестью различными фазами (кристаллическими структурами) в твердой форме, больше чем любой другой элемент (в действительности, по более строгим условиям, их семь). Некоторые переходы между фазами сопровождаются разительными изменениями объема. В двух из этих фаз - дельта и дельта прим - плутоний обладает уникальным свойством сжиматься при повышении температуры, а в остальных - имеет чрезвычайно большой температурный коэффициент расширения. При расплавлении плутоний сжимается, позволяя нерасплавленному плутонию плавать. В своей максимально плотной форме, альфа фазе, плутоний шестой по плотности элемент (тяжелее его только осмий, иридий, платина, рений и нептуний). В альфа фазе чистый плутоний хрупок, но существуют его гибкие сплавы.     Плотности и температурный диапазон фаз плутония:

Фаза            Плотность       Диапазон существования (°C)

 альфа            19.84  (20 °C)   стабильна ниже 122

бета             17.8  (122 °C)   122 - 206

гамма            17.2  (206 °C)   224 - 300

дельта/

дельта прим      15.9  (319 °C)   319 - 476

эпсилон          17.0  (476 °C)   476 - 641 (точка плавления)

жидкая           16.65 (641 °C)   641 - до точки кипения

    

    К концу 1995 года в мире было произведено в общей сложности около 1270 тонн плутония, из которого 257 т для оружейного использования, остальное - побочный продукт АЭС.     Кроме своего оружейного назначения, плутоний может потенциально применяться для производства электроэнергии. Единственную крупную программу по энергетическому использованию плутония имеет только Япония. Это показывает его экономическую неконкурентноспособность по сравнению с ураном в течении десятилетий, по следующим причинам. Стоимость переработки реакторного топлива для извлечения плутония значительно выше, чем цена низкообогащенного урана. Большинство сегодняшних предприятий не оборудованы инструментарием для работы с более опасным для жизни оксидом плутония. Стоимость охраны плутония для предотвращения кражи или диверсии с целью его оружейного применения весьма существенна. Существующие энергетические реакторы могут работать с топливом, содержащим довольно малую величину плутония, представляющую небольшую ценность, и стоимость проектирования и строительства новых реакторов так же весьма велика. Текущая достаточная поставка урана, наличие больших обогатительных мощностей и большие запасы оружейного урана в США и России, который разбавляется для изготовления коммерческого топлива, гарантируют твердые цены на уран в последующие 20-30 лет.     Плутоний имеет и несколько других применений. Самое широко распространенное из них - в радиоизотопных дымовых детекторах в Европе (в США такие же детекторы изготавливаются из америция из-за его более короткого времени полураспада). Плутониево-бериллиевый сплав работает как лабораторный источник нейтронов. Изотоп Pu-238 находится в ряде атомных термоэлектрических генераторах энергии на борту космических исследовательских аппаратов, благодаря долгому времени жизни и высокой тепловой мощности.     Плутоний - элемент практически отсутствующий в природе. Однако около 5000 кг его выделилось в атмосферу в результате ядерных испытаний. По некоторым оценкам, почва в США содержит в среднем 2 милликюри (28 мг) плутония на км2 от выпадения радиоактивных осадков.

Металлургия плутония

    При комнатной температуре плутоний представляет собой кристаллическую структуру, называемую "альфа фаза". В этой форме плутоний имеет свою максимальную плотность - около 19.84 при 20 °С. Атомы в альфа фазе связаны ковалентной связью (в отличии от металлической связи), поэтому физические свойства ближе к минералам, чем к металлам. Это твердый, хрупкий и ломающийся в определенном направлении материал. Альфа фаза не поддается обработке обычными для металлов технологиями производства.     В самом "легком" виде, дельта фазе (плотность 15.9), плутоний достаточно ковкий и вязкий. Так же и в гамма фазе.     В дельта фазе плутоний имеет нормальные металлические свойства, включая превосходную ковкость. Дельта фаза имеет прочность и пластичность сходную с алюминием, делая простой обработку и отливку. Хотя дельта фаза и проявляет аномальное свойство сжиматься при нагревании, этот отрицательный коэффициент расширения невелик. Плутоний в дельта фазе совсем неустойчив. Он стремится осесть в плотную альфа фазу под очень небольшим давлением, увеличив на 25% свою плотность. В чистом плутонии дельта фаза не может существовать при давлении более 1 килобара. Для сравнения, увеличение на 25% плотности урана (или альфа фазы плутония) требует давления 450 килобар. При давлениях свыше 30 килобар плутоний существует только в альфа и бета фазах.     Это свойство перехода дельта -> альфа фазы (и увеличение его плотности на 25%) используется в имплозионных проектах оружия. Плутоний можно стабилизировать в дельта фазе при комнатной температуре путем сплавления его с трехвалентными металлами, такими как галлий, алюминий, церий, индий и америций в концентрации нескольких молярных процентов. Даже стабилизированная, дельта фаза продолжает оставаться легко сжимаемой давлением в несколько килобар. Особенно интересен факт, что в стабилизированном галлием плутонии дельта фаза действительно метастабильна при содержании галлия менее 4 молярных процентов. Это означает, что процесс фазового перехода под давлением в альфа фазу необратим.     Для оружейного применения плутоний обычно стабилизируется в дельта фазе сплавлением с 3-3.5 молярных процента (0.9-1% по весу) галлия. Этот сплав стабилен при температурах по крайней мере от -75 до 475 °C. Стабилизация предотвращает изменения объема плутония при колебаниях температуры после изготовления, что может повредить прецезионно сделанные компоненты устройства. Сплав имеет почти нулевой коэффициент теплового расширения. Так же он облегчает литье из-за наличия единственного эпсилон -> дельта фазового перехода во время охлаждения. Наконец, стабилизация снижает восприимчивость плутония к коррозии. Трехпроцентный галлиевый сплав применялся в Gadget`е и Fat Man`е. Если не считать галлий, плутоний в их ядрах был очень высокой чистоты.     Алюминий хороший материал для сплавления, но первоначально он отсутствовал в американской оружейной программе из-за образования нейтронов в результате реакций альфа частица -> n. Церий не использовался вообще (по многим причинам), в частности, он не давал стойкость к коррозии.     Плутоний для ядер бомб покрывается слоем металла (обычно никелем) для защиты его от ржавчины и снижения биологической опасности. Два полушария для Gadget`а были покрыты гальваническим способом никелем (по другим данным - серебром), процесс был не совсем удачным и привел к появлению раковин в металле. Пересмотр метода привел к химической металлизации при выдерживании плутония в атмосфере карбонильного никеля. Никелем были покрыты ядра Fat Man'а, бомб, взорванных в операции Crossroads, и первом советском заряде РДС-1. Напыление слоя алюминия или гальванопокрытие цинком не применялись.     Потенциально серьезная проблема для использования плутония в оружии - это наличие у него высокого фона спонтанных нейтронов. Присутствие нейтронов в то время, когда еще только достигается надкритическая масса ведет к преждевременной ядерной реакции, недостаточному выходу энергии и в некоторых случаях вообще к отказу оружия, легкому "хлопку". Существуют два источника нейтронного фона.     Самый главный - присутствие изотопа Pu-240, чей уровень спонтанного деления достаточен для появления 106 нейтронов/с*кг . Этот изотоп неизбежно образуется в течении производства Pu-239.     Второй из них - взаимодействие сильного альфа-излучения с легкими элементами, находящимися в плутонии. Хотя эта проблема имела большое значение во время Манхэттенского проекта, когда первоначально планировалось использование пушечного дизайна, открытие Pu-240 превратило ее в далекую от практики. Для минимизации (но не исключения) присутствие легких элементов в плутонии должно находиться в отношении одна часть к миллиону, это задача достаточно трудная. Алюминий, из которого альфа-частицы выбивают нейтроны, на некотором протяжении сделался не очень желательным веществом для сплавления, хотя с современным оружейного качества плутонием этот вклад в испускание нейтронов невелик. В конечном счете, удовлетворяющие характеристики галлиевого сплава, установленные в ходе обращения с ним и относительную незначимость таких деталей, как стоимость сплавляемого материала помешали использованию веществ, подобных алюминию.     Первоначальная техника получения металлического плутония заключена в пирохимическом восстановлении галогенидов плутония щелочными металлами. Обычно PuF4 восстанавливается кальцием и йодом, это стандартный в США метод, по крайней мере в 1970-х годах. Высшей очистки можно достичь электролитическим рафинированием пирохимически произведенного металла (не обязательный шаг для оружейного применения). Это делается в ячейках для электролиза при 700 °C с электролитом из натрия, калия и хлорида плутония, вольфрамовым или танталовым катодом. Таким образом получается 99.99% плутоний. Более новые способы базируются на прямом пирохимическом восстановлении и электрорафинировании плутониевого оксида. Среди преимуществ этих методов - меньшее количество утилизируемых отходов производства. Обработка расплавленного плутония и литье плутония осуществляется сегодня из оборудования, сделанного из слегка окисленного тантала. Литейные формы могут изготовляться из графита, мягкой стали или чугуна, если они покрыты фторидом кальция или оксидом циркония или иттрия.

Токсичность плутония

    Хотя плутоний, по-видимому, химически токсичен, как и любой тяжелый металл, этот эффект выражается слабо по сравнению с его радиотоксичностью. Токсические свойства плутония появляются как следствие альфа-радиоактивности. Альфа частицы представляют серьезную опасность только в том случае, если их источник находится в теле (т.е. плутоний должен быть принят внутрь). Хотя плутоний излучает еще и гамма-лучи и нейтроны, которые могут проникать в тело снаружи, уровень их слишком мал, чтобы причинить сильный вред.     Альфа-частицы повреждают только ткани, содержащие плутоний или находящиеся в непосредственном контакте с ним. Значимы два типа действия: острое и хроническое отравления. Если уровень облучения достаточно высок, ткани могут страдать острым отравлением, токсическое действие проявляется быстро. Если уровень низок, создается накопляющийся канцерогенный эффект.     Плутоний очень плохо всасывается желудочно-кишечным трактом, даже когда попадает в виде растворимой соли, впоследствии она все равно связывается содержимым желудка и кишечника. Загрязненная вода, из-за предрасположенности плутония к осаждению из водных растворов и к формированию нерастворимых комплексов с остальными веществами, имеет тенденцию к самоочищению.     Поглощение 500 мг плутония как мелкораздробленного или растворенного материала может привести к смерти от острого облучения пищеварительной системы за несколько дней или недель. Вдыхание 100 мг плутония в виде частиц оптимального для удержания в легких размера ведет к смерти от отека легких за 1-10 дней. Вдыхание дозы в 20 мг ведет к смерти от фиброза примерно за 1 месяц . Для доз много меньших этих величин проявляется хронический канцерогенный эффект.     Для хронического действия, плутоний должен долгое время присутствовать в организме человека. Вдыхание частиц подходящего для удержания в легких размера (1-3 микрона) весьма вероятно ведет к постоянному нахождению их там (детонация взрывчатки, не повлекшая за собой ядерный взрыв, может превратить 20-50% плутония в такую форму). Самая вероятная химическая форма, попадающая в тело, это оксид плутония. Оксид используется в реакторном топливе и частицы металлического плутония быстро окисляются на воздухе. Оксид почти нерастворим в воде.     На протяжении всей жизни риск развития рака легких для взрослого примерно зависит от количества попавшего в тело плутония. Прием внутрь 1 мигрограмма плутония представляет риск в 1% развития рака (нормальная вероятность рака 20%). Соответственно 10 микрограмм увеличивают риск рака с 20% до 30%. Попадание 100 микрограмм или более виртуально гарантируют развитие рака легких (обычно через несколько десятилетий), хотя свидетельства повреждения легких могут появиться в течении нескольких месяцев.     Плутоний обычно содержится в биологических системах в степени окисления +4, имея химическое сходство с Fe 3+. Если он проникнет в систему кровообращения, то с большой вероятностью начнет концентрироваться в тканях, содержащих железо: костном мозге, печени, селезенке. Если 1.4 микрограмма разместятся в костях взрослого человека, в результате ухудшится иммунитет и через несколько лет может развиться рак. Международная комиссия по радиологической защите установила норму ежегодного поглощения на уровне 280 нанограмм. Это значит, что для профессионального облучения концентрация плутония в воздухе не должна превышать 7 пикокюри/м3. Максимально допустимая концентрация Pu-239 (для профессионального персонала) 40 нанокюри (0.56 микрограмма) и 16 нанокюри (0.23 микрограмма) для легочной ткани.     Период биологического полувыведения плутония 80-100 лет при нахождении в костной ткани, т.о. концентрация его там практически постоянна. Период полувыведения из печени - 40 лет. Хелатные добавки могут ускорить выведение плутония.

Оружейный плутоний

    Это название применяется в США к плутонию с содержанием Pu-240 менее 7%. Типичный состав оружейного плутония приведен ниже. Первые две колонки - средний состав плутония, произведенного в Хэнфорде и Саванне в июне 1968. Третья - базируется на образцах почвы, взятых поблизости от Роки Флетс в 1970-х с учетом америция-241 (продукта распада Pu-241).

Типичный состав оружейного плутония

 

           Хэнфорд           Саванна      Почва Роки Флетс

         (сред. 6/68)      (сред. 6/68)     (сред. 1970-е)

Pu-238  менее чем 0.05%   менее чем 0.05%       следы

Pu-239           93.17%            92.99%       93.6%

Pu-240            6.28%             6.13%        5.8%

Pu-241            0.54%             0.86%        0.6%

Pu-242  менее чем 0.05%   менее чем 0.05%       следы

    В США производится и сверхчистый плутоний с 3% Pu-240, для обогащения обычного плутония, и, возможно, для специальных зарядов. Некоторые американские устройства требуют содержание Pu-240 менее 1.5%.     Существенный вопрос: что подразумевает название "оружейного качества". Самая распространенная интерпретация состоит в том, что это плутоний с содержанием изотопа Pu-240 менее 7%, действительно требующийся для успешного создания оружия. По крайней мере, превышение этой отметки означает серьезный компромисс с эффективностью.     Наличие Pu-240 точно определяет характеристики оружия, ибо именно от него зависит нейтронный фон и такие вторичные явления как рост критической массы (незначительный) и тепловой выход. Нейтронный фон влияет на проект ядерного взрывного устройства (ЯВУ) ограничением общей массы заключенного плутония, необходимостью достижения скоростей имплозии выше определенного порога. Как указывалось выше, некоторые проекты (преимущественно старые), требуют плутония с низкой концентрацией Pu-240 по эти причинам.     Однако, в современных усовершенствованных конструкциях, указанные сложности не являются критическими, по крайней мере с начала 1960-х. В недавно рассекреченных документах (WASH-1037, "Введение в ядерное оружие", июнь 1972) указывается, что обозначение плутония как "оружейной чистоты" - исключительно экономический вопрос. С одной стороны, стоимость плутония падает с ростом доли Pu-240. С другой - Pu-240 увеличивает критическую массу. Около 6-7% Pu-240 делает общую стоимость плутония, с учетом указанных причин, минимальной.     Это не означает, что существующие ядерные устройства сохранят работоспособность, если увеличить уровень плутония-240. Они спроектированы для достижения наилучшего эффекта с определенным делящимся материалом и пострадают в работоспособности при изменении изотопного состава.     Принимая средний состав оружейного плутония: 93.4% Pu-239, 6.0% Pu-240 и 0.6% Pu-241 (с пренебрежимым содержанием остальных изотопов) можно просчитать следующие его свойства. Начальная тепловая мощность свежевыработанного оружейного плутония 2.2 Вт/кг, уровень спонтанного деления 27 100 делений/с. Этот показатель деления позволяет использовать в оружии 4-5 кг плутония с очень низкой вероятность предетонации при условии хорошей имплозионной системы. По прошествии пары десятилетий, большая часть Pu-241 превратится в Am-241, существенно увеличив тепловыделение - до 2.8 Вт/кг. Поскольку Pu-241 прекрасно делится, а Am-241 - нет, это приводит к снижению запаса реактивности плутония и должно приниматься в расчет конструкторами.     Нейтронное излучение 5 кг оружейного плутония 300 000 нейтронов/с создает уровень излучения 0.003 рад/час на 1 м. Фон снижается отражателем и взрывчатым веществом, окружающим его. Облегченное оружие уменьшает радиацию в 5-10 раз. С другой стороны, высокая проникающая способность нейтронов увеличивает опасность. Длительный постоянный контакт с ЯВУ во время их обычного обслуживания может привести к дозе радиации, приближающейся к предельной годовой для профессионального состава. Сотрудники плутониевых предприятий, обрабатывающие плутониевый ядра непосредственно или в герметичных боксах, имеют ограниченную защиту от радиации и могут нуждаться в переводе с этой работы на другую, чтобы не превысить годового лимита облучения.     Вследствии малой разницы в массах Pu-239 и Pu-240, эти изотопы не разделяются промышленно широко распространенными способами обогащения. Единственный способ произвести более чистый Pu-239 - сократить время пребывания в реакторе кассеты м U-238. Малые количества плутония разделяются на электромагнитном сепараторе для исследовательских целей. Для развитых государств нет причин для снижения процента Pu-240 менее 6, так как эта концентрация не мешает создавать эффективные и надежные триггеры термоядерных зарядов. Очень малое количество Pu-240 позволяет достичь некоторой дополнительной гибкости, требующейся специализированным или экзотическим изделиям.

Реакторный плутоний

    Подавляющая часть сегодняшней атомной энергетики использует урановое горючие. По экономическим причинам ядерное топливо на АЭС работает долгое время и выгорает почти полностью. Степень облученности топливного элемента можно измерить в мегаватт-днях/тонну (МВт-день/т). Плутоний из отработанного ядерного топлива состоит из множества изотопов. Структура их меняется от типа реактора, рабочего режима, но типичные значения таковы:

Реакторы:      на легкой воде                CANDU              MAGNOX

          Типичный   33000МВт-день/т     7500МВт-день/т      3000МВт-день/т

 

Pu-238        2%         1.5%                  low                0.1%

Pu-239       61%         56.2%                66.6%              80.0%

Pu-240       24%         23.6%                26.6%              16.9%

Pu-241       10%         14.3%                 5.3%               2.7%

Pu-242        3%         4.9%                  1.5%               0.3%

    Реакторы с 33 000 МВт-день/т оперировали с ураном 3-х процентного обогащения в 1970-80-х гг. Со снижением цен на обогащенный уран (из-за освобождения армейских производственных мощностей) в настоящее время используется более насыщенное U-235 топливо - 4-4.5%, позволяя довести выгорание до 45 000 МВт-день/т и даже выше. В результате в отработанном горючем содержится еще больше Pu-238, 240, 241 и 242.     Использую за основу плутоний из типичного легководного реактора, определим его тепловую мощность - 14.5 Вт/кг, увеличивающуюся до 19.6 Вт/кг за 14 лет после полураспада Pu-241 и после полного распада Pu-241 - 24 Вт/кг. Уровень нейтронов - 350 000 нейтронов/кг, удельная радиоактивность - 11.0 кюри/г (0.442 кюри/г альфа-активности).     Принимая в расчет явление изотопного разбавления критической массы (хорошо делятся только Pu-239 и Pu-241) бомба, созданная из 8 кг такого материала выдавала бы 116 Вт тепла (электролампочку такого же размера и такой же мощности невозможно держать в руках) и 2.8 миллиона нейтронов/с. С таким веществом создание атомной бомбы остается под вопросом.     Потребовалось бы система постоянного активного охлаждения ядра для предотвращения порчи ядра, взрывчатки и других компонентов. Высокий уровень нейтронного излучения неибежно вызывает преждевременную детонацию, даже с очень эффективной имплозионной системой. Однако, даже с относительно примитивной в настоящее время конструкцией Fat Man'а, можно было бы произвести взрыв в 0.5 кт или около того. С оптимальной имплозионной системой выход бы составил несколько килотонн. При технологии усиления заряда за счет синтеза, все нежелательные свойства реакторного плутония полностью обходятся, можно изготовить мощный боеприпас, несмотря на менее удобный для использования делящийся материал.     После долгого периода времени, несколько десятилетий или столетий, тепловая мощность реакторного плутония значительно снижается с распадом Pu-238 и Am-241. На нейтронный фон это сказывается мало. Сейчас отработанное реакторное топливо обычно сохраняется на неопределенное время в герметичных контейнерах. В принципе, оно может представлять интерес для террористов, особенно хранящееся уже долгое время, с сократившимся тепловыделением и радиацией.     Сорокалетнее храненение позволит распасться 30-ти процентам Pu-238 и 88-ти процентам Pu-241: 1.5% Pu-238, 67.3% Pu-239, 26.4% Pu-240, 1.3% Pu-241, 3.3% Pu-242. Происходит снижение мощности до 11.7 Вт/кг и меньший ее рост в дальнейшем (максимум до 13.8 Вт/кг). Хранение реакторного плутония 150 лет изменит состав таким образом: 0.66% Pu-238, 69.06% Pu-239, 26.86% Pu-240, 0.01% Pu-241, 3.41% Pu-242, с сохранением стабильного тепловыделения на уровне 7.5 Вт/кг.

Возможности обогащения плутония

    Применение технологий обогащения урана для удаления нежелательных изотопов плутония технически возможно. Оно усложнено присутствием множества изотопов, отличающихся друг от друга всего одной атомной еденицей массы (U-235 и U-238 отличаются на 3) - значительно снизится и без того небольшой коэффициент сепарации. Может потребоваться двухпроходное разделение - сначала удаляются тяжелые изотопы - Pu-240 и выше, а затем (в зависимости от начального содержания и нежелательности нагрева), отделяется Pu-238. Токсичность, нейтронное излучение и самонагрев плутония во входном и выходном потоках, в обогащенном продукте - все эти факторы еще больше усложняют технологию разделения плутония по сравнению с ураном.     Есть и облегчающий процесс обогащения момент - масса сырья, которая должна быть переработана, более чем на два порядка меньше, чем при разделении природного урана. Это происходит и в следствии высокого изначального содержания Pu-239 (60-70% сравнивая с 0.72% у урана) и меньшей критической массой плутония (6 против 15 кг). Даже со всеми указанными выше сложностями, завод по обогащению плутония будет много меньше уранового безотносительно к используемой технологии разделения.     Довольно-таки легко производить оружейный плутоний из реакторного на электромагнитных сепараторах. В следствии очень высокого коэффициента разделения потребовалось бы всего одна стадия очистки и производительность сепаратора определялась бы концентрацией Pu-239 в сырье. Электромагнитный сепаратор, способный нарабатывать 0.5 урановых бомбы в год (аналогичный планировался Ираком до войны 1991 года), способен на производство 100 плутониевых бомб из реакторного плутония.     Газовая диффузия и центрифугирование тоже жизнеспособные кандидаты. Свойства гексафторида плутония сходны с гексафторидом урана и требуют лишь незначительных изменений в центрифугах или диффузионных мембраннах. Если подать на вход 60% Pu-239/25% Pu-240 плутоний, задаться выходом 94% Pu-239 и терять в шлаке половину поступающего с сырьем Pu-239, то потребуется мощность всего в 2 МПП-кг для производства 1 кг оружейного плутония. Это менее 1 % от ресурсов, нужных для производства 1 кг 90% U-235 из природного урана.     Технология AVLIS (испарение с использованием лазера) создает возможность недорогого разделения и может использоваться с реакторным плутонием в качестве исходного материала. Возможно, это одна из причин исследований по ней в восьмидесятых годах.

Денатурированный плутоний

    Если извлеченный из отработавшего топлива плутоний повторно использовать в реакторах на быстрых нейтронах, его изотопный состав постепенно становится менее пригодным для оружейного использования. После нескольких топливных циклов, накопление Pu-238, Pu-240 и Pu-242 делает его неупотребимым для этой цели. Подмешивание такого материала удобный метод "денатурировать" плутоний, или переработать отработавшее ядерное топливо, гарантируя нераспространение делящихся материалов. В основном это служит препятствием против использования реакторного плутония в низкотехнологичных дизайнах. Возросший выход тепла и радиация являются досаждающими помехами, но не серьезными препятствиями, хотя они и рождают значительные проектные ограничения и проблемы с обслуживанием. При усовершенствовании ЯВУ и организации надлежащего производственного процесса такие преткновения полностью преодолеваются.  

himiya.gosstandart.info