Как округлять числа до сотых? Округление чисел онлайн до сотых


Как округлить число до сотых

Чтобы понять, как округлить число до сотых, рассмотрим применение правила округления на конкретных примерах.

Правило округления числа до сотых

Чтобы округлить число до сотых, надо оставить после запятой две цифры, а остальные отбросить.

Если первая отброшенная цифра 0, 1, 2, 3 или 4, то предыдущая цифра  не изменится.

Если первая из отброшенных цифр 5, 6, 7, 8 или 9, то предыдущую цифру нужно увеличить на единицу.

Примеры.

Округлить число до сотых:

   

Чтобы округлить число до сотых, оставляем после запятой две цифры, а следующую за ними цифру отбрасываем. Поскольку эта цифра — 9, предыдущую цифру увеличиваем на единицу. Читают: «Тридцать две целых семьсот восемьдесят шесть тысячных приближенно равно тридцать две целых семьдесят девять сотых».

   

Округляя данное число до сотых, оставляем после запятой две цифры, а третью — отбрасываем. Так как отброшенная цифра — 1, предыдущую цифру оставляем без изменений. Читают: «Шесть целых девятьсот шестьдесят одна тысячная приближенно равно шесть целых девяносто шесть сотых».

   

При округлении до сотых оставляем после запятой две цифры, остальные — отбрасываем. Первая из отброшенных цифр — 3, поэтому предыдущую цифру не изменяем. Читают: «Семнадцать целых четыре тысячи тридцать девять десятитысячных приближенно равно семнадцать целых сорок восемь сотых».

   

Чтобы округлить данное число до сотых, после запятой оставим лишь две цифры, а остальные — отбросим. Первая из отброшенных цифр равна 5, поэтому предыдущую цифру увеличиваем на единицу. Читают: «Нуль целых тысяча двести пятьдесят четыре тысячных приближенно равно нуль целых тринадцать сотых».

   

При округлении числа до сотых оставляем после запятой две цифры, остальные — отбрасываем. Поскольку первая из отброшенных цифр — 7, предыдущую цифру увеличиваем на единицу. Читаем: «Пятьсот сорок девять целых, три тысячи семьдесят три десятитысячных приближенно равно пятьсот сорок девять целых, тридцать одна сотая».

И еще пара примеров на округление числа до сотых:

   

   

www.for6cl.uznateshe.ru

округлить до сотых | математика-повторение

Чтобы округлить число до какого-либо разряда – подчеркнем цифру этого разряда, а затем все цифры, стоящие за подчеркнутой, заменяем нулями, а если они стоят после запятой – отбрасываем. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения. Если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то подчеркнутую цифру увеличиваем на 1.

Примеры.

Округлить до целых:

1) 12,5;   2) 28,49;   3) 0,672;  4) 547,96;   5) 3,71.

Решение. Подчеркиваем цифру, стоящую в разряде единиц (целых) и смотрим на цифру, стоящую за ней. Если это цифра 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения, а все цифры после нее отбрасываем. Если же за подчеркнутой цифрой стоит цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на единицу.

1) 12,5≈13;

2) 28,49≈28;

3) 0,672≈1;

4) 547,96≈548;

5) 3,71≈4.

Округлить до десятых:

6) 0, 246;   7) 41,253;   8 ) 3,81;   9) 123,4567;   10) 18,962.

Решение. Подчеркиваем цифру, стоящую в разряде десятых, а затем поступаем согласно правилу: все стоящие после подчеркнутой цифры отбросим. Если за подчеркнутой цифрой была цифра 0 или 1 или 2 или 3 или 4, то подчеркнутую цифру не изменяем. Если за подчеркнутой цифрой шла цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на 1.

6) 0, 246≈0,2;

7) 41,253≈41,3;

8 ) 3,81≈3,8;

9) 123,4567≈123,5;

10) 18,962≈19,0.  За девяткой стоит шестерка, поэтому, девятку увеличиваем на 1. (9+1=10) нуль пишем, 1 переходит в следующий разряд и будет 19. Просто 19 мы в ответе записать не можем, так как должно быть понятно, что мы округляли до десятых — цифра в разряде десятых должна быть. Поэтому, ответ: 19,0.

Округлить до сотых:

11) 2, 045;   12) 32,093;   13) 0, 7689;   14)  543, 008;  15)  67, 382.

Решение. Подчеркиваем цифру в разряде сотых и, в зависимости от того, какая цифра стоит после подчеркнутой, оставляем подчеркнутую цифру без изменения (если за ней 0, 1, 2, 3 или 4) или  увеличиваем подчеркнутую цифру на 1 (если за ней стоит 5, 6, 7, 8 или 9).

11) 2, 045≈2,05;

12) 32,093≈32,09;

13) 0, 7689≈0,77;

14)  543, 008≈543,01;

15)  67, 382≈67,38.

Важно:  в ответе последней должна стоять цифра в том разряде, до которого вы округляли.

 

www.mathematics-repetition.com

Округление чисел

Чтобы округлить число до какого-либо разряда – подчеркнем цифру этого разряда, а затем все цифры, стоящие за подчеркнутой, заменяем нулями, а если они стоят после запятой – отбрасываем. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения. Если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то подчеркнутую цифру увеличиваем на 1.

Примеры.

Округлить до целых:

1) 12,5;   2) 28,49;   3) 0,672;  4) 547,96;   5) 3,71.

Решение. Подчеркиваем цифру, стоящую в разряде единиц (целых) и смотрим на цифру, стоящую за ней. Если это цифра 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения, а все цифры после нее отбрасываем. Если же за подчеркнутой цифрой стоит цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на единицу.

1) 12,5≈13;

2) 28,49≈28;

3) 0,672≈1;

4) 547,96≈548;

5) 3,71≈4.

Округлить до десятых:

6) 0, 246;   7) 41,253;   8 ) 3,81;   9) 123,4567;   10) 18,962.

Решение. Подчеркиваем цифру, стоящую в разряде десятых, а затем поступаем согласно правилу: все стоящие после подчеркнутой цифры отбросим. Если за подчеркнутой цифрой была цифра 0 или 1 или 2 или 3 или 4, то подчеркнутую цифру не изменяем. Если за подчеркнутой цифрой шла цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на 1.

6) 0, 246≈0,2;

7) 41,253≈41,3;

8 ) 3,81≈3,8;

9) 123,4567≈123,5;

10) 18,962≈19,0.  За девяткой стоит шестерка, поэтому, девятку увеличиваем на 1. (9+1=10) нуль пишем, 1 переходит в следующий разряд и будет 19. Просто 19 мы в ответе записать не можем, так как должно быть понятно, что мы округляли до десятых — цифра в разряде десятых должна быть. Поэтому, ответ: 19,0.

Округлить до сотых:

11) 2, 045;   12) 32,093;   13) 0, 7689;   14)  543, 008;  15)  67, 382.

Решение. Подчеркиваем цифру в разряде сотых и, в зависимости от того, какая цифра стоит после подчеркнутой, оставляем подчеркнутую цифру без изменения (если за ней 0, 1, 2, 3 или 4) или  увеличиваем подчеркнутую цифру на 1 (если за ней стоит 5, 6, 7, 8 или 9).

11) 2, 045≈2,05;

12) 32,093≈32,09;

13) 0, 7689≈0,77;

14)  543, 008≈543,01;

15)  67, 382≈67,38.

Важно:  в ответе последней должна стоять цифра в том разряде, до которого вы округляли.

 

 

www.mathematics-repetition.com

Округление числа до необходимого десятичного разряда

Если отображение ненужных разрядов вызывает появление знаков ######, или если микроскопическая точность не нужна, измените формат ячеек таким образом, чтобы отображались только необходимые десятичные разряды.

Или если вы хотите округлить число до ближайшего крупного разряда, например, тысячной, сотой, десятой или единицы, используйте функцию в формуле.

С помощью кнопки

  1. Выделите ячейки, которые нужно отформатировать.

  2. На вкладке Главная выберите команду Увеличить разрядность или Уменьшить разрядность, чтобы отобразить больше или меньше цифр после запятой.

С помощью встроенного числового формата

  1. На вкладке Главная в группе Число щелкните стрелку рядом со списком числовых форматов и выберите пункт Другие числовые форматы.

  1. В списке Категория выберите значение Денежный, Финансовый, Процентный или Экспоненциальный в зависимости от типа ваших данных.

  2. В поле Число десятичных знаков введите число знаков после запятой, которые вы хотите отображать.

С помощью функции в формуле

Округлите число до необходимого количества цифр с помощью функции ОКРУГЛ. Эта функция имеет только два аргумента (аргументы — это части данных, необходимые для выполнения формулы).

  • Первый аргумент — это число, которое необходимо округлить. Он может быть ссылкой на ячейку или числом.

  • Второй аргумент — это количество цифр, до которого необходимо округлить число.

Предположим, что ячейка A1 содержит число 823,7825. Вот как можно округлить его.

  • Чтобы округлить до ближайшей тысяч и

    • Введите =ОКРУГЛ(A1;-3), что равно 1000

    • Число 823,7825 ближе к 1000, чем к 0 (0 кратно 1000 )

    • В этом случае используется отрицательное число, поскольку округление должно состоятся влево от запятой. Такое же число применяется в следующих двух формулах, которые округляют до сотен и десятков.

  • Чтобы округлить до ближайших сотен

    • Введите =ОКРУГЛ(A1;-2), что равно 800

    • Число 800 ближе к 823,7825, чем к 900. Наверное, теперь вам все понятно.

  • Чтобы округлить до ближайших десятков

  • Чтобы округлить до ближайших единиц

    • Введите =ОКРУГЛ(A1;0), что равно 824

    • Используйте ноль для округления числа до ближайшей единицы.

  • Чтобы округлить до ближайших десятых

    • Введите =ОКРУГЛ(A1;1), что равно 823,8

    • В этом случает для округления числа до необходимого количества разрядов используйте положительное число. То же самое касается двух следующих формул, которые округляют до сотых и тысячных.

  • Чтобы округлить до ближайших сотых

  • Чтобы округлить до ближайших тысячных

Округлите число в большую сторону с помощью функции ОКРУГЛВВЕРХ. Она работает точно так же, как функция ОКРУГЛ, за исключением того, что она всегда округляет число в большую сторону. Например, если необходимо округлить число 3,2 до ноля разрядов:

Округлите число вниз с помощью функции ОКРУГЛВНИЗ. Она работает точно так же, как функция ОКРУГЛ, за исключением того, что она всегда округляет число в меньшую сторону. Например, необходимо округлить число 3,14159 до трех разрядов:

  • =ОКРУГЛВНИЗ(3,14159;3), что равно 3,141

Стандартный десятичный разделитель для чисел можно настроить в параметрах Excel.

  1. Щелкните Параметры (в Excel 2010–2016) или нажмите кнопку Microsoft Office и выберите Параметры Excel (в Excel 2007).

  2. В категории Расширенные параметры нужно выбрать пункт Параметры правки, а затем установить флажок Автоматическая вставка десятичной запятой.

  3. В поле Число знаков после запятой введите положительное число для количества цифр справа от запятой или отрицательное число для количества цифр слева от запятой.

    Примечание: Например, если ввести 3 в поле Число знаков после запятой, а затем — 2834 в ячейке, то значение будет равно 2,834. Если ввести –3 в поле Число знаков после запятой, а затем — 283 в ячейке, то значение будет равно 283000.

  4. Нажмите кнопку ОК.

    В строке состояния будет отображаться индикатор Фиксированный десятичный формат.

  5. Выберите ячейку на листе и введите нужное число.

    Примечание: Установка флажка Фиксированный десятичный формат не влияет на уже введенные данные.

  • Чтобы не использовать для числа параметр "Фиксированный десятичный формат", при его вводе добавьте десятичную запятую.

  • Чтобы удалить десятичные запятые из чисел, введенных с использованием фиксированного десятичного формата, сделайте следующее:

    1. Щелкните Параметры (в Excel 2010–2016) или нажмите кнопку Microsoft Office и выберите Параметры Excel (в Excel 2007).

    2. В категории Расширенные параметры в разделе Параметры правки снимите флажок Автоматическая вставка десятичной запятой.

    3. В пустой ячейке введите число, соответствующее числу десятичных знаков, которое вы хотите удалить, например 10, 100 или 1000.

      Например, введите 100 в ячейке, если числа содержат два десятичных знака и вы хотите преобразовать их в целые числа.

    4. На вкладке Главная в группе Буфер обмена нажмите кнопку Копировать (или нажмите клавиши CTRL+C).

    5. Выделите на листе ячейки, содержащие числа с десятичными разрядами, которые вы хотите изменить.

    6. На вкладке Главная в группе Буфер обмена щелкните стрелку под кнопкой Вставить и выберите команду Специальная вставка.

    7. В диалоговом окне Специальная вставка в разделе "Операция" выберите Умножить.

Дополнительные сведения

Вы всегда можете задать вопрос специалисту Excel Tech Community, попросить помощи в сообществе Answers community, а также предложить новую функцию или улучшение на веб-сайте Excel User Voice.

См. также

Округление числа

Почему число округляется?

support.office.com

Округление чисел -

Округление – распространенная математическая операция, обеспечивающая расширение возможностей для различного рода вычислений. Округление часто используется при решении физических, химических и других расчетных задач.

Приближенные числа

Одна из классификаций чисел, которые используют для решения прикладных задач, подразумевает их разделение на точные и приближенные. Необходимость такого деления понятна, ведь далеко не всегда в результате вычислений можно получить точный ответ. Приближенные числа нередко получаются при извлечении корней. Кроме того, многие обыкновенные дроби при переводе в десятичную форму записи тоже оказываются приближенными.

Пример №1:

Записать такие числа в точном виде не представляется возможным. Поэтому их «обрезают», отображая только их часть. Но обрезают так, чтобы это не имело ощутимого влияние на их величину.

Приближенные числа зачастую используются при обозначении конкретных практических данных. Так, указывая расстояния между населенными пунктами и другими удаленными объектами, как правило, далеко не всегда требуется называть точные их величины.

Пример №2:

Известно, что расстояние между С-Петербургом и Москвой по прямой равно 635 км. Однако в печатных источниках (в справочниках или информационных статьях) можно прочесть, что это расстояние составляет 630 км. В большинстве ситуаций реальной жизни «хвостик» в виде нескольких километров здесь не принципиален. Между тем, полученное «обрезанное» число как минимум легче запомнить, Да и более весомые преимущества от такого обрезания тут однозначно возникают.

Такого рода «обрезание» чисел и называют округлением. Востребованность округленных данных связана, в том числе, с тем, что круглые числа более удобны для сравнений и подсчетов. Нужно понимать, что они во многих случаях позволяют избавиться от выкладок, которые не имеют принципиального значения для точности результатов. В итоге расчеты упрощаются (рационализируются), а результат все равно получается вполне удовлетворительным.

Правила округления

Округление является одним из основных источников и способов получения приближенных числовых данных. Однако достаточно часто округляют и точные числа. Именно такое округление было рассмотрено в Примере №2.

Процесс округления таков:

  1. Рассматривается число с точки зрения рациональности содержания в нем тех или иных разрядов. Скажем, для удобства вычислений может быть удобно избавиться от дробной части десятичного числа, если она несоизмеримо мала по сравнению с его целой частью. К примеру, в числе 3862,002 две тысячных явно не могут существенно повлиять на результат.
  2. В числе фиксируется последний значимый разряд. Все остальные разряды, расположенные справа от него, будет необходимо ликвидировать. Так, в примере 2 последним значимым разрядом числа был разряд сотен.
  3. Все разряды (цифры), которые решено считать незначимыми, отбрасываются либо заменяются нулями. При этом действует правило: если незначимыми являются разряды целой части числа, то они заменяются нулями; если это цифры дробной части десят.числа, то они отбрасываются.
  4. Последняя значимая цифра числа либо остается неизменной, либо увеличивается на 1. Увеличение на единицу выполняется в том случае, если первая незначимая цифра равна 5 или больше. Если 1-я незначимая цифра меньше 5, то последняя значимая не увеличивается. В 1-м случае говорят об округлении с избытком, во 2-м – об округлении с недостатком.

Между исходным числом и округленным ставится знак «приблизительно равно». Выглядит он как знак равенства, составленный не из прямых, а из волнистых линий, а именно: «≈».

Примеры округления:

Пример №3: Округлить до сотых число 3,2564. 3,2564≈3,26.

Пример №4: Округлить до тысяч число 31257. 31257≈31000.

Пример №5: Округлить до целой части число 12,34. 12,34≈12.

Пример №6: Округлить до десятков число 91368. 91368≈91370.

Погрешность округленных чисел

Различают 2 вида погрешностей – абсолютную и относительную.

Абсолютной погрешностью называют разницу между точным значением числа и приближенным его значением.

Пример №7:

Имеется число 1,214. Требуется округлить его до сотых и оценить абсолютную погрешность после такого приближения. Решение: 1,214≈1,21; абсолютная погрешность при этом составляет 1,214–1,21=0,004.

В реальности нередки ситуации, когда известно только приближенное число, а точное – нет. Тогда определить конкретную величину абс.погрешности не представляется возможным. Но можно найти граничную абс.погрешность. Под этой величиной понимают максимальное значение, которое ограничивает допустимую погрешность вычислений; причем погрешность обязательно должна быть меньше этой границы. В этом случае говорят: «число Х является приближенным для числа Y с точностью ∆х». Значение ∆х здесь и является граничной абс.погрешностью.

Записывается это так: Y≈Х(±∆х). Т.е. здесь имеется 2 границы – верхняя, соответствующая предельному значению (Х+∆х), и нижняя, соответствующая (Х–∆х). Это означает, что для округляемого числа вводится «вилка» допустимых отклонений от точного значения.

Пример №8:

Дано Z=3,82(±0,01). Это означает, что число Z может варьироваться в диапазоне 3,81<Z<3,83. И наоборот: если имеется диапазон вариативности для заданного числа, то это дает возможность оценить погрешность вычислений. Так, если дано 6,3<X<6,4, то Х=6,35(±0,05).

Пояснение: для определения Х в последнем примере было найдено среднее арифметическое для 6,3 и 6,4 ((6,3+6,4)/2), а для величины абс.погрешности их полуразность ((6,4–6.3)/2).

Особо нужно отметить, что величина абс.погрешности ничего не говорит о качестве произведенных измерений. Соотносить ее – и определять ее значительность или незначительность – нужно с самим числом, для которого осуществляются измерения.

Пример №9:

При измерении расстояний между городами приемлемой является абс.погрешность в 1 км. Если же измеряются расстояния между улицами города, то нормальной можно считать погрешность до нескольких метров.

Относительная погрешность является мерой точности вычислений. Относит.погрешность определяют как отношение абс.погрешности к округленному (приближенному) числу. Т.е., пользуясь обозначениями, использованными выше, относит.погрешность – это .

Выражают относит.погрешность обычно в процентах. Поэтому более справедлива иная формула для ее определения: . В таком виде относит.погрешность показывает процент отклонения округленного значения числа от его точной величины.

Пример №10:

Дано х≈15,2(±0,3). Требуется определить относит.погрешность этого значения.

Решение: относит.погрешность в данном случае составляет .

spadilo.ru

Как округлять числа до сотых?

  • Округление чисел начинается с вопроса quot;до скольки знаковquot;. Например, нам нужно число пи с точностью до четырх знаков. Берм пи=3,1415926. Четыре знака дают 3,1415. Теперь смотрим на первую цифру из отбрасываемых. Если она в диапазоне 0-4 - оставляем как есть, если 5-9 - последнюю цифру округленного числа увеличиваем на 1. То есть, в нашем примере 5 нужно увеличить до 6 - первая цифра из отбрасываемых в диапазоне 5-9. Результат: 3,1416.

    При округлении нельзя применять quot;цепочечноеquot; округление: 0,123456 до трх знаков нельзя округлять по схеме 0,123456 -> 0,12346 -> 0,1235 -> 0,124 - это будет ошибкой. 0,123456 до третьего знака округляется напрямую: 0,123, следующая цифра 4 - значит, в результате 0,123.

    Ответ непосредственно на авторский вопрос. Для округления числа до сотых целую часть записываем как есть, десятые - как есть, сотые - в зависимости от тысячных: если тысячные от 0 до 4 - записываем как есть, если от 5 до 9 - увеличиваем на 1.

    Примеры:

    3,1415926 -> 3,14

    1,24512123654 -> 1,25

  • Все что до 5 округляется в меньшую сторону, все что больше, в большую.

    1,24512123654

    Здесь: 4=0, 5=1, 6=6+1=7, 3=3+7=1, 2=0, 1=1+1=0, и т.д. Короче остается так: 5=1, 4=4+1=5=1 Итог:1.3

    Вот что-то типа такого. Все что больше или равно 5 округляется в большую сторону и плюсуется к следующему числу.

  • Чтобы число, у которого после запятой много цифр, округлить до сотых, надо знать следующее.

    Числа 1,2,3,4 не увеличивают спереди стоящее число на 1, а числа 5,6,7,8,9 наоборот, увеличивают спереди стоящее число на 1. Например, 5,445. Число после запятой 5 увеличит на 1 спреди стоящее число 4, и получится 5,45.

  • Понятие сотоя доля или число и сколько-то сотых означает число, которое имеет дробную часть, состоящую из двух цифр. Сотой частью эти две цифры называются потому, что их надо домножить на сто, чтобы получилось целое число, они вышли бы из под запятой. Пример - 12,34. Здесь 34 - сотая часть, если убрать первые цифры получится 0.34, что еще более наглядно. Если же после запятой в дробной части числа содержится больше 2 цифр, то этотуже более высокие дроби - тысячные, десятитысячные и больше. Их требуется округлить, убрать лишние цифры, чтобы справа от запятой осталось только две цифры. При этом используется метод округления в большую сторону. Если третья цифра больше или равна пяти, то вторая цифра увеличивается на еденицу, а если третья цифра меньше пяти, то вторая цифра не изменяется. Пример: 12,344=12,34, а 12,346=12,35.

  • vodnoklassniki.ru

    Как округлять числа до сотых?

  • Округление чисел начинается с вопроса quot;до скольки знаковquot;. Например, нам нужно число пи с точностью до четырх знаков. Берм пи=3,1415926. Четыре знака дают 3,1415. Теперь смотрим на первую цифру из отбрасываемых. Если она в диапазоне 0-4 - оставляем как есть, если 5-9 - последнюю цифру округленного числа увеличиваем на 1. То есть, в нашем примере 5 нужно увеличить до 6 - первая цифра из отбрасываемых в диапазоне 5-9. Результат: 3,1416.

    При округлении нельзя применять quot;цепочечноеquot; округление: 0,123456 до трх знаков нельзя округлять по схеме 0,123456 -> 0,12346 -> 0,1235 -> 0,124 - это будет ошибкой. 0,123456 до третьего знака округляется напрямую: 0,123, следующая цифра 4 - значит, в результате 0,123.

    Ответ непосредственно на авторский вопрос. Для округления числа до сотых целую часть записываем как есть, десятые - как есть, сотые - в зависимости от тысячных: если тысячные от 0 до 4 - записываем как есть, если от 5 до 9 - увеличиваем на 1.

    Примеры:

    3,1415926 -> 3,14

    1,24512123654 -> 1,25

  • Все что до 5 округляется в меньшую сторону, все что больше, в большую.

    1,24512123654

    Здесь: 4=0, 5=1, 6=6+1=7, 3=3+7=1, 2=0, 1=1+1=0, и т.д. Короче остается так: 5=1, 4=4+1=5=1 Итог:1.3

    Вот что-то типа такого. Все что больше или равно 5 округляется в большую сторону и плюсуется к следующему числу.

  • Чтобы число, у которого после запятой много цифр, округлить до сотых, надо знать следующее.

    Числа 1,2,3,4 не увеличивают спереди стоящее число на 1, а числа 5,6,7,8,9 наоборот, увеличивают спереди стоящее число на 1. Например, 5,445. Число после запятой 5 увеличит на 1 спреди стоящее число 4, и получится 5,45.

  • Понятие сотоя доля или число и сколько-то сотых означает число, которое имеет дробную часть, состоящую из двух цифр. Сотой частью эти две цифры называются потому, что их надо домножить на сто, чтобы получилось целое число, они вышли бы из под запятой. Пример - 12,34. Здесь 34 - сотая часть, если убрать первые цифры получится 0.34, что еще более наглядно. Если же после запятой в дробной части числа содержится больше 2 цифр, то этотуже более высокие дроби - тысячные, десятитысячные и больше. Их требуется округлить, убрать лишние цифры, чтобы справа от запятой осталось только две цифры. При этом используется метод округления в большую сторону. Если третья цифра больше или равна пяти, то вторая цифра увеличивается на еденицу, а если третья цифра меньше пяти, то вторая цифра не изменяется. Пример: 12,344=12,34, а 12,346=12,35.

  • info-4all.ru