Нахождение обратной матрицы: три алгоритма и примеры. Обратная матрица для чайников


Обратная матрица и методы ее вычисления

Запишем вспомогательную матрицу

   

и приведем её, с помощью элементарных преобразований, к матрице, в которой единичная матрица будет слева. Переставим местами первую и вторую строки

   

Прибавим ко второй строке первую строку, умноженную на а к третьей строке первую, умноженную на

   

Прибавим ко второй строке третью, умноженную на

   

Умножим вторую строку на

   

Прибавим к первой строке вторую, умноженную на а к третьей вторую, умноженную на

   

Разделим третью строку на 3

   

К первой строке прибавим третью, умноженную на

   

Тогда обратная матрица равна

ru.solverbook.com

Обратная матрица. Примеры вычисления

Нахождение обратной матрицы является важной составляющей в разделе линейной алгебры. С помощью таких матриц, если они существуют, можно быстро найти решение системы линейных уравнений.

Матрицаназывается обратной к матрице,если выполняются следующие равенства.

.

Если определитель матрицыотличен от нуля, то матрицу называют не особо или невырожденной.

Для того, чтобы матрица имела обратную необходимо и достаточно, чтобы она была невырожденной

Алгоритм нахождения обратной матрицы

Пусть имеем квадратную матрицу

и нужно найти обратную к ней. Для этого нужно выполнить следующие действия:

1. Найти определитель матрицы. Если он не равен нулю то выполняем следующие действия. В противном случае данная матрица вырождена и для нее не существует обратной

2. Найти алгебраические дополнения элементов матрицы . Они равны минорам, умноженным на в степени суммы строки и столбца, для которого ищем.

3. Составить матрицу из алгебраических дополнений элементов матрицы матрицы и протранспонировать ее. Эта матрица называется присоединенной или союзной и обозначается .

4. Разделить присоединенную матрицу на детерминант . Полученная матрица будет обратной и иметь свойства, которые изложены в начале статьи.

--------------------------------------------

Пример 1.

Найти матрицу, обратную к матрице (Дубовик В.П., Юрик И.И. "Высшая математика. Сборник задач")

1) (1.127)

2) (1.130)

3) (1.133)

Решение.

1)Находим определитель матрицы

Так как детерминант не равен нулю (), то обратная матрица существует. Находим матрицу, составленную из алгебраических дополнений

Матрица дополнений примет вид

Транспонируем ее и получаем присоединенную

Разделим ее на определитель и получим обратную

Видим, что в случае, когда определитель равен единице присоединена и обратная матрицы совпадают.

2) Вычисляем определитель матрицы

Находим матрицу алгебраических дополнений

Конечный вид матрицы дополнений

Транспонируем ее и находим союзную матрицу

Находим обратную матрицу

3) Вычислим детерминант матрицы. Для этого разложим его на первую строчку. В результате получим два отличны от нуля слагаемые

Находим матрицу алгебраических дополнений. Расписание определителя проводим по строкам и столбцам, в которых больше нулевых элементов (обозначены черным цветом).

Конечный вид матрицы дополнений следующий

Транспонируем ее и находим присоединенную матрицу

Поскольку определитель матрицы равен единице то обратная матрица совпадает с присоединенной. Данный пример назад.

При вычислениях обратной матрицы типичными являются ошибки связанные с неправильными знаками при вычислении определителя и матрицы дополнений.

--------------------------------------------

------------------------------

yukhym.com

Нахождение обратной матрицы: три алгоритма и примеры

Нахождение обратной матрицы - задача, которая чаще решается двумя методами:

  • методом алгебраических дополнений, при котором требуется находить определители и транспонировать матрицы;
  • методом исключения неизвестных Гаусса, при котором требуется производить элементарные преобразования матриц (складывать строки, умножать строки на одно и то же число и т. д.).

Для особо любознательных существуют и другие методы, например, метод линейных преобразований. На этом уроке разберём три упомянутых метода и алгоритмы нахождения обратной матрицы этими методами.

Обратной матрицей, которую требуется отыскать для данной квадратной матрицы А, называется такая матрица

,

произведение на которую матрицы А справа является единичной матрицей, т.е, .                (1)

Обратной матрицей, которую требуется отыскать для данной квадратной матрицы А, называется такая матрица

,

произведение на которую матрицы А справа является единичной матрицей, т.е, .                (1)

Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице.

Теорема. Для каждой неособенной (невырожденной, несингулярной) квадратной матрицы можно найти обратную матрицу, и притом только одну. Для особенной (вырожденной, сингулярной) квадратной матрицы обратная матрица не существует.

Квадратная матрица называется неособенной (или невырожденной, несингулярной), если её определитель не равен нулю, и особенной (или вырожденной, сингулярной), если её определитель равен нулю.

Обратная матрица может быть найдена только для квадратной матрицы. Естественно, обратная матрица также будет квадратной и того же порядка, что и данная матрица. Матрица, для которой может быть найдена обратная матрица, называется обратимой матрицей.

Для обратной матрицы существует уместная аналогия с обратным числом. Для каждого числа a, не равного нулю, существует такое число b, что произведение a и b равно единице: ab = 1. Число b называется обратным для числа b. Например, для числа 7 обратным является число 1/7, так как 7*1/7=1.

Для неособенной квадратной матрицы А обратной является матрица

,  (2)

где - определитель матрицы А, а - матрица, союзная с матрицей А.

Алгоритм нахождения обратной матрицы методом алгебраических дополнений

1. Найти определитель данной матрицы A. Если определитель равен нулю, нахождение обратной матрицы прекращается, так как матрица вырожденная и обратная для неё не существует.

2. Найти матрицу, транспонированную относительно A.

3. Вычислить элементы союзной матрицы как алгебраические дополнения марицы, найденной на шаге 2.

4. Применить формулу (2): умножить число, обратное определителю матрицы A, на союзную матрицу, найденную на шаге 4.

5. Проверить полученный на шаге 4 результат, умножив данную матрицу A на обратную матрицу. Если произведение этих матриц равно единичной матрицы, значит обратная матрица была найдена верно. В противном случае начать процесс решения снова.

Пример 1. Для матрицы

найти обратную матрицу.

Решение. Для нахождения обратной матрицы необходимо найти определитель матрицы А . Находим по правилу треугольников:

Следовательно, матрица А – неособенная (невырожденная, несингулярная) и для неё существует обратная.

Найдём матрицу, союзную с данной матрицей А.

Найдём матрицу , транспонированную относительно матрицы A:

Вычисляем элементы союзной матрицы как алгебраические дополнения матрицы, транспонированной относительно матрицы A:

Следовательно, матрица , союзная с матрицей A, имеет вид

Замечание. Порядок вычисления элементов и транспонирования матрицы может быть иным. Можно сначала вычислить алгебраические дополнения матрицы A, а затем транспонировать матрицу алгебраических дополнений. В результате должны получиться те же элементы союзной матрицы.

Применяя формулу (2), находим матрицу, обратную матрице А:

Алгоритм нахождения обратной матрицы методом исключения неизвестных Гаусса

1. К матрице A приписать единичную матрицу того же порядка.

2. Полученную сдвоенную матрицу преобразовать так, чтобы в левой её части получилась единичная матрица, тогда в правой части на месте единичной матрицы автоматически получится обратная матрица. Матрица A в левой части преобразуется в единичную матрицу путём элементарных преобразований матрицы.

2. Если в процессе преобразования матрицы A в единичную матрицу в какой-либо строке или в каком-либо столбце окажутся только нули, то определитель матрицы равен нулю, и, следовательно, матрица A будет вырожденной, и она не имеет обратной матрицы. В этом случае дальнейшее нахождение обратной матрицы прекращается.

Пример 2. Для матрицы

найти обратную матрицу.

Решение. Составляем сдвоенную матрицу

и будем её преобразовывать, так чтобы в левой части получилась единичная матрица. Начинаем преобразования.

Умножим первую строку левой и правой матрицы на (-3) и сложим её со второй строкой, а затем умножим первую строку на (-4) и сложим её с третьей строкой, тогда получим

.

Чтобы по возможности не было дробных чисел при последующих преобразованиях, создадим предварительно единицу во второй строке в левой части сдвоенной матрицы. Для этого умножим вторую строку на 2 и вычтем из неё третью строку, тогда получим

.

Сложим первую строку со второй, а затем умножим вторую строку на (-9) и сложим её с третьей строкой. Тогда получим

.

Разделим третью строку на 8, тогда

.

Умножим третью строку на 2 и сложим её со второй строкой. Получается:

.

Переставим местами вторую и третью строку, тогда окончательно получим:

.

Видим, что в левой части получилась единичная матрица, следовательно, в правой части получилась обратная матрица . Таким образом:

.

Можно проверить правильность вычислений, умножим исходную матрицу на найденную обратную матрицу:

.

В результате должна получиться обратная матрица.

Пример 3. Для матрицы

найти обратную матрицу.

Решение. Составляем сдвоенную матрицу

и будем её преобразовывать.

Первую строку умножаем на 3, а вторую на 2, и вычитаем из второй, а затем первую строку умножаем на 5, а третью на 2 и вычитаем из третьей строки, тогда получим

.

Первую строку умножаем на 2 и складываем её со второй, а затем из третьей строки вычитаем вторую, тогда получим

.

Видим, что в третьей строке в левой части все элементы получились равными нулю. Следовательно, матрица вырожденная и обратной матрицы не имеет. Дальнейшее нахождение обратной марицы прекращаем.

Матрицы теснейшим образом связаны с системами линейных уравнений. Каждой матрице соответствует система линейных уравнений, коэффициенты в которой есть элементы матрицы. И наоборот, системе линейных уравнений соответствует некоторая матрица.

Поэтому существует метод линейных преобразований для нахождения обратной матрицы. Для решения задач нам будет достаточно знать, что линейное преобразование - это система линейных уравнений, вид которой будет приведён ниже в алгоритме.

Алгоритм нахождения обратной матрицы методом линейных преобразований

1. Для данной невырожденной матрицы A составить линейное преобразование - систему линейных уравнений вида

,

где aij - элементы матрицы A.

2. Решить полученную систему относительно y - найти для предыдущего линейного преобразование обратное линейное преобразование

,

в котором Aij - алгебраические дополнения элементов матрицы A, Δ - определитель матрицы A. Внимание! Алгебраические дополнения располагаются как в транспонированной матрице, то есть для элементов строки - в столбце, а для элементов столбца - в строке.

3. Находим коэффициенты при y: , которые и будут элементами матрицы, обратной для матрицы A.

4. Пользуясь элементами, найденными на шаге 3, записать найденную обратную матрицу.

Наиболее наблюдательные могли заметить, что по сути метод линейных преобразований - это тот же метод алгебраических преобразований (союзной матрицы), но с другой формой записи. Для кого-то метод линейных преобразований может оказаться более удобным как более компактный.

Пример 4. Найти обратную матрицу для матрицы

.

Сначала проверим, не равен ли нулю определитель данной матрицы. Он не равен нулю, следовательно, обратная матрица существует.

Для данной матрицы записываем линейное преобразование:

.

Находим линейное преобразование, обратное предыдущему, для этого потребуется находить алгебраические дополнения (урок откроется в новом окне). Запишем обратное линейное преобразование:

Коэффициенты при иксах в обратном линейном преобразовании - это элементы обратной матрицы для матрицы A. Таким образом нашли обратную матрицу:

Начало темы "Матрицы"

Другие темы линейной алгебры

function-x.ru

Алгоритм вычисления обратной матрицы.

1. Находим определитель исходной матрицы. Если , то матрица- вырожденная и обратной матрицыне существует. Если, то матрицаневырожденная и обратная матрица существует.

2. Находим матрицу , транспонированную к.

3. Находим алгебраические дополнения элементов и составляем из них присоединенную матрицу.

4. Составляем обратную матрицу по формуле    .

5. Проверяем правильность вычисления обратной матрицы , исходя из ее определения:.

Пример. Найти матрицу, обратную данной: .

Р е ш е н и е.

1)    Определитель матрицы

.

2)   Находим алгебраические дополнения элементов матрицы и составляем из них  присоединенную матрицу :

.

3)              Вычисляем обратную матрицу:

,

4)              Проверяем:

.

№4 Ранг матрицы. Линейная независимость строк матрицы

Для решения и исследования ряда математических и прикладных задач важное значение имеет понятие ранга матрицы.

В матрице размеромвычеркиванием каких-либо строк и столбцов можно вычленить квадратные подматрицы-го порядка, где. Определители таких подматриц называютсяминорами -го порядка матрицы.

Например, из матриц можно получить подматрицы 1, 2 и 3-го порядка.

Определение. Рангом матрицы называется наивысший порядок отличных от нуля миноров этой матрицы. Обозначение:или.

Из определения следует:

1) Ранг матрицы не превосходит меньшего из ее размеров, т.е..

2) тогда и только тогда, когда все элементы матрицы равны нулю, т.е..

3) Для квадратной матрицы n-го порядка тогда и только тогда, когда матрица- невырожденная.

Поскольку непосредственный перебор всех возможных миноров матрицы , начиная с наибольшего размера, затруднителен (трудоемок), то пользуются элементарными преобразованиями матрицы, сохраняющими ранг матрицы.

Элементарные преобразования матрицы:

1)   Отбрасывание нулевой строки (столбца).

2)   Умножение всех элементов строки (столбца) на число .

3)   Изменение порядка строк (столбцов) матрицы.

4)   Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.

5)   Транспонирование матрицы.

Определение. Матрица , полученная из матрицыпри помощи элементарных преобразований, называется эквивалентной и обозначаетсяА В.

Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица называется ступенчатой если она имеет вид:

, где ,,.

Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк , т.к. имеется минор-го порядка, не равный нулю:

.

Пример. Определить ранг матрицы с помощью элементарных преобразований.

 .

Ранг матрицы равен количеству ненулевых строк, т.е. .

№5Линейная независимость строк матрицы

Дана матрица размера

Обозначим строки матрицы следующим образом:

Две строки называются равными, если равны их соответствующие элементы. .

Введем операции умножения строки на число и сложение строк как операции, проводимые поэлементно:

.

Определение. Строка называется линейной комбинацией строкматрицы, если она равна сумме произведений этих строк на произвольные действительные числа(любые числа):

.

Определение. Строки матрицы называютсялинейно зависимыми, если существует такие числа , не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:

, где . (1.1)

Линейная зависимость строк матрицы обозначает, что хотя бы 1 строка матрицы является линейной комбинацией остальных.

Определение. Если линейная комбинация строк (1.1) равна нулю тогда и только тогда, когда все коэффициенты , то строкиназываютсялинейно независимыми.

Теорема о ранге матрицы. Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые линейно выражаются все остальные строки (столбцы).

Теорема играет принципиальную роль в матричном анализе, в частности, при исследовании систем линейных уравнений.

№6 Решение системы линейных уравнений снеизвестными

Системы линейных уравнений находят широкое применение в экономике.

Система линейных уравнений спеременными имеет вид:

,

где () - произвольные числа, называемыекоэффициентами при переменных и свободными членами уравнений, соответственно.

Краткая запись: ().

Определение. Решением системы называется такая совокупность значений , при подстановке которых каждое уравнение системы обращается в верное равенство.

1)             Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений.

2)             Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

3)             Две системы уравнений называются равносильными (эквивалентными), если они имеют одно и то же множество решений (например, одно решение).

studfiles.net

обратная матрица

Нахождение обратной матрицы.

В этой статье разберемся с понятием обратной матрицы, ее свойствами и способами нахождения. Подробно остановимся на решении примеров, в которых требуется построить обратную матрицу для заданной.

Навигация по странице.

  • Обратная матрица - определение.

  • Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.

  • Свойства обратной матрицы.

  • Нахождение обратной матрицы методом Гаусса-Жордана.

  • Нахождение элементов обратной матрицы с помощью решения соответствующих систем линейных алгебраических уравнений.

Обратная матрица - определение.

Понятие обратной матрицы вводится лишь для квадратных матриц, определитель которых отличен от нуля, то есть для невырожденных квадратных матриц.

Определение.

Матрица  называется обратной для матрицы , определитель которой отличен от нуля , если справедливы равенства , где E – единичная матрица порядка n на n.

Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.

Как же находить обратную матрицу для данной?

Во-первых, нам потребуются понятия транспонированной матрицы, минора матрицы и алгебраического дополнения элемента матрицы.

Определение.

Минор k-ого порядка матрицы A порядка m на n – это определитель матрицы порядка k на k, которая получается из элементов матрицы А, находящихся в выбранныхk строках и k столбцах. (k не превосходит наименьшего из чисел m или n).

Минор (n-1)-ого порядка, который составляется из элементов всех строк, кроме i-ой, и всех столбцов, кроме j-ого, квадратной матрицы А порядка n на n обозначим как .

Иными словами, минор  получается из квадратной матрицы А порядка n на nвычеркиванием элементов i-ой строки и j-ого столбца.

Для примера запишем, минор 2-ого порядка, который получаетсся из матрицы выбором элементов ее второй, третьей строк и первого, третьего столбцов . Также покажем минор, который получается из матрицы  вычеркиванием второй строки и третьего столбца . Проиллюстрируем построение этих миноров:  и .

Определение.

Алгебраическим дополнением элемента  квадратной матрицы  называют минор (n-1)-ого порядка, который получается из матрицы А, вычеркиванием элементов ее i-ой строки и j-ого столбца, умноженный на .

Алгебраическое дополнение элемента  обозначается как . Таким обрзом, .

Например, для матрицы  алгебраическое дополнение элемента  есть .

Во-вторых, нам пригодятся два свойства определителя, которые мы разобрали в разделевычисление определителя матрицы:

На основании этих свойств определителя, определения операции умножения матрицы на число и понятия обратной матрицы справедливо равенство , где  - транспонированная матрица, элементами которой являются алгебраические дополнения .

Матрица  действительно является обратной для матрицы А, так как выполняются равенства . Покажем это

Составим алгоритм нахождения обратной матрицы с использованием равенства .

  1. Вычисляем определитель матрицы А и убеждаемся, что он отличен от нуля (в противном случае матрица А необратима).

  2. Строим  - матрицу из алгебраических дополнений элементов .

  3. Транспонируем матрицу , тем самым получаем .

  4. Умножаем каждый элемент матрицы  на число . Этой операцией завершается нахождение обратной матрицы .

  5. Проводим проверку результата, вычисляя произведения  и . Если , то обратная матрица найдена верно, в противном случае где-то была допущена ошибка.

Разберем алгоритм нахождения обратной матрицы на примере.

Пример.

Дана матрица . Найдите обратную матрицу.

Решение.

Вычислим определитель матрицы А, разложив его по элементам третьего столбца:

Определитель отличен от нуля, так что матрица А обратима.

Найдем матрицу из алгебраических дополнений:

Поэтому

Выполним транспонирование матрицы из алгебраических дополнений:

Теперь находим обратную матрицу как :

Проверяем полученный результат:

Равенства  выполняются, следовательно, обратная матрица найдена верно.

Свойства обратной матрицы.

Понятие обратной матрицы, равенство , определения операций над матрицами и свойства определителя матрицы позволяют обосновать следующие свойства обратной матрицы:

  1. Для невырожденной квадратной матрицы А справедливо равенство .

  2. Для обратимой матрицы А выполняется равенство .

  3. Для любого отличного от нуля числа k справедливо равенство .

  4. Для невырожденных квадратных матриц А и В одного порядка выполняется равенство .

Нахождение элементов обратной матрицы с помощью решения соответствующих систем линейных алгебраических уравнений.

Рассмотрим еще один способ нахождения обратной матрицы для квадратной матрицы Апорядка n на n.

Этот метод основан на решении n систем линейных неоднородных алгебраических уравнений с n неизвестными. Неизвестными переменными в этих системах уравнений являются элементы обратной матрицы.

Идея очень проста. Обозначим обратную матрицу как X, то есть, . Так как по определению обратной матрицы , то

Приравнивая соответствующие элементы по столбцам, получим n систем линейных уравнений

Решаем их любым способом и из найденных значений составляем обратную матрицу.

Разберем этот метод на примере.

Пример.

Дана матрица . Найдите обратную матрицу.

Решение.

Примем . Равенство  дает нам три системы линейных неоднородных алгебраических уравнений:

Не будем расписывать решение этих систем, при необходимости обращайтесь к разделурешение систем линейных алгебраических уравнений.

Из первой системы уравнений имеем , из второй - , из третьей - . Следовательно, искомая обратная матрица имеет вид . Рекомендуем сделать проверку, чтобы убедиться в правильности результата.

Подведем итог.

Мы рассмотрели понятие обратной матрицы, ее свойства и три метода ее нахождения.

Пример решений методом обратной матрицы

Задание 1. Решить СЛАУ методом обратной матрицы.  2 x 1 + 3x2 + 3x3+ x4= 1  3 x 1 + 5x2 + 3x3+ 2x4= 2  5 x 1 + 7x2 + 6x3+ 2x4= 3  4 x 1 + 4x2 + 3x3+ x4= 4

Начало формы

Конец формы

Решение. Запишем матрицу в виде:    Вектор B:  BT = (1,2,3,4)  Главный определитель  Минор для (1,1):     = 5•(6•1-3•2)-7•(3•1-3•2)+4•(3•2-6•2) = -3  Минор для (2,1):     = 3•(6•1-3•2)-7•(3•1-3•1)+4•(3•2-6•1) = 0  Минор для (3,1):     = 3•(3•1-3•2)-5•(3•1-3•1)+4•(3•2-3•1) = 3  Минор для (4,1):     = 3•(3•2-6•2)-5•(3•2-6•1)+7•(3•2-3•1) = 3  Определитель минора  ∆ = 2•(-3)-3•0+5•3-4•3 = -3

Транспонированная матрица    Алгебраические дополнения    ∆1,1 = 5•(6•1-2•3)-3•(7•1-2•4)+2•(7•3-6•4) = -3    ∆1,2 = -3•(6•1-2•3)-3•(7•1-2•4)+1•(7•3-6•4) = 0    ∆1,3 = 3•(3•1-2•3)-3•(5•1-2•4)+1•(5•3-3•4) = 3    ∆1,4 = -3•(3•2-2•6)-3•(5•2-2•7)+1•(5•6-3•7) = -3    ∆2,1 = -3•(6•1-2•3)-3•(5•1-2•4)+2•(5•3-6•4) = 9    ∆2,2 = 2•(6•1-2•3)-3•(5•1-2•4)+1•(5•3-6•4) = 0    ∆2,3 = -2•(3•1-2•3)-3•(3•1-2•4)+1•(3•3-3•4) = -6    ∆2,4 = 2•(3•2-2•6)-3•(3•2-2•5)+1•(3•6-3•5) = 3    ∆3,1 = 3•(7•1-2•4)-5•(5•1-2•4)+2•(5•4-7•4) = -4    ∆3,2 = -2•(7•1-2•4)-3•(5•1-2•4)+1•(5•4-7•4) = 1    ∆3,3 = 2•(5•1-2•4)-3•(3•1-2•4)+1•(3•4-5•4) = 1    ∆3,4 = -2•(5•2-2•7)-3•(3•2-2•5)+1•(3•7-5•5) = 0    ∆4,1 = -3•(7•3-6•4)-5•(5•3-6•4)+3•(5•4-7•4) = -12    ∆4,2 = 2•(7•3-6•4)-3•(5•3-6•4)+3•(5•4-7•4) = -3    ∆4,3 = -2•(5•3-3•4)-3•(3•3-3•4)+3•(3•4-5•4) = 9    ∆4,4 = 2•(5•6-3•7)-3•(3•6-3•5)+3•(3•7-5•5) = -3  Обратная матрица    Вектор результатов X  X = A-1 ∙ B      XT = (2,-1,-0.33,1)  x1 = 2  x2 = -1  x3 = -0.33  x4 = 1

см. также решений СЛАУ методом обратной матрицы online. Для этого введите свои данные и получите решение с подробными комментариями.

Задание 2. Систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы. Сделать проверку полученного решения.  Решение:xml:xls

Пример 2. Записать систему уравнений в матричной форме и решить с помощью обратной матрицы.  Решение:xml:xls

Пример. Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера; 2) записать систему в матричной форме и решить ее средствами матричного исчисления.  Методические рекомендации. После решения методом Крамера, найдите кнопку "Решение методом обратной матрицы для исходных данных". Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется.  Решение. Обозначим через А — матрицу коэффициентов при неизвестных; X — матрицу-столбец неизвестных; B - матрицу-столбец свободных членов:

Вектор B: BT=(4,-3,-3) С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B. Если матрица А — невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А-1. Умножив обе части уравнения на А-1, получим: А-1*А*Х = А-1*B, А-1*А=Е. Это равенство называется матричной записью решения системы линейных уравнений. Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А-1. Система будет иметь решение, если определитель матрицы A отличен от нуля. Найдем главный определитель. ∆=-1•(-2•(-1)-1•1)-3•(3•(-1)-1•0)+2•(3•1-(-2•0))=14 Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения. Пусть имеем невырожденную матрицу А:

A=

a11

a12

a13

a21

a22

a23

a31

a32

a33

Тогда:

A=1/∆

A11

A21

A31

A12

A22

A32

A13

A23

A33

где Aij — алгебраическое дополнение элемента aij в определителе матрицы А, которое является произведением (—1)i+j на минор (определитель) n-1 порядка, полученный вычеркиванием i-й строки и j-го столбца в определителе матрицы А. Транспонированная матрица

Вычисляем алгебраические дополнения.

∆1,1=(-2•(-1)-1•1)=1

∆1,2=-(3•(-1)-0•1)=3

∆1,3=(3•1-0•(-2))=3

∆2,1=-(3•(-1)-1•2)=5

∆2,2=(-1•(-1)-0•2)=1

∆2,3=-(-1•1-0•3)=1

∆3,1=(3•1-(-2•2))=7

∆3,2=-(-1•1-3•2)=7

∆3,3=(-1•(-2)-3•3)=-7 Обратная матрица

Вектор результатов X X=A-1 • B

XT=(-1,1,2) x1=-14 / 14=-1 x2=14 / 14=1 x3=28 / 14=2 Проверка. -1•-1+3•1+0•2=4 3•-1+-2•1+1•2=-3 2•-1+1•1+-1•2=-3  doc:xml:xls  Ответ: -1,1,2.

studfiles.net

Метод элементарных преобразований (методы Гаусса и Гаусса-Жордана для нахождения обратных матриц).

В первой части был рассмотрен способ нахождения обратной матрицы с помощью алгебраических дополнений. Здесь же мы опишем иной метод нахождения обратных матриц: с использованием преобразований метода Гаусса и Гаусса-Жордана. Зачастую этот метод нахождения обратной матрицы именуют методом элементарных преобразований.

Метод элементарных преобразований

Для применения этого метода в одну матрицу записывают заданную матрицу $A$ и единичную матрицу $E$, т.е. составляют матрицу вида $(A|E)$ (эту матрицу называют также расширенной). После этого с помощью элементарных преобразований, выполняемых со строками расширенной матрицы, добиваются того, что матрица слева от черты станет единичной, причём расширенная матрица примет вид $\left(E| A^{-1} \right)$. К элементарным преобразованиям в данной ситуации относят такие действия:

  1. Смена мест двух строк.
  2. Умножение всех элементов строки на некоторое число, не равное нулю.
  3. Прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на любой множитель.

Применять указанные элементарные преобразования можно разными путями. Обычно выбирают метод Гаусса или метод Гаусса-Жордана. Вообще, методы Гаусса и Гаусса-Жордана предназначены для решения систем линейных алгебраических уравнений, а не для нахождения обратных матриц. Фразу «применение метода Гаусса для нахождения обратной матрицы» здесь нужно понимать как «применение операций, свойственных методу Гаусса, для нахождения обратной матрицы».

Нумерация примеров продолжена с первой части. В примерах №5 и №6 рассмотрено применение метода Гаусса для нахождения обратной матрицы, а в примерах №7 и №8 разобрано использование метода Гаусса-Жордана. Следует отметить, что если в ходе решения все элементы некоторой строки или столбца матрицы, расположенной до черты, обнулились, то обратной матрицы не существует.

Пример №5

Найти матрицу $A^{-1}$, если $A=\left( \begin{array} {ccc} 7 & 4 & 6 \\ 2 & 5 & -4 \\ 1 & -1 & 3 \end{array} \right)$.

Решение

В этом примере будет найдена обратная матрица методом Гаусса. Расширенная матрица, имеющая в общем случае вид $(A|E)$, в данном примере примет такую форму: $ \left( \begin{array} {ccc|ccc} 7 & 4 & 6 & 1 & 0 & 0 \\ 2 & 5 & -4 & 0 & 1 & 0 \\ 1 & -1 & 3 & 0 & 0 & 1 \end{array} \right)$.

Цель: с помощью элементарных преобразований привести расширенную матрицу к виду $\left( E|A^{-1} \right)$. Применим те же операции, что применяются при решении систем линейных уравнений методом Гаусса. Для применения метода Гаусса удобно, когда первым элементом первой строки расширенной матрицы является единица. Чтобы добиться этого, поменяем местами первую и третью строки расширенной матрицы, которая станет такой: $ \left( \begin{array} {ccc|ccc} 1 & -1 & 3 & 0 & 0 & 1 \\ 2 & 5 & -4 & 0 & 1 & 0 \\ 7 & 4 & 6 & 1 & 0 & 0 \end{array} \right)$.

Теперь приступим к решению. Метод Гаусса делится на два этапа: прямой ход и обратный (подробное описание этого метода для решения систем уравнений дано в примерах соответствующей темы). Те же два этапа будут применены и в процессе отыскания обратной матрицы.

Прямой ход

Первый шаг

С помощью первой строки обнуляем элементы первого столбца, расположенные под первой строкой:

Немного прокомментирую выполненное действие. Запись $II-2\cdot I$ означает, что от элементов второй строки вычли соответствующие элементы первой строки, предварительно умноженные на два. Это действие можно записать отдельно следующим образом:

Точно так же выполняется и действие $III-7\cdot I$. Если возникают сложности с выполнением этих операций, их можно выполнить отдельно (аналогично показанному выше действию $II-2\cdot I$), а результат потом внести в расширенную матрицу.

Второй шаг

С помощью второй строки обнуляем элемент второго столбца, расположенный под второй строкой:

Разделим третью строку на 5:

Прямой ход окончен. Все элементы, расположенные под главной диагональю матрицы до черты, обнулились.

Обратный ход

Первый шаг

С помощью третьей строки обнуляем элементы третьего столбца, расположенные над третьей строкой:

Перед переходом к следующему шагу разделим вторую строку на $7$:

Второй шаг

С помощью второй строки обнуляем элементы второго столбца, расположенные над второй строкой:

Преобразования закончены, обратная матрица методом Гаусса найдена: $A^{-1}=\left( \begin{array} {ccc} -11/5 & 18/5 & 46/5 \\ 2 & -3 & -8 \\ 7/5 & -11/5 & -27/5 \end{array} \right)$. Проверку, при необходимости, можно сделать так же, как и в предыдущих примерах. Если пропустить все пояснения, то решение примет вид:

Ответ: $A^{-1}=\left( \begin{array} {ccc} -11/5 & 18/5 & 46/5 \\ 2 & -3 & -8 \\ 7/5 & -11/5 & -27/5 \end{array} \right)$.

Пример №6

Найти матрицу $A^{-1}$, если $A=\left( \begin{array} {cccc} -5 & 4 & 1 & 0 \\ 2 & 3 & -2 & 1 \\ 0 & 7 & -4 & -3 \\ 1 & 4 & 0 & 6 \end{array} \right)$.

Решение

Для нахождения обратной матрицы в этом примере будем использовать те же операции, что применяются при решении систем линейных уравнений методом Гаусса. Подробные пояснения даны в примере №5, здесь же ограничимся краткими комментариями. Запишем расширенную матрицу: $\left( \begin{array} {cccc|cccc} -5 & 4 & 1 & 0 & 1 & 0 & 0 & 0 \\ 2 & 3 & -2 & 1 &0 &1&0 &0 \\ 0 & 7 & -4 & -3 &0 & 0 & 1 & 0\\ 1 & 4 & 0 & 6 &0 &0 & 0 & 1 \end{array} \right)$. Поменяем местами первую и четвёртую строки данной матрицы: $\left( \begin{array} {cccc|cccc} 1 & 4 & 0 & 6 &0 &0 & 0 & 1 \\ 2 & 3 & -2 & 1 &0 &1&0 &0 \\ 0 & 7 & -4 & -3 &0 & 0 & 1 & 0\\ -5 & 4 & 1 & 0 & 1 & 0 & 0 & 0 \end{array} \right)$.

Прямой ход

Преобразования прямого хода завершены. Все элементы, расположенные под главной диагональю матрицы слева от черты, обнулились.

Обратный ход

Обратная матрица методом Гаусса найдена, $A^{-1}=\left( \begin{array} {cccc} -13/14 & -75/8 & 31/8 & 7/2 \\ -19/8 & -117/16 & 49/16 & 11/4 \\ -23/4 & -141/8 & 57/8 & 13/2 \\ 17/8 & 103/6 & -43/16 & -9/4 \end{array} \right)$. Проверку, при необходимости, проводим так же, как и в примерах №2 и №3.

Ответ: $A^{-1}=\left( \begin{array} {cccc} -13/14 & -75/8 & 31/8 & 7/2 \\ -19/8 & -117/16 & 49/16 & 11/4 \\ -23/4 & -141/8 & 57/8 & 13/2 \\ 17/8 & 103/6 & -43/16 & -9/4 \end{array} \right)$.

Пример №7

Найти матрицу $A^{-1}$, если $A=\left( \begin{array} {ccc} 2 & 3 & 4 \\ 7 & 1 & 9 \\ -4 & 5 & -2 \end{array} \right)$.

Решение

Для нахождения обратной матрицы применим операции, характерные методу Гаусса-Жордана. Отличие от метода Гаусса, рассмотренного в предыдущих примерах №5 и №6, состоит в том, что решение осуществляется в один этап. Напомню, что метод Гаусса делится на 2 этапа: прямой ход («делаем» нули под главной диагональю матрицы до черты) и обратный ход (обнуляем элементы над главной диагональю матрицы до черты). Для вычисления обратной матрицы методом Гаусса-Жордана двух стадий решения не потребуется. Для начала составим расширенную матрицу: $(A|E)$:

$$ (A|E)=\left( \begin{array} {ccc|ccc} 2 & 3 & 4 & 1 & 0 & 0\\ 7 & 1 & 9 & 0 & 1 & 0\\ -4 & 5 & -2 &0 & 0 & 1 \end{array} \right) $$

Первый шаг

Обнулим все элементы первого столбца кроме одного. В первом столбце все элементы отличны от нуля, посему можем выбрать любой элемент. Возьмём, к примеру, $(-4)$:

Выбранный элемент $(-4)$ находится в третьей строке, посему именно третью строку мы используем для обнуления выделенных элементов первого столбца:

Сделаем так, чтобы первый элемент третьей строки стал равен единице. Для этого разделим элементы третьей строки расширенной матрицы на $(-4)$:

Теперь приступим к обнулению соответствующих элементов первого столбца:

В дальнейших шагах использовать третью строку уже будет нельзя, ибо мы её уже применили на первом шаге.

Второй шаг

Выберем некий не равный нулю элемент второго столбца и обнулим все остальные элементы второго столбца. Мы можем выбрать любой из двух элементов: $\frac{11}{2}$ или $\frac{39}{4}$. Элемент $\left( -\frac{5}{4} \right)$ выбрать нельзя, ибо он расположен в третьей строке, которую мы использовали на предыдущем шаге. Выберем элемент $\frac{11}{2}$, который находится в первой строке. Сделаем так, чтобы вместо $\frac{11}{2}$ в первой строке стала единица:

Теперь обнулим соответствующие элементы второго столбца:

В дальнейших рассуждениях первую строку использовать нельзя.

Третий шаг

Нужно обнулить все элементы третьего столбца кроме одного. Нам надо выбрать некий отличный от нуля элемент третьего столбца. Однако мы не можем взять $\frac{6}{11}$ или $\frac{13}{11}$, ибо эти элементы расположены в первой и третьей строках, которые мы использовали ранее. Выбор невелик: остаётся лишь элемент $\frac{2}{11}$, который находится во второй строке. Разделим все элементы второй строки на $\frac{2}{11}$:

Теперь обнулим соответствующие элементы третьего столбца:

Преобразования по методу Гаусса-Жордана закончены. Осталось лишь сделать так, чтобы матрица до черты стала единичной. Для этого придется менять порядок строк. Для начала поменяем местами первую и третью строки:

$$ \left( \begin{array} {ccc|ccc} 1 & 0 & 0 & 47/4 & -13/2 & -23/4 \\ 0 & 0 & 1 & -39/4 & 11/2 & 19/4 \\ 0 & 1 & 0 & 11/2 & -3 & -5/2 \end{array} \right) $$

Теперь поменяем местами вторую и третью строки:

$$ \left( \begin{array} {ccc|ccc} 1 & 0 & 0 & 47/4 & -13/2 & -23/4 \\ 0 & 1 & 0 & 11/2 & -3 & -5/2 \\ 0 & 0 & 1 & -39/4 & 11/2 & 19/4 \end{array} \right) $$

Итак, $A^{-1}=\left( \begin{array} {ccc} 47/4 & -13/2 & -23/4 \\ 11/2 & -3 & -5/2 \\ -39/4 & 11/2 & 19/4 \end{array} \right)$. Естественно, что решение можно провести и по-иному, выбирая элементы, стоящие на главной диагонали. Обычно именно так и поступают, ибо в таком случае в конце решения не придется менять местами строки. Я привел предыдущее решение лишь с одной целью: показать, что выбор строки на каждом шаге не принципиален. Если выбирать на каждом шаге диагональные элементы, то решение станет таким:

Из последней матрицы имеем: $A^{-1}=\left( \begin{array} {ccc} 47/4 & -13/2 & -23/4 \\ 11/2 & -3 & -5/2 \\ -39/4 & 11/2 & 19/4 \end{array} \right)$

Обратная матрица методом Гаусса-Жордана получена, осталось лишь записать ответ.

Ответ: $A^{-1}=\left( \begin{array} {ccc} 47/4 & -13/2 & -23/4 \\ 11/2 & -3 & -5/2 \\ -39/4 & 11/2 & 19/4 \end{array} \right)$.

Пример №8

Найти матрицу $A^{-1}$, если $A=\left( \begin{array} {cccc} 1 & 1 & 1 & 0 \\ 2 & 4 & 0 & 1 \\ 0 & 17 & 2 & -3 \\ -1 & 4 & 0 & -1 \end{array} \right)$.

Решение

Для нахождения обратной матрицы применим операции, характерные методу Гаусса-Жордана. Подробные пояснения были даны в примере №7, посему здесь ограничимся краткими комментариями. Итак, расширенная матрица такова: $A=\left( \begin{array} {cccc|cccc} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0\\ 2 & 4 & 0 & 1 & 0 & 1 &0 & 0\\ 0 & 17 & 2 & -3 & 0 & 0 & 1 & 0\\ -1 & 4 & 0 & -1 & 0 & 0 & 0 & 1 \end{array} \right)$.

Первый шаг

С помощью первой строки обнуляем соответствующие элементы первого столбца:

Второй шаг

Используя вторую строку обнуляем соответствующие элементы второго столбца:

Третий шаг

Используя третью строку обнуляем соответствующие элементы третьего столбца:

Четвёртый шаг

Используя четвёртую строку обнуляем соответствующие элементы четвёртого столбца:

Итак, $A^{-1}=\left( \begin{array} {cccc} -16/5 & -3/5 & 8/5 & -27/5 \\ 2/5 & 1/5 & -1/5 & 4/5 \\ 19/5 & 2/5 & -7/5 & 23/5 \\ 24/5 & 7/5 & -12/5 & 38/5 \end{array} \right)$. Если пропустить все пояснения, то решение примет вид:

Ответ: $A^{-1}=\left( \begin{array} {cccc} -16/5 & -3/5 & 8/5 & -27/5 \\ 2/5 & 1/5 & -1/5 & 4/5 \\ 19/5 & 2/5 & -7/5 & 23/5 \\ 24/5 & 7/5 & -12/5 & 38/5 \end{array} \right)$.

Примечание

Если в ходе решения диагональный элемент обнулился, то можно поменять местами строки. Например, в матрице $B=\left( \begin{array} {ccccc} 1 & 5 & 11 & 10 & 0\\ 0 & 0 & 9 & 5 & -6\\ 0 & 7 & 1 & -1 & -3\\ 0 & -11 & 8 & -9 & 12\\ 0 & 0 & 6 & -3 & 25 \end{array} \right)$ соответствующие элементы первого столбца обнулены. Нужно переходить к обнулению элементов второго столбца, но $b_{22}=0$. Поменяем местами вторую и третью строки матрицы $B$: $\left( \begin{array} {ccccc} 1 & 5 & 11 & 10 & 0\\ 0 & 7 & 1 & -1 & -3\\ 0 & 0 & 9 & 5 & -6\\ 0 & -11 & 8 & -9 & 12\\ 0 & 0 & 6 & -3 & 25 \end{array} \right)$. Теперь на месте нуля имеем число 7 и далее продолжаем стандартные преобразования метода Гаусса-Жордана.

Если Вас интересует метод вычисления обратной матрицы с помощью алгебраических дополнений, то изложение данного способа находится в первой части.

math1.ru

Решение уравнений методом обратной матрицы

Метод обратной матрицы используется при решении систем линейных алгебраических уравнений, если число неизвестных равно числу уравнений.

Суть метода

Пусть задана система линейных уравнений с неизвестными:

   

Эту систему можно записать в виде матричного уравнения ,

где – матрица системы,

– столбец неизвестных,

– столбец свободных коэффициентов.

Из полученного матричного уравнения необходимо выразить . Для этого умножим обе части матричного уравнения слева на , получим:

   

Так как , то или .

Далее находится обратная матрица и умножается на столбец свободных членов .

ЗАМЕЧАНИЕ Обратная матрица к матрице существует только при условии, что . Поэтому при решении системы линейных уравнений методом обратной матрицы в первую очередь вычисляется . Если , то система имеет единственное решение, которое можно найти методом обратной матрицы, если же , то методом обратной матрицы решить эту систему нельзя.

Пример решения методом обратной матрицы

ПРИМЕР 1
Задание Решить систему линейных уравнений методом обратной матрицы

   

Решение Данная система уравнений может быть записана матричным уравнением

   

где , , .

Выразив из этого уравнения , получим

   

Найдем определитель матрицы :

   

   

Так как , то система имеет единственное решение, которое можно найти методом обратной матрицы.

Найдем обратную матрицу с помощью союзной матрицы. Вычислим алгебраические дополнения к соответствующим элементам матрицы :

   

   

   

   

   

Запишем союзную матрицу , составленную из алгебраических дополнений элементов матрицы :

   

Далее запишем обратную матрицу согласно формуле . Будем иметь:

   

Умножая обратную матрицу на столбец свободных членов , получим искомое решение исходной системы:

   

Ответ
Читайте также:

Умножение матрицы на вектор

Ранг матрицы

Вычитание матриц

Перемножение матриц

Элементарные преобразования матриц

Операции над матрицами и их свойства

ru.solverbook.com