Область определения функции, в которой есть дробь. Найти область определения функции примеры


Область определения функции двух переменных

Разделы: Математика

Цели работы:

  • повторить и систематизировать нахождение области определения функции, закрепить это понятие и наглядно представить в координатной плоскости и в пространстве;
  • рассмотреть аналитические и геометрические методы не изолированно друг от друга, а в тесной взаимосвязи. Это позволит облегчить переход от стандартных решений конкретных математических задач к нестандартным;
  • воспитание интереса к математике и мультимедиа, активности, мобильности; восприятие компьютера, как инструмента обучения;
  • использование компьютера для нахождения области определения и построения графиков с помощью графического редактора 3D Grapher 1.2, Copyright © 2000-2002 RomanLab Software и формирование информационной компетентности учащихся.

Определение функции двух переменных

Если каждой паре ( x;y) значений двух независимых друг от друга переменных величин х и у из некоторого множества D соответствует единственное значение величины, то говорят, что z есть функция двух независимых переменных x и y, определенная на множестве D.

Обозначается: z=f(x;y) или z=z(x;y).

Например, S=ab, S=S(a;b)- функции двух переменных; V=abc, V=V(a,b.c) – функция трех переменных;

A= – функция трех переменных.

Способы задания функций нескольких переменных

Чтобы задать функцию двух (трех) переменных, нужно указать способ, с помощью которого для каждой пары (тройки) значений аргументов можно найти соответствующее значение функции. Наиболее часто функция задается аналитически - это явное задание функции или неявное задание

Например, - это явно заданная функция двух переменных; уравнение задает неявно две функции двух переменных.

Область определения функции

Непрерывное множество пар значений независимых переменных , при которых функцияопределена, называется областью определения функции.

Область определения называется замкнутой областью, если она включает в себя свою границу; открытой областью, если она не включает в себя свою границу; ограниченной областью, если может быть помещена в круг конечного радиуса.

Геометрически изобразить область определения функции можно только для функций:

  • одной переменной – на прямой ,
  • двух переменных – на плоскости ,
  • трех переменных– в пространстве .

Геометрическое изображение самой функции возможно только для функции двух переменных.

Графиком функции двух переменных является поверхность, проектирующаяся на плоскость в область D, которая является областью определения функции.

На рис. изображена поверхность графика функции и ее область определения.

В курсе учебного материала 9-го класса мы рассматриваем следующие задания на нахождение и построение области определения функции.

ПРИМЕРЫ

Найти область определения функции

Решение. Областью определения данной функции является вся плоскость, т.к. нет ограничений на переменные x и y.

2. Найти область определения функции .

Решение. Данная функция определена, когда xy > 0, т.е. в тех точках координатной плоскости, в которых знаки координат x и y - одинаковы. Это будут точки, лежащие в I и III координатных четвертях, т.е. множество точек, удовлетворяющих условиям:

и

3. Найти область определения функции .

Решение. Данная функция определена при условии, когда

т.е. . Это множество точек, лежащих внутри круга с центром в начале координат, радиус которого равен 2.

Изобразить на координатной плоскости Оху область определения функции .

Решение. Подкоренное выражение должно быть неотрицательно, т.е. следовательно, . Геометрическим решением неравенства служит полуплоскость, расположенная выше прямой и сама прямая.

5. Найти область определения функции и изобразить её графически.

.

Решение. Областью определения функции является множество точек плоскости, координаты которых удовлетворяют системе неравенств:

6. Изобразить на координатной плоскости Оху область определения функции

Решение. Эта функция определена, когда подкоренное выражение неотрицательно, т.е. Данным соотношениям удовлетворяют координаты всех точек, находящихся внутри кольца, образованного двумя окружностями с центрами в начале координат и радиусами R=3, R=4.

7. Изобразить на координатной плоскости Оху область определения функции

.

Решение. Учащиеся не могут найти область определения данной функции аналитически, но с помощью графического редактора 3D Grapher 1.2 это выполняется легко.

В Приложении приведено ещё несколько примеров, с решениями, для учащихся девятых классов.

Для учащихся 10-11 классов мы предлагаем систему упражнений по нахождению и построению области определения функции двух переменных. При этом отрабатываются свойства логарифмических, тригонометрических и обратных тригонометрических функций. Данные упражнения можно использовать при изучении нового материала, при повторении, при решении уравнений и неравенств.

Найти и изобразить на плоскости область определения функции

Решение. Область определения функции есть пересечение областей определения слагаемых функции. Для первой функции подкоренное выражение должно быть неотрицательным, т.е. Если значение логарифмической функции неотрицательно, то выражение, стоящее под знаком логарифма, должно быть больше или равно единице, т.е. отсюда . Это неравенство задает нам множество точек плоскости, лежащих вне окружности с центром в начале координат, радиуса 2, включая и точки данной окружности. Вторая функция определена при Следовательно, Имеем две параболы с вершиной в начале координат . Поэтому полученное неравенство задает нам часть плоскости, заключенную между этими параболами, включая границы без начала координат. Третья функция определена при

Областью определения данной функции является общая часть найденных областей определения слагаемых.

Покажите на координатной плоскости xOy область определения функции

.

Решение. Ограничения для функции имеют вид:

3. Изобразить область определения функции

Решение. Эта функция определена при , т.е.

Областью определения является часть плоскости, расположенная между двумя прямыми.

4. Найти область определения функции .

Решение. Областью определения функции является решение неравенства. Поэтому нужно решить неравенство

Решая данное неравенство, получим Это область, заключенная между двумя параболами и .

5. Построить область определения функции

Решение. Область определения данной функции определяется системой неравенств:

Первое неравенство определяет круг с центром в точке (-2;0) и радиусом равным 2 за исключением его границы:

Второе неравенство определяет I и III координатные четверти, за исключением осей.

В Приложении приведено ещё несколько примеров, с решениями, для учащихся десятых и одиннадцатых классов.

Рассмотрим задание С5, используя функцию двух переменных.

Найдите все значения параметра а, при которых система , имеет ровно два решения.

Решение. Из второго уравнения находим y =. Первое уравнение принимает вид .

Пусть . В этом случае уравнение имеет единственное решение .

Запишем второе уравнение в виде = 0. Его дискриминант равен 4 , и он положителен, поскольку . Уравнение имеет два различных корня и Значит, в этом случае система имеет ровно два решения и .

Пусть теперь 1. В этом случае уравнение если и имеет корни, то только больше единицы Но тогда дискриминант уравнения = 0 отрицателен. Решений нет.

Ответ: .

С помощью графического редактора задаем функцию двух переменных , Находим значения а, при которых функция обращается в ноль.

На рисунке видно, что решением является интервал от 0 до 1.

При подготовке учащихся к итоговой аттестации мы сталкиваемся с тем, что задания уровня С5 решаются тяжело и не сразу. А ведь это функция двух переменных! Оперирование геометрическими образами упрощает решение задач с параметрами, а в некоторых случаях геометрический подход часто является единственно возможным методом решения. В сборнике ЕГЭ-2011 предложено задание.

Найдите все значения а, такие, что для любого х выполняется неравенство.

Решение. Рассмотрим функцию

Если то убывает.

Если то возрастает.

Значит, наименьшее значение функции равно или , или . Поэтому решение задачи получаем из решения системы

Решений нет.

Ответ: .

C помощью графического редактора мы построили график функции и определили значение параметра а при . График функции в системе координат выглядит следующим образом.

Приложение 1

Приложение 2

Приложение 3

Список источников и литературы.

  1. Математика (математический анализ): учебно-методическое пособие для студентов нематематических специальностей / О.Ю. Ватюкова, Е.Е.Зайцева, Ю.В.Зайцева и др.; ВолГУ.-4-е изд., Волгоград: Волгоградское научное издательство, 2009. – 238с.
  2. Дифференциальное исчисление функций нескольких переменных: типовой расчет по высшей математике / Сост.: А. В. Анкилов, Н. Я. Горячева, Т. Б. Распутько.- Ульяновск: УлГТУ, 2004.-32 с.
  3. ЕГЭ 2011. Математика. Типовые тестовые задания / И.Р. Высоцкий, Д.Д. Гущин, П.И.Захаров, В.С. Панферов, и др.; под ред. А.Л. Семенова, И.В. Ященко. -М.: Издательство “Экзамен”, 2011.-63с.
  4. Самое полное издание типовых вариантов реальных заданий ЕГЭ: 2010: Математика/авт.- сост. И.Р.Высоцкий, Д.Д. Гущин, П.И. Захаров и др.; под ред. А.Л. Семенова, И.В. Ященко. -М.: АСТ: Астрель, 2010.-93с.
  5. Мордкович А.Г. Алгебра . 9 класс. В 2 ч. Ч.1. Учебник для учащихся общеобразовательных учреждений / А.Г.Мордкович, П.В.Семенов .—11-е изд., стер. -М.: Мнемозина, 2009.-224 с.
  6. Смирнова И.М. Геометрия. 10-11 кл.: Учеб. для общеобразоват. учреждений (гуманитарный профиль).- М.: Мнемозина,2004. -223с.

xn--i1abbnckbmcl9fb.xn--p1ai

Область определения функции, в которой есть дробь

Итак, нам надо найти все допустимые значения икса для какой-то конкретной функции. Самый широкий набор значений, как правило - это все действительные числа. От -∞ до+∞. Перебирать все возможные числа мы не будем, да...) В математике поступают по-другому. Работаем в два этапа.

На первом этапе ищем в функции операции, которые могут оказаться недопустимыми при каких-то значениях икса. Т.е. ищем потенциально опасные операции.

На втором этапе определяем иксы, которые не приводят к запретному действию в этих самых операциях. Это и будет область определения функции.

Если эти этапы не очень понятны, читаем дальше, на примерах всё куда яснее будет.

Что такое потенциально опасные операции? Это операции, в которых существуют принципиальные ограничения. Не пугайтесь, таких операций всего ничего и вы их прекрасно знаете). Перечисляю:

До 9-го класса включительно:

1. Деление. Нельзя делить на ноль.

2. Извлечение корня. Нельзя извлекать корни чётной степени из отрицательных чисел.

В выпускных классах и ВУЗах:

3. Логарифмы. Ограничения в логарифмах: если logab = c, то а>0, a≠1, b>0.

4. Тригонометрия. Ограничения в тригонометрии: значения углов, для которых тангенс и котангенс не существуют, ограничения на выражения под знаком арксинуса, арккосинуса.

 

Предположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции.

Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби:

Пример 1

Найти область определения функции

Решение: в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым. Давайте приравняем его к нулю и попытаемся найти «плохие» точки:

Полученное уравнение имеет два корня: . Данные значения не входят в область определения функции. Действительно, подставьте или в функцию и вы увидите, что знаменатель обращается в ноль.

Ответ: область определения:

Запись читается так: «область определения – все действительные числа за исключением множества, состоящего из значений ». Напоминаю, что значок обратного слеша в математике обозначает логическое вычитание, а фигурные скобки – множество. Ответ можно равносильно записать в виде объединения трёх интервалов: .

Пример 3

Найти область определения функции

Решение: попытаемся найти точки, в которых знаменатель обращается в ноль. Для этого решим квадратное уравнение:

Дискриминант получился отрицательным, а значит, действительных корней нет, и наша функция определена на всей числовой оси.

Ответ: область определения:

 

Определение.

Областью значений функции y = f(x) называется множество всех значений функции, которые она принимает при переборе всех x из области определения .

Пример.

Определите множество значений функции на интервале (-2; 2).

Решение.

Найдем точки экстремума функции, попадающие на промежуток (-2; 2):

Точка x = 0 является точкой максимума, так как производная меняет знак с плюса на минус при переходе через нее, а график функции от возрастания переходит к убыванию.

есть соответствующий максимум функции.

Выясним поведение функции при x стремящемся к -2 справа и при xстремящемся к 2 слева, то есть, найдем односторонние пределы:

Что мы получили: при изменении аргумента от -2 к нулю значения функции возрастают от минус бесконечности до минус одной четвертой (максимума функции при x = 0), при изменении аргумента от нуля к 2 значения функции убывают к минус бесконечности. Таким образом, множество значений функции на интервале (-2; 2) есть .

 

Как найти область значения функции y=3x(квадрат)-6x +1

1 способ.

Найдем x0. x0=-b/(2a)=-(-6)/(2*3)=1

Найдем значение y при x=1.

y=3*1^2-6*1+1=3-6+1=-2.

Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то область значений: [-2;+бесконечности)

2 способ.

Найдем производную функции. y'=6x-6. Приравним производную функции к нулю.

6x-6=0. Найдем точки экстремума. 6x=6, x=1. Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то x=1- это точка минимума. Найдем значение функции наданной точке. y=3*1^2-6*1+1=3-6+1=-2. Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то область значений: [-2;+бесконечности)

 

P.S. Если вы ещё не прошли производную, воспользуйтесь первым способом.

 

studopedya.ru

Как найти область определения функции?

Нужно посмотреть, какой вид имеет функция.

Часто область определения функции просят найти у функций, которые являются дробями, либо же являются иррациональными (содержат один или несколько радикалов), либо содержат логарифм.

Итак, рассмотрим эти три основных случая:

1) если функция имеет вид дроби (дробно-рациональная функция), то её область определения есть то множество значений аргумента, при котором знаменатель не обращается нулю.

Например, функция y = 1/[(x – 1)(x + 2)].

Знаменатель этой функции превращается в нуль при x = –2 и при x = 1.

Следовательно, область определения данной функции будет множество: (-беск.; –2) U (–2; 1) U (1; +беск.)

На числитель можно вообще не обращать внимания. Он не играет роли.

2) если функция содержит хотя бы один радикал чётной степени, то областью её определения будет являться множество значений аргумента, при котором значение каждого радикала чётной степени больше или равно нулю.

Буду обозначать знак корня как sqrt.

Например, имеем функцию: y = [sqrt (x – 3)]*[ sqrt (5 – x)]

Радикал имеет смысл, когда подрадикальное выражение неотрицательно.

А значит, первый радикал имеет смысл при x >= 3, второй — при x <= 5.

Для того чтобы найти область определения данной функции, нужно найти пересечение этих двух множеств. Оно равно [3; 5].

Итак, областью определения функции y = [sqrt (x – 3)]*[ sqrt (5 – x)] равняется множество [3; 5].

3) если функция представляет собой логарифм, то её областью определения служит множество, при котором логарифмируемое выражение строго положительно.

Например, функция y = lg (x – 16). Её областью определения является множество (16; + беск.). Скобка при числе 16 круглая, потому что логарифмируемое выражение должно быть строго больше нуля.

В большинстве прочих случаев (то есть когда функция не содержит ни дробей, ни корней, ни логарифмов)— множеством определения функции является вся числовая прямая.

Например, у функции y = x^3 – 6x^2 + 7 область определения равна R.

www.bolshoyvopros.ru

Найти область определения функции - 22 Июля 2013 - Примеры решений задач

Калькулятор для для вычисления области определения функции.

Определение. Областью определения (ООФ) функции  y=f(x) называется множество значений переменной x, для которых существуют соответствующие значения y.

Для  нахождения  области  определения  элементарной  функции необходимо  рассмотреть  условие  существования  каждой  основной элементарной функции, входящей в данную функцию. Общим ООФ будет пересечение всех частных ООФ.

   Если функция составная (т.е. состоит из нескольких элементарных функций, каждая из которых определена на своем интервале), то нужно на каждом интервале определить ООФ для соответствующей функции, а после взять объединение полученных частных ООФ.

Пример 1. Найти область определения функции

Решение.  Для того чтобы найти область определения (domain) функции  достаточно решить неравенство

 

 

Область определения вся действительная ось за исключением точки x=2:

Область определения функции можно найти с помощью калькулятора

Данный калькулятор находит также область определения функции двух переменных и изображает на плоскости Oxy

Пример 2. Найти и изобразить на плоскости Oxy область определения (domain) функции

 

Решение. Вставляем в калькулятор arccos(x^2+y^2), нажимаем Ok, получаем ответ.

 

www.reshim.su

Алгебра (9 класс)/Квадратичная функция/Функция. Область определения и область значений функции

Теория

Функция

Функция —- зависимость переменной y от переменной x, при которой каждому значению переменной x соответствует единственное значение переменной y.

Переменную x называют независимой переменной или аргументом. Переменную y зависимой переменной, а также значениями функции. Записывают функцию так: y=f(x){\displaystyle y=f(x)} («игрек равно эф от икс»). Символом f(x){\displaystyle f(x)} также обозначают значение функции с аргументом x. f называют правило, по которому y зависит от x. Вместо f используют и другие буквы: g, φ и т.п.

Пример 1
Медицинский термометр

Когда вы измеряете температуру (своего тела), высота, на которую поднимется ртуть в градуснике, будет зависе

ru.wikiversity.org