Область определения функции (область визначення функції). Область определения функции под корнем


Область определения функции с корнем

Функция с квадратным корнем определена только при тех значениях «икс», когдаподкоренное выражение неотрицательно: . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени: , правда, корень уже 4-ой степени в исследованиях функций не припоминаю.

Пример 5

Найти область определения функции

Решение: подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то … есть для нас существует только одна размерность по оси . Пожалуйста, не путайте снеравенствами двух переменных, где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть со сменой знака.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменитьзнак самого неравенства. Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на (правило №2):

Ответ: область определения:

Ответ также можно записать эквивалентной фразой: «функция определена при ».Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

Пример 6

Найти область определения функции

Это пример для самостоятельного решения.

Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

Пример 7

Найти область определения функции

Решение: подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители:Дискриминант положителен, ищем корни:Таким образом, парабола пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).

Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах выполнено неравенство (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке ниже оси абсцисс, что соответствует неравенству :! Примечание: если вам не до конца понятны объяснения, пожалуйста, начертите вторую ось и параболу целиком! Целесообразно вернуться к статье Графики и свойства элементарных функций и методичке Горячие формулы школьного курса математики.

Обратите внимание, что сами точки выколоты (не входят в решение), поскольку неравенство у нас строгое.

Ответ: область определения:

Вообще, многие неравенства (в том числе рассмотренное) решаются универсальнымметодом интервалов, известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . А основной способ – метод интервалов мы детально разберём в статье Нули функции. Интервалы знакопостоянства.

Пример 8

Найти область определения функции

Это пример для самостоятельного решения. В образце подробно закомментирована логика рассуждений + второй способ решения и ещё одно важное преобразование неравенства, без знания которого студент будет хромать на одну ногу…, …хмм… на счёт ноги, пожалуй, погорячился, скорее – на один палец. Большой палец.

Может ли функция с квадратным корнем быть определена на всей числовой прямой? Конечно. Знакомые всё лица: . Или аналогичная сумма с экспонентой: . Действительно, для любых значения «икс» и «ка»: , поэтому подАвно и .

А вот менее очевидный пример: . Здесь дискриминант отрицателен (парабола не пересекает ось абсцисс), при этом ветви параболы направлены вверх, следовательно, и область определения: .

Вопрос противоположный: может ли область определения функции быть пустой? Да, и сразу напрашивается примитивный пример , где подкоренное выражение отрицательно при любом значении «икс», и область определения: (значок пустого множества). Такая функция не определена вообще (разумеется, график тоже иллюзорен).

загрузка…

С нечётными корнями и т.д. всё обстоит гораздо лучше – тут подкоренное выражение может быть и отрицательным. Например, функция определена на всей числовой прямой. Однако у функции единственная точка всё же не входит в область определения, поскольку обращают знаменатель в ноль. По той же причине для функции исключаются точки .

Некоторым посетителям сайта рассматриваемые примеры покажутся элементарными и примитивными, но в этом нет случайности – во-первых, я стараюсь «заточить» материал для нубов, а во-вторых, подбираю реалистичные вещи под грядущие задачи: полное исследование функции, нахождение области определения функции двух переменныхи некоторые другие. Всё в математике цепляется друг за дружку. Хотя любители трудностей тоже не останутся обделёнными, более солидные задания встретятся и здесь, и на урокео методе интервалов.

 

refac.ru

9 класс. Алгебра. Определение числовой функции. Способы задания функций. - Область определения иррациональных функций.

Комментарии преподавателя

Область определения функции с корнем

Функция с квадратным корнем  определена только при тех значениях «икс», когдаподкоренное выражение неотрицательно: . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . 

Пример 5

Найти область определения функции 

Решение: подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с  неравенствами, известные ещё со школы.

 Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть со сменой знака.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменитьзнак самого неравенства. Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве  перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на  (правило №2):

Ответ: область определения: 

Ответ также можно записать эквивалентной фразой: «функция определена при ». Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае: Ещё раз напоминаю геометрический смысл области определения – график функции  существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сложная, следует чертить ось  и делать пометки.

Пример 6

Найти область определения функции 

Это пример для самостоятельного решения.

Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

Пример 7

Найти область определения функции 

Решение: подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители: Дискриминант положителен, ищем корни: Таким образом, парабола  пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).

Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах  выполнено неравенство  (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке  ниже оси абсцисс, что соответствует неравенству :  

Обратите внимание, что сами точки  выколоты (не входят в решение), поскольку неравенство у нас строгое.

Ответ: область определения: 

Вообще, многие неравенства (в том числе рассмотренное) решаются универсальнымметодом интервалов, известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . 

Источник конспекта: http://www.mathprofi.ru/oblast_opredeleniya.html

Источник видео: http://www.youtube.com/watch?v=6aqZHIHeMeQ

Файлы

Нет дополнительных материалов для этого занятия.

www.kursoteka.ru

Область определения функции

Каждая функция имеет свою собственную область определения. Целью этого материала является объяснение этого понятия и описание способов ее вычисления. Сначала мы введем основное определение, а потом на конкретных примерах покажем, как выглядит область определения основных элементарных функций (степенной, постоянной и др.) Разбирать случаи с более сложными функциями мы пока не будем.

В рамках данной статьи мы рассмотрим область определения функций, включающих в себя только одну переменную.

Понятие и обозначение области определения функции

Самое простое определение этого понятия дается в учебниках тогда, когда впервые вводится понятие функции как таковой. На этом этапе термином «область определения» обозначают множество всех возможных значений аргумента.

По мере углубления знаний о функциях определение сужается и усложняется. Так, в одном из учебников можно встретить следующую формулировку:

Определение 1

Числовая функция с областью определения D – это соответствие значений переменной x некоторому числу y, которое находится в зависимых отношениях с x.

Используя это определение, охарактеризуем нужное нам понятие более четко:

Определение 2

Областью определения функции называется множество значений аргумента, на котором можно задать эту функцию.

Теперь рассмотрим, как правильно обозначать ее на письме. Ранее мы договорились, что для записи самих функций будем использовать маленькие латинские буквы, например, g, f и др. Чтобы указать на наличие функциональной зависимости, используется запись вида y=f(x). Таким образом, функция f представляет собой некоторое правило, согласно которому каждому значению переменной x можно поставить в соответствие значение другой переменной y, которая находится в зависимых отношениях от x.

Пример 1

Возьмем для примера функцию y=x2. Можно записать ее как f(x)=x2.  Это функция возв

www.zaochnik.com

Область определения функции

Область визначення функції - це множина всіх значень незалежної змінної, при яких функція має зміст.

Для функцій, заданих формулою, область визначення знаходять виходячи з наступних принципів:. Якщо функція — многочлен, то вона існує при будь-яких значеннях аргумента, тобто її область визначення — всі дійсні числа. Якщо функція задана формулою, яка містить аргумент у знаменнику дробу, то до області визначення функції входять всі дійсні числа, крім тих, які перетворюють знаменник в нуль. Якщо функція задана формулою, яка містить арифметичний квадратний корінь, то до області її визначення входять всі дійсні числа, при яких підкореневий вираз набуває невід'ємних значень.

Область определения функции - это множество всех значений переменной х, при которых функция имеет смысл.

Для функций, заданных формулой, область определения находится исходя из следующих принципов: Если функция — многочлен, то она существует при любых значениях аргумента, то есть ее область определения — все множество действительных чисел. Если функция задана формулой, которая содержит аргумент в знаменателе дроби, то к области определения функции относят все действительные числа, кроме тех, которые при вычислении дают ноль в знаменателе. Если функция задана формулой, которая содержит арифметический квадратный корень, то к области определения относится все множество действительных чисел, при которых подкоренное выражение является неотрицательным.

Область визначення функції — це множина допустимих значень аргументу функції. Вона позначається як D(y), якщо треба вказати область визначення функції y = f(x).

Якщо задані: числова множина  та правило, що дозволяє поставити у відповідність кожному елементу  з множини  певне число, то говорять, що задана функція  з областю визначення . Визначення області значень функції є необхідною умовою визначення функції. Значення змінних, на яких задається функція , називають допустимими значеннями змінних.

Значення змінних, при яких значення функції  має зміст, називають допустимими значеннями аргументу. Множину всіх допустимих значень аргументу називають областю допустимих значень аргументу функції .

Область определения функции — это множество допустимых значений аргумента функции. Она обозначается как D(y), когда нужно указать область определения функции y = f(x).

Если заданы: числовое множество и правило, которое позволяет сопоставить в соответствие каждому элементу из множества определенное число, говорят, что задана функция с областью определения. Определение области значений функции является необходимым условием определения функции. Значения переменных, на которых задается функция, называют допустимыми значениями переменных.

Значения переменных, при которых значение функции имеет смысла, называют допустимыми значениями аргумента. Множество всех допустимых значений аргумента называют областью допустимых значений аргумента функции.

profmeter.com.ua

Область определения функции с корнем

⇐ ПредыдущаяСтр 2 из 12Следующая ⇒

Функция с квадратным корнем определена только при тех значениях «икс», когда подкоренное выражение неотрицательно: . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени:

Найти область определения функции

Решение: подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то есть для нас существует только одна размерность по оси. Пожалуйста, не путайте с неравенствами двух переменных, где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть со сменой знака.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменитьзнак самого неравенства. Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на (правило №2):

Ответ: область определения:

Ответ также можно записать эквивалентной фразой: «функция определена при ».Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

 

©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.

arhivinfo.ru

Найти область определения функции: y=под корнем 10+3x-x2

Думаю, что как-то так.

 

 

Для того, чтобы у тебя под корнем не было отрицательных значений, нужно сделать равенство, то бишь пропустить через ОДЗ. Для этого выносим из под корня и делаем большее или равное нулю:

 

 

Зная, что  => .

Это мы нашли только ОДЗ.

 

Теперь решаем само уравнение, которое ты написал. Чтобы избавиться от корня, нужно просто возвести левую и правую часть в квадрат:

 

 

После того, как получили корни, проводим их через ОДЗ. Т. к  не входит в это ОДЗ => подходит только корень -2.

 

Ответ: D(f): 

 

 

 

Оцени ответ

shkolniku.com