Разложение на простые множители. На простые множители


Разложение на простые множители

Любое число, которое является составным, можно показать в виде произведения отдельных множителей.

150 = 2 × 3 × 5 × 5

225 = 3 × 3 × 5 × 5

1470 = 2 × 3 × 5 × 7 × 7

Небольшие числа можно легко разложить, используя таблицу умножения. Для больших же чисел, следует воспользоваться таблицей простых чисел.

В качестве примера разложим число 1463 на простые множители с помощью таблицы простых чисел:

2 23 61 103 151
3 29 67 107 157
4 31 71 109 163
5 37 73 113 167
7 41 79 127 173
11 43 83 131 179
13 47 89 137 181
17 53 97 139 191
19 59 101 149 193

Просматриваем простые числа данной таблицы и выбираем то число, которым можно разделить исходное число, например 7.

Число 1463 делим на 7, в результате получаем 209.

Далее повторяем процесс поиска простых чисел для 209 по признакам делимости, и выбираем число 11, которое представляет собой его делитель.

Делим число 209 на 11 и в результате получаем число 19, в свою очередь, являющееся простым числом, в соответствии таблицей простых чисел.

Таким образом, делителями для числа 1463 будут числа 7, 11 и 19.

1463 = 7 × 11 × 19

Описанную последовательность можно записать следующим образом:

Делимое Делитель
1463 7
209 11
19 19

simple-math.ru

Простые множители - это... Что такое Простые множители?

Просто́е число́ — это натуральное число, которое имеет ровно 2 различных делителя (только 1 и самого себя). Все остальные числа, не равные единице, называются составными. Таким образом, все натуральные числа, за исключением единицы, разбиваются на простые и составные. Изучением свойств простых чисел занимается теория чисел. В теории колец простым числам соответствуют неприводимые элементы.

Последовательность простых чисел начинается с

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, … (последовательность A000040 в OEIS, см. также список простых чисел)

Разложение натуральных чисел в произведение простых

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы (1), представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа — элементарные «строительные блоки» натуральных чисел.

Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа. На настоящий момент неизвестны полиномиальные алгоритмы факторизации чисел, хотя и не доказано, что таких алгоритмов не существует (здесь и далее речь идёт о полиномиальной зависимости времени работы алгоритма от логарифма проверяемого числа, то есть от количества его цифр). На предполагаемой вычислительной сложности задачи факторизации базируется криптосистема

Тесты простоты

Решето Эратосфена, решето Сундарама и решето Аткина дают простые способы нахождения начального списка простых чисел вплоть до некоторого значения.

Однако на практике вместо получения списка простых чисел зачастую требуется проверить, является ли данное число простым. Алгоритмы, решающие эту задачу, называются тестами простоты. Существует множество полиномиальных тестов простоты, но большинство их являются вероятностными (например, тест Миллера — Рабина) и используются для нужд криптографии. Только в 2002 году было доказано[1], что задача проверки на простоту в общем виде полиномиально разрешима, но предложенный детерминированный алгоритм имеет довольно большую сложность, что затрудняет его практическое применение.

Для некоторых классов чисел существуют специализированные эффективные тесты простоты. Например, для проверки на простоту чисел Мерсенна используется тест Люка — Лемера, а для проверки на простоту чисел Ферма — тест Пепина.

Сколько существует простых чисел?

Простых чисел бесконечно много. Самое старое известное доказательство этого факта было дано Евклидом в «Началах» (книга IX, утверждение 20). Его доказательство может быть кратко воспроизведено так:

Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.

Математики предлагали другие доказательства. Одно из них (приведённое Эйлером) показывает, что сумма всех чисел, обратных к простым, расходится.

Известная теорема о распределении простых чисел утверждает, что количество простых чисел меньших n, обозначаемое π(n), растёт как n / ln(n).

Наибольшее известное простое

Наибольшим известным простым числом по состоянию на сентябрь 2008 года является 243112609 − 1. Оно содержит 12 978 189 десятичных цифр и является простым числом Мерсенна (M43112609). Его нашли 23 августа 2008 года на математическом факультете университета UCLA в рамках проекта по распределённому поиску простых чисел Мерсенна 37156667, было найдено 6 сентября 2007 года участником проекта нем. Hans-Michael Elvenich).

Числа Мерсенна выгодно отличаются от остальных наличием эффективного теста простоты: теста Люка — Лемера. Благодаря ему простые числа Мерсенна давно удерживают рекорд как самые большие известные простые.

За нахождение простого числа из более чем 108 десятичных цифр EFF назначила[2] награду в 150000 долларов США.

Некоторые свойства

  • Если p — простое, и p делит ab, то p делит a или b. Доказательство этого факта было дано Евклидом и известно как лемма Евклида. Оно используется в доказательстве основной теоремы арифметики.
  • Кольцо вычетов является полем тогда и только тогда, когда n — простое.
  • Характеристика каждого поля — это ноль или простое число.
  • Если p — простое, а a — натуральное, то ap - a делится на p (малая теорема Ферма).
  • Если G — конечная группа с pn элементов, то G содержит элемент порядка p.
  • Если G — конечная группа, и pn — максимальная степень p, которая делит | G | , то G имеет подгруппу порядка pn, называемую силовской подгруппой, более того, количество силовских подгрупп равно pk + 1 для некоторого целого k (теоремы Силова).
  • Натуральное p > 1 является простым тогда и только тогда, когда (p - 1)! + 1 делится на p (теорема Вильсона).
  • Если n > 1 — натуральное, то существует простое p, такое, что n < p < 2n (постулат Бертрана).
  • Ряд чисел, обратных к простым, расходится. Более того, при
  • Любая арифметическая прогрессия вида a,a + q,a + 2q,a + 3q,..., где a,q > 1 — целые взаимно-простые числа, содержит бесконечно много простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).
  • Всякое простое число, большее 3, представимо в виде 6k + 1, или в виде 6k − 1, где k - некоторое натуральное число.
  • Если p > 3 — простое, то p2 − 1 кратно 24.

Открытые вопросы

До сих пор существует много открытых вопросов относительно простых чисел, наиболее известные из которых были перечислены Эдмундом Ландау на Пятом Международном математическом конгрессе[3]:

  1. Проблема Гольдбаха (первая проблема Ландау): доказать или опровергнуть, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел.
  2. Вторая проблема Ландау: бесконечно ли множество «простых близнецов» — простых чисел, разность между которыми равна 2?
  3. Гипотеза Лежандра (третья проблема Ландау) верно ли, что между n2 и (n + 1)2 всегда найдётся простое число?
  4. Четвёртая проблема Ландау: бесконечно ли множество простых чисел вида n2 + 1?

Открытой проблемой является также существование бесконечного количества простых чисел во многих целочисленных последовательностях, включая числа Фибоначчи, числа Ферма и т. д.

Приложения

Большие простые числа (порядка 10300) используются в криптографии с открытым ключом. Простые числа также используются в хеш-таблицах и для генерации псевдослучайных чисел (в частности, в ГПСЧ Вихрь Мерсенна).

Вариации и обобщения

Литература

См. также

Примечания

Ссылки

Wikimedia Foundation. 2010.

dvc.academic.ru

Простые множители - это... Что такое Простые множители?

Просто́е число́ — это натуральное число, которое имеет ровно 2 различных делителя (только 1 и самого себя). Все остальные числа, не равные единице, называются составными. Таким образом, все натуральные числа, за исключением единицы, разбиваются на простые и составные. Изучением свойств простых чисел занимается теория чисел. В теории колец простым числам соответствуют неприводимые элементы.

Последовательность простых чисел начинается с

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, … (последовательность A000040 в OEIS, см. также список простых чисел)

Разложение натуральных чисел в произведение простых

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы (1), представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа — элементарные «строительные блоки» натуральных чисел.

Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа. На настоящий момент неизвестны полиномиальные алгоритмы факторизации чисел, хотя и не доказано, что таких алгоритмов не существует (здесь и далее речь идёт о полиномиальной зависимости времени работы алгоритма от логарифма проверяемого числа, то есть от количества его цифр). На предполагаемой вычислительной сложности задачи факторизации базируется криптосистема

Тесты простоты

Решето Эратосфена, решето Сундарама и решето Аткина дают простые способы нахождения начального списка простых чисел вплоть до некоторого значения.

Однако на практике вместо получения списка простых чисел зачастую требуется проверить, является ли данное число простым. Алгоритмы, решающие эту задачу, называются тестами простоты. Существует множество полиномиальных тестов простоты, но большинство их являются вероятностными (например, тест Миллера — Рабина) и используются для нужд криптографии. Только в 2002 году было доказано[1], что задача проверки на простоту в общем виде полиномиально разрешима, но предложенный детерминированный алгоритм имеет довольно большую сложность, что затрудняет его практическое применение.

Для некоторых классов чисел существуют специализированные эффективные тесты простоты. Например, для проверки на простоту чисел Мерсенна используется тест Люка — Лемера, а для проверки на простоту чисел Ферма — тест Пепина.

Сколько существует простых чисел?

Простых чисел бесконечно много. Самое старое известное доказательство этого факта было дано Евклидом в «Началах» (книга IX, утверждение 20). Его доказательство может быть кратко воспроизведено так:

Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.

Математики предлагали другие доказательства. Одно из них (приведённое Эйлером) показывает, что сумма всех чисел, обратных к простым, расходится.

Известная теорема о распределении простых чисел утверждает, что количество простых чисел меньших n, обозначаемое π(n), растёт как n / ln(n).

Наибольшее известное простое

Наибольшим известным простым числом по состоянию на сентябрь 2008 года является 243112609 − 1. Оно содержит 12 978 189 десятичных цифр и является простым числом Мерсенна (M43112609). Его нашли 23 августа 2008 года на математическом факультете университета UCLA в рамках проекта по распределённому поиску простых чисел Мерсенна 37156667, было найдено 6 сентября 2007 года участником проекта нем. Hans-Michael Elvenich).

Числа Мерсенна выгодно отличаются от остальных наличием эффективного теста простоты: теста Люка — Лемера. Благодаря ему простые числа Мерсенна давно удерживают рекорд как самые большие известные простые.

За нахождение простого числа из более чем 108 десятичных цифр EFF назначила[2] награду в 150000 долларов США.

Некоторые свойства

  • Если p — простое, и p делит ab, то p делит a или b. Доказательство этого факта было дано Евклидом и известно как лемма Евклида. Оно используется в доказательстве основной теоремы арифметики.
  • Кольцо вычетов является полем тогда и только тогда, когда n — простое.
  • Характеристика каждого поля — это ноль или простое число.
  • Если p — простое, а a — натуральное, то ap - a делится на p (малая теорема Ферма).
  • Если G — конечная группа с pn элементов, то G содержит элемент порядка p.
  • Если G — конечная группа, и pn — максимальная степень p, которая делит | G | , то G имеет подгруппу порядка pn, называемую силовской подгруппой, более того, количество силовских подгрупп равно pk + 1 для некоторого целого k (теоремы Силова).
  • Натуральное p > 1 является простым тогда и только тогда, когда (p - 1)! + 1 делится на p (теорема Вильсона).
  • Если n > 1 — натуральное, то существует простое p, такое, что n < p < 2n (постулат Бертрана).
  • Ряд чисел, обратных к простым, расходится. Более того, при
  • Любая арифметическая прогрессия вида a,a + q,a + 2q,a + 3q,..., где a,q > 1 — целые взаимно-простые числа, содержит бесконечно много простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).
  • Всякое простое число, большее 3, представимо в виде 6k + 1, или в виде 6k − 1, где k - некоторое натуральное число.
  • Если p > 3 — простое, то p2 − 1 кратно 24.

Открытые вопросы

До сих пор существует много открытых вопросов относительно простых чисел, наиболее известные из которых были перечислены Эдмундом Ландау на Пятом Международном математическом конгрессе[3]:

  1. Проблема Гольдбаха (первая проблема Ландау): доказать или опровергнуть, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел.
  2. Вторая проблема Ландау: бесконечно ли множество «простых близнецов» — простых чисел, разность между которыми равна 2?
  3. Гипотеза Лежандра (третья проблема Ландау) верно ли, что между n2 и (n + 1)2 всегда найдётся простое число?
  4. Четвёртая проблема Ландау: бесконечно ли множество простых чисел вида n2 + 1?

Открытой проблемой является также существование бесконечного количества простых чисел во многих целочисленных последовательностях, включая числа Фибоначчи, числа Ферма и т. д.

Приложения

Большие простые числа (порядка 10300) используются в криптографии с открытым ключом. Простые числа также используются в хеш-таблицах и для генерации псевдослучайных чисел (в частности, в ГПСЧ Вихрь Мерсенна).

Вариации и обобщения

Литература

См. также

Примечания

Ссылки

Wikimedia Foundation. 2010.

dikc.academic.ru

Простые множители - это... Что такое Простые множители?

Просто́е число́ — это натуральное число, которое имеет ровно 2 различных делителя (только 1 и самого себя). Все остальные числа, не равные единице, называются составными. Таким образом, все натуральные числа, за исключением единицы, разбиваются на простые и составные. Изучением свойств простых чисел занимается теория чисел. В теории колец простым числам соответствуют неприводимые элементы.

Последовательность простых чисел начинается с

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, … (последовательность A000040 в OEIS, см. также список простых чисел)

Разложение натуральных чисел в произведение простых

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы (1), представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа — элементарные «строительные блоки» натуральных чисел.

Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа. На настоящий момент неизвестны полиномиальные алгоритмы факторизации чисел, хотя и не доказано, что таких алгоритмов не существует (здесь и далее речь идёт о полиномиальной зависимости времени работы алгоритма от логарифма проверяемого числа, то есть от количества его цифр). На предполагаемой вычислительной сложности задачи факторизации базируется криптосистема

Тесты простоты

Решето Эратосфена, решето Сундарама и решето Аткина дают простые способы нахождения начального списка простых чисел вплоть до некоторого значения.

Однако на практике вместо получения списка простых чисел зачастую требуется проверить, является ли данное число простым. Алгоритмы, решающие эту задачу, называются тестами простоты. Существует множество полиномиальных тестов простоты, но большинство их являются вероятностными (например, тест Миллера — Рабина) и используются для нужд криптографии. Только в 2002 году было доказано[1], что задача проверки на простоту в общем виде полиномиально разрешима, но предложенный детерминированный алгоритм имеет довольно большую сложность, что затрудняет его практическое применение.

Для некоторых классов чисел существуют специализированные эффективные тесты простоты. Например, для проверки на простоту чисел Мерсенна используется тест Люка — Лемера, а для проверки на простоту чисел Ферма — тест Пепина.

Сколько существует простых чисел?

Простых чисел бесконечно много. Самое старое известное доказательство этого факта было дано Евклидом в «Началах» (книга IX, утверждение 20). Его доказательство может быть кратко воспроизведено так:

Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.

Математики предлагали другие доказательства. Одно из них (приведённое Эйлером) показывает, что сумма всех чисел, обратных к простым, расходится.

Известная теорема о распределении простых чисел утверждает, что количество простых чисел меньших n, обозначаемое π(n), растёт как n / ln(n).

Наибольшее известное простое

Наибольшим известным простым числом по состоянию на сентябрь 2008 года является 243112609 − 1. Оно содержит 12 978 189 десятичных цифр и является простым числом Мерсенна (M43112609). Его нашли 23 августа 2008 года на математическом факультете университета UCLA в рамках проекта по распределённому поиску простых чисел Мерсенна 37156667, было найдено 6 сентября 2007 года участником проекта нем. Hans-Michael Elvenich).

Числа Мерсенна выгодно отличаются от остальных наличием эффективного теста простоты: теста Люка — Лемера. Благодаря ему простые числа Мерсенна давно удерживают рекорд как самые большие известные простые.

За нахождение простого числа из более чем 108 десятичных цифр EFF назначила[2] награду в 150000 долларов США.

Некоторые свойства

  • Если p — простое, и p делит ab, то p делит a или b. Доказательство этого факта было дано Евклидом и известно как лемма Евклида. Оно используется в доказательстве основной теоремы арифметики.
  • Кольцо вычетов является полем тогда и только тогда, когда n — простое.
  • Характеристика каждого поля — это ноль или простое число.
  • Если p — простое, а a — натуральное, то ap - a делится на p (малая теорема Ферма).
  • Если G — конечная группа с pn элементов, то G содержит элемент порядка p.
  • Если G — конечная группа, и pn — максимальная степень p, которая делит | G | , то G имеет подгруппу порядка pn, называемую силовской подгруппой, более того, количество силовских подгрупп равно pk + 1 для некоторого целого k (теоремы Силова).
  • Натуральное p > 1 является простым тогда и только тогда, когда (p - 1)! + 1 делится на p (теорема Вильсона).
  • Если n > 1 — натуральное, то существует простое p, такое, что n < p < 2n (постулат Бертрана).
  • Ряд чисел, обратных к простым, расходится. Более того, при
  • Любая арифметическая прогрессия вида a,a + q,a + 2q,a + 3q,..., где a,q > 1 — целые взаимно-простые числа, содержит бесконечно много простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).
  • Всякое простое число, большее 3, представимо в виде 6k + 1, или в виде 6k − 1, где k - некоторое натуральное число.
  • Если p > 3 — простое, то p2 − 1 кратно 24.

Открытые вопросы

До сих пор существует много открытых вопросов относительно простых чисел, наиболее известные из которых были перечислены Эдмундом Ландау на Пятом Международном математическом конгрессе[3]:

  1. Проблема Гольдбаха (первая проблема Ландау): доказать или опровергнуть, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел.
  2. Вторая проблема Ландау: бесконечно ли множество «простых близнецов» — простых чисел, разность между которыми равна 2?
  3. Гипотеза Лежандра (третья проблема Ландау) верно ли, что между n2 и (n + 1)2 всегда найдётся простое число?
  4. Четвёртая проблема Ландау: бесконечно ли множество простых чисел вида n2 + 1?

Открытой проблемой является также существование бесконечного количества простых чисел во многих целочисленных последовательностях, включая числа Фибоначчи, числа Ферма и т. д.

Приложения

Большие простые числа (порядка 10300) используются в криптографии с открытым ключом. Простые числа также используются в хеш-таблицах и для генерации псевдослучайных чисел (в частности, в ГПСЧ Вихрь Мерсенна).

Вариации и обобщения

Литература

См. также

Примечания

Ссылки

Wikimedia Foundation. 2010.

3dic.academic.ru

Простые множители - это... Что такое Простые множители?

Просто́е число́ — это натуральное число, которое имеет ровно 2 различных делителя (только 1 и самого себя). Все остальные числа, не равные единице, называются составными. Таким образом, все натуральные числа, за исключением единицы, разбиваются на простые и составные. Изучением свойств простых чисел занимается теория чисел. В теории колец простым числам соответствуют неприводимые элементы.

Последовательность простых чисел начинается с

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, … (последовательность A000040 в OEIS, см. также список простых чисел)

Разложение натуральных чисел в произведение простых

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы (1), представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа — элементарные «строительные блоки» натуральных чисел.

Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа. На настоящий момент неизвестны полиномиальные алгоритмы факторизации чисел, хотя и не доказано, что таких алгоритмов не существует (здесь и далее речь идёт о полиномиальной зависимости времени работы алгоритма от логарифма проверяемого числа, то есть от количества его цифр). На предполагаемой вычислительной сложности задачи факторизации базируется криптосистема

Тесты простоты

Решето Эратосфена, решето Сундарама и решето Аткина дают простые способы нахождения начального списка простых чисел вплоть до некоторого значения.

Однако на практике вместо получения списка простых чисел зачастую требуется проверить, является ли данное число простым. Алгоритмы, решающие эту задачу, называются тестами простоты. Существует множество полиномиальных тестов простоты, но большинство их являются вероятностными (например, тест Миллера — Рабина) и используются для нужд криптографии. Только в 2002 году было доказано[1], что задача проверки на простоту в общем виде полиномиально разрешима, но предложенный детерминированный алгоритм имеет довольно большую сложность, что затрудняет его практическое применение.

Для некоторых классов чисел существуют специализированные эффективные тесты простоты. Например, для проверки на простоту чисел Мерсенна используется тест Люка — Лемера, а для проверки на простоту чисел Ферма — тест Пепина.

Сколько существует простых чисел?

Простых чисел бесконечно много. Самое старое известное доказательство этого факта было дано Евклидом в «Началах» (книга IX, утверждение 20). Его доказательство может быть кратко воспроизведено так:

Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.

Математики предлагали другие доказательства. Одно из них (приведённое Эйлером) показывает, что сумма всех чисел, обратных к простым, расходится.

Известная теорема о распределении простых чисел утверждает, что количество простых чисел меньших n, обозначаемое π(n), растёт как n / ln(n).

Наибольшее известное простое

Наибольшим известным простым числом по состоянию на сентябрь 2008 года является 243112609 − 1. Оно содержит 12 978 189 десятичных цифр и является простым числом Мерсенна (M43112609). Его нашли 23 августа 2008 года на математическом факультете университета UCLA в рамках проекта по распределённому поиску простых чисел Мерсенна 37156667, было найдено 6 сентября 2007 года участником проекта нем. Hans-Michael Elvenich).

Числа Мерсенна выгодно отличаются от остальных наличием эффективного теста простоты: теста Люка — Лемера. Благодаря ему простые числа Мерсенна давно удерживают рекорд как самые большие известные простые.

За нахождение простого числа из более чем 108 десятичных цифр EFF назначила[2] награду в 150000 долларов США.

Некоторые свойства

  • Если p — простое, и p делит ab, то p делит a или b. Доказательство этого факта было дано Евклидом и известно как лемма Евклида. Оно используется в доказательстве основной теоремы арифметики.
  • Кольцо вычетов является полем тогда и только тогда, когда n — простое.
  • Характеристика каждого поля — это ноль или простое число.
  • Если p — простое, а a — натуральное, то ap - a делится на p (малая теорема Ферма).
  • Если G — конечная группа с pn элементов, то G содержит элемент порядка p.
  • Если G — конечная группа, и pn — максимальная степень p, которая делит | G | , то G имеет подгруппу порядка pn, называемую силовской подгруппой, более того, количество силовских подгрупп равно pk + 1 для некоторого целого k (теоремы Силова).
  • Натуральное p > 1 является простым тогда и только тогда, когда (p - 1)! + 1 делится на p (теорема Вильсона).
  • Если n > 1 — натуральное, то существует простое p, такое, что n < p < 2n (постулат Бертрана).
  • Ряд чисел, обратных к простым, расходится. Более того, при
  • Любая арифметическая прогрессия вида a,a + q,a + 2q,a + 3q,..., где a,q > 1 — целые взаимно-простые числа, содержит бесконечно много простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).
  • Всякое простое число, большее 3, представимо в виде 6k + 1, или в виде 6k − 1, где k - некоторое натуральное число.
  • Если p > 3 — простое, то p2 − 1 кратно 24.

Открытые вопросы

До сих пор существует много открытых вопросов относительно простых чисел, наиболее известные из которых были перечислены Эдмундом Ландау на Пятом Международном математическом конгрессе[3]:

  1. Проблема Гольдбаха (первая проблема Ландау): доказать или опровергнуть, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел.
  2. Вторая проблема Ландау: бесконечно ли множество «простых близнецов» — простых чисел, разность между которыми равна 2?
  3. Гипотеза Лежандра (третья проблема Ландау) верно ли, что между n2 и (n + 1)2 всегда найдётся простое число?
  4. Четвёртая проблема Ландау: бесконечно ли множество простых чисел вида n2 + 1?

Открытой проблемой является также существование бесконечного количества простых чисел во многих целочисленных последовательностях, включая числа Фибоначчи, числа Ферма и т. д.

Приложения

Большие простые числа (порядка 10300) используются в криптографии с открытым ключом. Простые числа также используются в хеш-таблицах и для генерации псевдослучайных чисел (в частности, в ГПСЧ Вихрь Мерсенна).

Вариации и обобщения

Литература

См. также

Примечания

Ссылки

Wikimedia Foundation. 2010.

med.academic.ru

Простые множители - это... Что такое Простые множители?

Просто́е число́ — это натуральное число, которое имеет ровно 2 различных делителя (только 1 и самого себя). Все остальные числа, не равные единице, называются составными. Таким образом, все натуральные числа, за исключением единицы, разбиваются на простые и составные. Изучением свойств простых чисел занимается теория чисел. В теории колец простым числам соответствуют неприводимые элементы.

Последовательность простых чисел начинается с

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, … (последовательность A000040 в OEIS, см. также список простых чисел)

Разложение натуральных чисел в произведение простых

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы (1), представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа — элементарные «строительные блоки» натуральных чисел.

Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа. На настоящий момент неизвестны полиномиальные алгоритмы факторизации чисел, хотя и не доказано, что таких алгоритмов не существует (здесь и далее речь идёт о полиномиальной зависимости времени работы алгоритма от логарифма проверяемого числа, то есть от количества его цифр). На предполагаемой вычислительной сложности задачи факторизации базируется криптосистема

Тесты простоты

Решето Эратосфена, решето Сундарама и решето Аткина дают простые способы нахождения начального списка простых чисел вплоть до некоторого значения.

Однако на практике вместо получения списка простых чисел зачастую требуется проверить, является ли данное число простым. Алгоритмы, решающие эту задачу, называются тестами простоты. Существует множество полиномиальных тестов простоты, но большинство их являются вероятностными (например, тест Миллера — Рабина) и используются для нужд криптографии. Только в 2002 году было доказано[1], что задача проверки на простоту в общем виде полиномиально разрешима, но предложенный детерминированный алгоритм имеет довольно большую сложность, что затрудняет его практическое применение.

Для некоторых классов чисел существуют специализированные эффективные тесты простоты. Например, для проверки на простоту чисел Мерсенна используется тест Люка — Лемера, а для проверки на простоту чисел Ферма — тест Пепина.

Сколько существует простых чисел?

Простых чисел бесконечно много. Самое старое известное доказательство этого факта было дано Евклидом в «Началах» (книга IX, утверждение 20). Его доказательство может быть кратко воспроизведено так:

Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.

Математики предлагали другие доказательства. Одно из них (приведённое Эйлером) показывает, что сумма всех чисел, обратных к простым, расходится.

Известная теорема о распределении простых чисел утверждает, что количество простых чисел меньших n, обозначаемое π(n), растёт как n / ln(n).

Наибольшее известное простое

Наибольшим известным простым числом по состоянию на сентябрь 2008 года является 243112609 − 1. Оно содержит 12 978 189 десятичных цифр и является простым числом Мерсенна (M43112609). Его нашли 23 августа 2008 года на математическом факультете университета UCLA в рамках проекта по распределённому поиску простых чисел Мерсенна 37156667, было найдено 6 сентября 2007 года участником проекта нем. Hans-Michael Elvenich).

Числа Мерсенна выгодно отличаются от остальных наличием эффективного теста простоты: теста Люка — Лемера. Благодаря ему простые числа Мерсенна давно удерживают рекорд как самые большие известные простые.

За нахождение простого числа из более чем 108 десятичных цифр EFF назначила[2] награду в 150000 долларов США.

Некоторые свойства

  • Если p — простое, и p делит ab, то p делит a или b. Доказательство этого факта было дано Евклидом и известно как лемма Евклида. Оно используется в доказательстве основной теоремы арифметики.
  • Кольцо вычетов является полем тогда и только тогда, когда n — простое.
  • Характеристика каждого поля — это ноль или простое число.
  • Если p — простое, а a — натуральное, то ap - a делится на p (малая теорема Ферма).
  • Если G — конечная группа с pn элементов, то G содержит элемент порядка p.
  • Если G — конечная группа, и pn — максимальная степень p, которая делит | G | , то G имеет подгруппу порядка pn, называемую силовской подгруппой, более того, количество силовских подгрупп равно pk + 1 для некоторого целого k (теоремы Силова).
  • Натуральное p > 1 является простым тогда и только тогда, когда (p - 1)! + 1 делится на p (теорема Вильсона).
  • Если n > 1 — натуральное, то существует простое p, такое, что n < p < 2n (постулат Бертрана).
  • Ряд чисел, обратных к простым, расходится. Более того, при
  • Любая арифметическая прогрессия вида a,a + q,a + 2q,a + 3q,..., где a,q > 1 — целые взаимно-простые числа, содержит бесконечно много простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).
  • Всякое простое число, большее 3, представимо в виде 6k + 1, или в виде 6k − 1, где k - некоторое натуральное число.
  • Если p > 3 — простое, то p2 − 1 кратно 24.

Открытые вопросы

До сих пор существует много открытых вопросов относительно простых чисел, наиболее известные из которых были перечислены Эдмундом Ландау на Пятом Международном математическом конгрессе[3]:

  1. Проблема Гольдбаха (первая проблема Ландау): доказать или опровергнуть, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел.
  2. Вторая проблема Ландау: бесконечно ли множество «простых близнецов» — простых чисел, разность между которыми равна 2?
  3. Гипотеза Лежандра (третья проблема Ландау) верно ли, что между n2 и (n + 1)2 всегда найдётся простое число?
  4. Четвёртая проблема Ландау: бесконечно ли множество простых чисел вида n2 + 1?

Открытой проблемой является также существование бесконечного количества простых чисел во многих целочисленных последовательностях, включая числа Фибоначчи, числа Ферма и т. д.

Приложения

Большие простые числа (порядка 10300) используются в криптографии с открытым ключом. Простые числа также используются в хеш-таблицах и для генерации псевдослучайных чисел (в частности, в ГПСЧ Вихрь Мерсенна).

Вариации и обобщения

Литература

См. также

Примечания

Ссылки

Wikimedia Foundation. 2010.

biograf.academic.ru

Разложение чисел на простые множители – онлайн калькулятор

Разложение числа на простые множители

Онлайн калькулятор выполняет разложение натуральных чисел на простые множители.

Калькулятор позволяет разложить одно, два, три или четыре числа на простые множители, а также найти их наибольший общий делитель и наименьшее общее кратное.

Разложение (факторизация) натуральных чисел на простые множители
Разложение на множители числа 100: 100 = 2 * 2 * 5 * 5 = 22 * 52.

Разложение на множители числа 76:76 = 2 * 2 * 19 = 22 * 19.

Разложение на множители числа 48:48 = 2 * 2 * 2 * 2 * 3 = 24 * 3.

Разложение на множители числа 36:36 = 2 * 2 * 3 * 3 = 22 * 32.

Разложение на множители числа 18:18 = 2 * 3 * 3 = 2 * 32.

Разложение на множители числа 20:20 = 2 * 2 * 5 = 22 * 5.

Разложение на простые множители числа 24:24 = 2 * 2 * 2 * 3 = 23 * 3.

Разложение на простые множители числа 28:28 = 2 * 2 * 7 = 22 * 7.

Разложение на простые множители числа 30:30 = 2 * 3 * 5

Разложение на простые множители числа 32:32 = 2 * 2 * 2 * 2 * 2 = 25.

Разложение на простые множители числа 36:36 = 2 * 2 * 3 * 3 = 22 * 32.

Разложение на простые множители числа 40:40 = 2 * 2 * 2 * 5 = 23 * 5.

Разложение на простые множители числа 42:42 = 2 * 3 * 7

Разложение на простые множители числа 45:45 = 3 * 3 * 5 = 32 * 5.

Разложение на простые множители числа 48:48 = 2 * 2 * 2 * 2 * 3 = 24 * 3.

Разложение на простые множители числа 50:50 = 2 * 5 * 5 = 2 * 52.

Разложение на простые множители числа 52:52 = 2 * 2 * 13 = 22 * 13.

Разложение на простые множители числа 54:54 = 2 * 3 * 3 * 3 = 2 * 33.

Разложение на простые множители числа 56:56 = 2 * 2 * 2 * 7 = 23 * 7.

Разложение на простые множители числа 60:60 = 2 * 2 * 3 * 5 = 22 * 3 * 5.

Как разложить на простые множители число 63:63 = 3 * 3 * 7 = 32 * 7.

Как разложить на простые множители число 64:64 = 2 * 2 * 2 * 2 * 2 * 2 = 26.

Как разложить на простые множители число 68:68 = 2 * 2 * 17 = 22 * 17.

Как разложить на простые множители число 70:70 = 2 * 5 * 7

Разложить на простые множители число 75:75 = 3 * 5 * 5 75 = 3 * 52.

Разложить на простые множители число 78:78 = 2 * 3 * 13

Разложить на простые множители число 80:80 = 2 * 2 * 2 * 2 * 5 = 24 * 5.

Разложить на простые множители число 81:81 = 3 * 3 * 3 * 3 81 = 34.

Разложить на простые множители число 84:84 = 2 * 2 * 3 * 7 = 22 * 3 * 7.

Разложить на простые множители число 85:85 = 5 * 17

Разложить на простые множители число 90:90 = 2 * 3 * 3 * 5 = 2 * 32 * 5.

Разложить на простые множители число 96:96 = 2 * 2 * 2 * 2 * 2 * 3 = 25 * 3.

Разложить на простые множители число 98:98 = 2 * 7 * 7 = 2 * 72.

Разложить на простые множители число 99:99 = 3 * 3 * 11 = 32 * 11.

intemodino.com