Все, что нужно знать об окружности. Окружность хорда


Свойства хорды в окружности, с примерами

Хорда является частью секущей окружности.

Свойства хорды

  1. Хорды, равноудаленные от центра окружности, равны.
  2. Хорды окружности равны, если они стягивают равные центральные углы.
  3. Если диаметр перпендикулярен хорде, то он проходит через ее середину.
  4. Вписанные углы, опирающиеся на одну хорду, равны.
  5. Дуги, заключенные между двумя равными хордами, равны.
  6. Любая пара вписанных углов, опирающихся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180°:

        \[\angle ABC+\angle ADC={{180}^{\circ}}\]

  7. Если хорда стягивает дугу с градусной мерой \alpha, то ее длина

        \[l=2R\sin \frac{\alpha }{2}\]

  8. Для любых двух хорд AB и CD, пересекающихся в точке О, выполняется:

        \[AO\cdot OB=CO\cdot OD\]

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Окружность, круг, радиус, диаметр, секущая, хорда. Сегмент, сектор.

Тестирование онлайн

Определение окружности, круга. Радиус

Окружность - геометрическое место точек плоскости, равноудаленных от одной ее точки (центра).

Равные отрезки, соединяющие центр с точками окружности, называются радиусами.

ОкружностьРадиус окружностиОбозначение дуги

Круг - часть плоскости, лежащая внутри окружности.

Круг

Хорда, дуга, диаметр

Прямая, проходящая через две точки окружности, называется секущей, а ее отрезок, лежащий внутри окружности, - хордой. Хорда, проходящая через центр О, называется диаметром. Диаметр равен двум радиусам.

Секущая, хорда.Обозначение секущей, хорды.Диаметр окружности

Часть окружности называется дугой.

Дуга называется полуокружностью, если отрезок, соединяющий ее концы, является диаметром окружности.

ПолуокружностьОбозначение дуги и полуокружности

Теорема. Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Пересекающиеся хордыФормула отрезков пересекающихся хорд

Касательная к окружности

Касательная - прямая, имеющая с окружностью только одну общую точку.

Теорема. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Касательная к окружностиПояснение обозначений касательной, точки касания.

Обратная теорема (признак касательной). Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.

Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Перпендикуляр, проведенный из середины хорды до пересечения с дугой называется стрелкой дуги. Длина стрелки называется высотой сегмента.

Сегмент

Сектором называется часть круга, ограниченная дугой и двумя радиусами, проведенными к концам дуги.

Сектор

Сектор, отсекаемый радиусами, образующими угол 900, называется квадрантом.

Квадрант

fizmat.by

Все что нужно знать об окружности

Эта статья содержит минимальный набор сведений об окружности, необходимый для успешной сдачи ЕГЭ по математике.

Окружностью называется множество точек, расположенных на одинаковом  расстоянии от данной точки, которая называется центром окружности.

Для любой точки L, лежащей на окружности выполняется равенство OL=R ( Длина отрезка OL равна радиусу окружности.

Отрезок, соединяющий две точки окружности называется хордой.

Хорда, проходящая через центр окружности называется диаметром окружности (D). D=2R

Длина окружности:

C=2{pi}R

Площадь круга:

S={pi}R^2

Дуга окружности:

Часть окружности, заключенная между двумя ее точками называется дугой окружности. Две точки окружности определяют две дуги. Хорда  CD стягивает две дуги: CMD и CLD. Равные хорды стягивают равные дуги.

Угол между двумя радиусами называется центральным углом:

Чтобы найти длину дуги CD, составляем пропорцию:

а) угол alpha дан в градусах:

2{pi}R~~~~~360^{circ}

x~~~~~~~{alpha}^{circ}

Отсюда x={{pi}R{alpha}^{circ}}/{180^{circ}}

б) угол alpha дан в радианах:

2{pi}R~~~~~2{pi}

x~~~~~~~{alpha}

Отсюда x={alpha}R

Диаметр, перпендикулярный хорде, делит эту хорду и дуги, которые она стягивает пополам:

Если  хорды AB и CDокружности пересекаются в точке M, то произведения отрезков хорд, на которые они делятся точкой M равны между собой:

AN*NB=CN*ND

Касательная к окружности.

Прямая, имеющая с окружностью одну общую точку называется касательной к окружности. Прямая, имеющая с окружностью две общие точки называется секущей.

Касательная к окружности перпендикулярна радиусу, проведенному к  точке касания.

Если из данной точки  проведены к окружности две касательные, то отрезки касательных  равны между собой и центр окружности лежит на биссектрисе угла с вершиной в этой точке:

AC=CB

Если из данной точки проведены к окружности касательная и секущая, то квадрат длины отрезка касательной  равен произведению  всего отрезка секущей на его внешнюю часть:

AC^2=CD*BC

Следствие: произведение всего отрезка одной секущей на его внешнюю часть равно произведению всего отрезка другой секущей на его внешнюю часть:

AC*BC=EC*DC

Углы в окружности.

Градусная мера центрального угла равна градусной мере дуги, на которую он опирается:

COD=CD={alpha}^{circ}

 

Угол, вершина которого лежит на окружности, а стороны содержат хорды, называется вписанным углом.  Вписанный угол измеряется половиной дуги, на которую он опирается:

AOB=2ADB

Вписанный угол, опирающийся на диаметр, прямой:

CBD=CED=CAD=90^{circ}

Вписанные углы, опирающиеся на одну дугу, равны:

ADB=AEB=AFB

 

Вписанные углы, опирающиеся на одну хорду равны или их сумма равна 180^{circ}

ADB+AKB=180^{circ}

ADB=AEB=AFB

Вершины треугольников с заданным основанием и равными углами при вершине лежат на одной окружности:

Угол между двумя хордами (угол с вершиной внутри окружности) равен полусумме угловых величин дуг окружности, заключенных внутри данного угла и внутри вертикального угла.

DMC=ADM+DAM=1/2( ⌣ DmC+AlB)

Угол между двумя секущими (угол с вершиной вне окружности) равен полуразности угловых величин дуг окружности, заключенных внутри угла.

M=CBD-ACB= 1/2( ⌣ DmC-AlB)

 Вписанная окружность.

Окружность называется вписанной в многоугольник, если она касается его сторон. Центр вписанной окружности лежит в точке пересечения биссектрис углов многоугольника.

Не во всякий многоугольник можно вписать окружность.

Площадь многоугольника, в который вписана окружность можно найти по формуле

S=pr,

здесь p- полупериметр многоугольника, r - радиус вписанной окружности.

Отсюда радиус вписанной окружности равен r=S/p

Если в выпуклый четырехугольник вписана окружность, то суммы длин противоположных сторон равны. Обратно: если в выпуклом четырехугольнике суммы длин противоположных сторон равны, то в четырехугольник можно вписать окружность:

AB+DC=AD+BC

В любой треугольник можно вписать окружность, притом только одну. Центр вписанной окружности лежит в точке пересечения биссектрис внутренних углов треугольника.

Радиус вписанной окружности равен r=S/p. Здесь p={a+b+c}/2

Описанная окружность.

Окружность называется описанной около многоугольника, если она проходит через все вершины многоугольника. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров сторон многоугольника. Радиус вычисляется как радиус окружности, описанной около треугольника, определенного любыми тремя вершинами данного многоугольника:

Около четырехугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна 180^{circ}.

A+∠C=∠B+∠D=180^{circ}

Около любого треугольника можно описать окружность, притом только одну. Ее центр лежит в точке пересечения серединных перпендикуляров сторон треугольника:

Радиус описанной окружности вычисляется по формулам:

R=a/{2sinA}=b/{2sinB}=c/{2sinC}

R={abc}/{4S}

Где a,~~b,~~c - длины сторон треугольника, S - его площадь.

Теорема Птолемея

Во вписанном четырехугольнике произведение диагоналей равно сумме произведений его противоположных сторон:

AC*BD=AB*CD+BC*AD

ege-ok.ru

Длина хорды окружности

В элементарной геометрии хордой называют отрезок прямой линии, который соединяет две точки, лежащие на некоторой кривой (окружности, эллипсе, параболе). Хорда, которая проходит через центр окружности, называется ее диаметром.

Длина хорды окружности формула

Определение длины хорды окружности

 

 

Длина хорды окружности может быть определена по формуле:

L = 2r × sin ( α / 2 )

 

L – хорда

r – радиус окружности

O – центр окружности

α – центральный угол

 

Следует заметить, что такую величину, как длина хорды, инженерам, конструкторам различных машин и механизмов, а также архитекторам приходится вычислять не так уж и редко. Чаще всего этот параметр необходим для того, чтобы правильно сконструировать и разметить весьма распространенные в технике фланцевые соединения.

Основные их элементы, фланцы, представляют собой плоские кольца, на которых на одинаковом друг от друга расстоянии располагаются отверстия, куда устанавливаются резьбовые шпильки или болты. Фланцы используются для соединения между собой участков различных трубопроводов и валов, причем применяются они в большинстве случаев попарно. Для того чтобы определить, в каких именно местах при изготовлении этих деталей следует просверлить отверстия, необходимо знать, какова длина хорды окружности, проходящей через их центры. При этом имеется в виду та хорда, которая располагается между центрами соседних отверстий. Зная этот параметр, можно не только составить правильный чертеж, по которому в дальнейшем будут производиться фланцы, но и впоследствии проконтролировать точность их изготовления. С большой точностью определить такой параметр, как длина хорды, требуется и тогда, когда разрабатываются детали машин и механизмов, имеющих форму криволинейных скоб: именно он определяет расстояние между конечными точками этих изделий.

Важную роль длина хорды играет и в баллистике – науке, изучающей движение тел, брошенных в пространстве. Дело в том, что перемещаются они по эллиптической траектории, и для того чтобы определить такой параметр, как, скажем, расстояние по прямой, которое при тех или иных условиях преодолеет пуля или баллистическая ракета, требуется вычислить именно длину хорды. При этом специалистами используются достаточно сложные математические методы и формулы, учитывающие большое количество различных параметров, и для того, чтобы определить такую, казалось бы, простую величину, как длина хорды, в баллистике широко применяется современная высокопроизводительная вычислительная техника.

Что касается хорд в архитектуре, то их чаше всего можно встретить там, где используются различные сводчатые и арочные конструкции. Например, для того, чтобы точно рассчитать ширину дверного проема, верхняя часть которого выполнена в виде арки, требуется вычислить именно такой параметр, как длина хорды. При проектировании строений, которые увенчаны куполами (например, христианские храмы), архитекторам также в обязательном порядке нужно пользоваться формулами расчета хорд для того, чтобы правильно определить параметры снования этих конструкций (например, требуемые их диаметры).

simple-math.ru

Что называется хордой окружности в математике и геометрии: определение, основные свойства

Дуга окружности Хорда в переводе с греческого означает «струна». Это понятие широко применяется в разных областях науки — в математике, биологии и других.

В геометрии для термина определение будет следующим: это отрезок прямой линии, который соединяет между собой две произвольные точки на одной окружности. Если такой отрезок пересекает центр кривой, она называется диаметром описываемой окружности.

Как построить геометрическую хорду

Чтобы построить этот отрезок, прежде всего необходимо начертить круг. Обозначают две произвольные точки, через которые проводят секущую линию. Отрезок прямой, который располагается между точками пересечения с окружностью, называется хордой.

Это интересно: в геометрии луч – это что такое, основное понятие.

Если разделить такую ось пополам и из этой точки провести перпендикулярную прямую, она будет проходить через центр окружности. Можно провести обратное действие — из центра окружности провести радиус, перпендикулярный хорде. В этом случае радиус разделит её на две идентичные половины.

Если рассматривать части кривой, которые ограничиваются двумя параллельными равными отрезками, то эти кривые тоже будут равными между собой.

Свойства

Существует ряд закономерностей, связывающих между собой хорды и центр круга:

  1. Как определить хорду Если расстояния от хорд до центра равны между собой, то такие хорды тоже равны между собой.
  2. Существует также обратная зависимость — если длины отрезков равны между собой, то расстояния от них до центра тоже будут равными.
  3. Чем большую длину имеет стягивающий отрезок прямой, тем меньше расстояние от него до центра окружности. И наоборот, чем она меньше, чем расстояние от указанного отрезка до центра описываемого круга больше.
  4. Чем больше расстояние от «струны» до центра, тем меньше длина этой оси. Справедливой будет также и обратная взаимосвязь — чем меньше расстояние от центра до хорды, тем больше длина.
  5. Хорда в геометрии, которая имеет максимально возможную для этой окружности длину, называется диаметром круга. Такая ось проходит через центр и делит её на две равные части.
  6. Отрезок с наименьшей длиной представляет собой точку.
  7. Если ось представляет собой точку, то расстояние от неё до центра круга будет равняться радиусу.

Это интересно: разность векторов, определение разности.

Взаимосвязь с радиусом и диаметром

Вышеуказанные математические понятия связаны между собой следующими закономерностями:

  1. Хорда и диаметрЕсли описываемый отрезок не является диаметром этого круга, и этот диаметр делит его пополам, то эта ось и диаметр перпендикулярны между собой.
  2. С другой стороны, диаметр, который перпендикулярен любой произвольной стягивающей, делит её на две равные части.
  3. Если ось не является диаметром, и последний делит её на две равные части, то он делит пополам и обе дуги, которые стянуты этим отрезком.
  4. Если диаметр делит на две одинаковые части дугу, то этот же диаметр делит пополам отрезок, который эту дугу стягивает.
  5. Если диаметр строго перпендикулярен описываемой величине, то он делит на две половины каждую дугу, которую ограничивает эта линия.
  6. Если диаметр круга делит пополам отрезок кривой, то он располагается перпендикулярно оси, которая этот отрезок стягивает.

Хорда и радиус

Между этими понятиями существуют следующие связи:

  1. Хорда и диаметр окружностиЕсли стягивающий отрезок не служит диаметром круга, и радиус разделяет её пополам, то такой радиус является перпендикулярным ей.
  2. Существует также обратная зависимость — радиус, который перпендикулярен оси, делит её на две одинаковые составные части.
  3. Если ось не выступает диаметром этого круга, и радиус делит её пополам, то этот же радиус делит пополам и дугу, которая стягивается.
  4. Радиус, который делит пополам дугу, также делит и отрезок, который эту дугу стягивает.
  5. Если радиус является перпендикулярным стягивающей линии, то он делит пополам часть кривой, которую она ограничивает.
  6. Если радиус окружности разделяет на две идентичные части дугу, то он является перпендикулярным линии, которая эту дугу стягивает.

Отношения со вписанными углами

Углы, вписанные в окружность, подчиняются следующим правилам:

  1. Хорды и касательные Если углы, вписанные в окружность, опираются на одну и ту же линию, и их вершины расположены по одну сторону, то такие углы равны между собой.
  2. Если два вписанных в круг угла опираются на одну и ту же линию, но их вершины расположены по разные стороны этой прямой, то сумма таких углов будет равняться 180 градусам.
  3. Если два угла — центральный и вписанный — опираются на единую линию, и их вершины располагаются по одну сторону от неё, то величина вписанного угла будет равняться половине центрального.
  4. Вписанный угол, который опирается на диаметр круга, является прямым.
  5. Равные между собой по размеру отрезки стягивают равные центральные углы.
  6. Чем больше величина стягивающего отрезка, тем больше величина центрального угла, который она стягивает. И наоборот, меньшая по размеру линия стягивает меньший центральный угол.
  7. Чем больше центральный угол, тем больше величина отрезка прямой, который его стягивает.

Взаимодействия с дугой

Если два отрезка стягивают участки кривой, одинаковые по размеру, то такие оси равны между собой. Из этого правила вытекают следующие закономерности:

  1. Хорда окружностиДве равные между собой хорды стягивают равные дуги.
  2. Если рассматривать две дуги, размер которых меньше половины окружности, то чем больше дуга, тем больше хорда, которая будет её стягивать. Напротив, меньшая дуга будет стягиваться меньшей по величине хордой.
  3. Если же дуга превышает половину окружности, то здесь присутствует обратная закономерность: чем меньше дуга, тем больше хорда, которая её стягивает. И чем больше дуга, тем меньше ограничивающая её хорда.

Хорда, которая стягивает ровно половину окружности, является её диаметром. Если две линии на одной окружности параллельны между собой, то будут равными и дуги, которые заключены между этими отрезками. Однако не следует путать заключённые дуги и стягиваемые теми же линиями.

obrazovanie.guru

Хорда (геометрия) - это... Что такое Хорда (геометрия)?

У этого термина существуют и другие значения, см. Хорда. 1 — секущая, 2 — хорда AB (отмечена красным цветом), 3 — сегмент (отмечен зеленым цветом), 4 — дуга

Хорда в планиметрии — отрезок прямой линии, соединяющей две точки данной кривой (например, окружности, эллипса, параболы).

Хорда находится на секущей прямой — прямой линии, пересекающей кривую в двух или более точках. Плоская фигура, заключённая между кривой и её хордой называется сегмент.

Хорда, проходящая через центр окружности, называется диаметр. Диаметр — это самая длинная хорда в окружности.

Свойства хорд

  • Хорды являются равноудаленными от центра окружности тогда и только тогда, когда они равны по длине.
  • Перпендикуляр с середины хорды окружности проходит через центр этой окружности.
  • Радиус, перпендикулярный к хорде, делит эту хорду пополам.
  • Дуги, заключенные между равными хордами, равны.
  • Дуги, заключенные между параллельными хордами, равны.
  • При пересечении двух хорд окружности, получаются отрезки, произведение которых у одной хорды равно произведению отрезков другой хорды.
  • Дуга AB равна дуге CD.

    Дуга BC равна дуге DA
  • Произведение отрезков одной хорды равно произведению отрезков другой хорды: AE×EB = CE×ED

Основные формулы

Длина хорды:

Связанные понятия и утверждения

Ссылки

dic.academic.ru

Окружность и круг /qualihelpy

Окружностью называют множество всех точек плоскости, равноудаленных от некоторой данной точки, называемой центром окружности. 

Отрезок, соединяющий центр окружности и любую точку окружности, называют радиусом окружности. 

Хордой называют отрезок, соединяющий две точки окружности.

Если хорда перпендикулярна радиусу окружности, то точкой пересечения она делится пополам. 

Например, на рисунке 8.83 LaTeX formula: MN\perp OD, следовательно, LaTeX formula: MN=NP.

Хорду, проходящую через центр окружности, называют диаметром окружности. Диаметр состоит из двух радиусов. 

Например, на рисунке 8.83 хорда LaTeX formula: AB – диаметр окружности и LaTeX formula: AB = 2R

Дугой окружности называют часть окружности, заключенную между двумя точками окружности. Если точки – концы диаметра окружности, то имеем две равные дуги, называемые полуокружностями.

Например, на рисунке 8.84 изображены дуги окружности: LaTeX formula: AB , BD , DC и т.д. Среди них две равные полуокружности LaTeX formula: CDДуги можно измерять в угловых единицах. Градусная мера полуокружности равна LaTeX formula: 180^{\circ}.

Кругом называют часть плоскости, ограниченную окружностью, включая точки окружности. 

Например, на рисунке 8.85 изображен круг. 

Круговым сектором называют часть круга, ограниченную радиусами и дугой, на которую опираются радиусы. 

Например, на рисунке 8.86 изображен круговой сектор LaTeX formula: OAB

Круговым сегментом называют часть круга, отсекаемую хордой. 

Например, на рисунке 8.87 изображен круговой сегмент LaTeX formula: ACB.

Свойство пересекающихся хорд: если через точку, лежащую внутри окружности, проведены две хорды, то произведения отрезков, на которые хорды делятся в точке пересечения, равны. 

Например, на рисунке 8.88 LaTeX formula: AP \cdot BP= CP \cdot DP.  

Касательной к окружности называют прямую, имеющую с окружностью только одну общую точку.

Например, на рисунке 8.89 из точки LaTeX formula: A к окружности проведены касательные LaTeX formula: AB и LaTeX formula: AC.

Если к окружности из одной точки провести две касательные, то окружность будет вписана в угол, образованный этими касательными. Центр окружности, вписанной в угол, расположен на биссектрисе угла (рис. 8.89). 

Свойства касательных

1. Отрезки касательных, проведенных из одной точки к окружности, равны ( LaTeX formula: AB=AC на рис. 8.89).2. Радиус окружности перпендикулярен касательной в точке касания ( LaTeX formula: OB\perp AB на рис. 8.89). 

Свойство хорды и касательной: угол, образованный хордой и касательной, проходящей через конец хорды, измеряется половиной дуги, заключенной внутри его. 

Например, на рисунке 8.90 LaTeX formula: AD – касательная к окружности, LaTeX formula: AC – хорда окружности, LaTeX formula: \angle DAC = \frac{1}{2}\angle AOC и LaTeX formula: \angle DAC = \angle ABC.

Секущей называют прямую, имеющую с окружностью две общие точки. 

Например, на рисунке 8.91 LaTeX formula: AC – отрезок секущей, а LaTeX formula: AD – внешняя часть отрезка секущей.

Свойство касательной и секущей: если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной равен произведению отрезка секущей и ее внешней части.

Например, на рисунке 8.91 LaTeX formula: AB^{2}=AC\cdot AD.

Свойство секущих к окружности: если из одной точки к окружности проведены секущие, то все произведения отрезков секущих и их внешних частей равны.

Например, на рисунке 8.92 LaTeX formula: OC\cdot OD=OB\cdot OA=a^{2}.

Угол называют центральным, если его вершина лежит в центре окружности, а стороны являются радиусами окружности. Центральный угол измеряется дугой, на которую он опирается.

Например, на рисунке 8.93 изображен центральный угол LaTeX formula: AOB

Угол называют вписанным в окружность, если его вершина лежит на окружности, а стороны являются непересекающимися хордами этой окружности. 

Например, на рисунке 8.94 изображен вписанный в окружность угол LaTeX formula: ACB.

Свойства вписанных в окружность углов

1. Вписанный в окружность угол равен половине соответствующего ему центрального угла. 

Например, LaTeX formula: \angle ABC=\frac{1}{2}\angle AOCна рисунке 8.95.

2. Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 8.96).

3. Вписанные углы, опирающиеся на диаметр, прямые (рис. 8.97).

helpy.quali.me