Метод Гаусса для решения систем линейных уравнений (стр. 1 из 2). Метод гаусс


Метод Гаусса (последовательного исключения неизвестных). Примеры решений для чайников

Продолжаем рассматривать системы линейных уравнений. Этот урок является третьим по теме. Если вы смутно представляете, что такое система линейных уравнений вообще, чувствуете себя чайником, то рекомендую начать с азов на странице Как решить систему линейных уравнений? Далее полезно изучить урок Правило Крамера. Матричный метод.

Метод Гаусса – это просто! Почему? Известный немецкий математик Иоганн Карл Фридрих Гаусс еще при жизни получил признание величайшего математика всех времен, гения и даже прозвище «короля математики». А всё гениальное, как известно – просто! Кстати, на деньги попадают не только лохи, но еще и гении – портрет Гаусса красовался на купюре в 10 дойчмарок (до введения евро), и до сих пор Гаусс загадочно улыбается немцам с обычных почтовых марок.

Метод Гаусса прост тем, что для его освоения ДОСТАТОЧНО ЗНАНИЙ ПЯТИКЛАССНИКА.Необходимо уметь складывать и умножать! Не случайно метод последовательного исключения неизвестных преподаватели часто рассматривают на школьных математических факультативах. Парадокс, но у студентов метод Гаусса вызывает наибольшие сложности. Ничего удивительного – всё дело в методике, и я постараюсь в доступной форме рассказать об алгоритме метода.

Сначала немного систематизируем знания о системах линейных уравнений. Система линейных уравнений может:

1) Иметь единственное решение. 2) Иметь бесконечно много решений. 3) Не иметь решений (быть несовместной).

Метод  Гаусса – наиболее мощный и универсальный инструмент для нахождения решениялюбой системы линейных уравнений. Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. А метод последовательного исключения неизвестных в любом случаеприведет нас к ответу! На данном уроке мы опять рассмотрим метод Гаусса для случая №1 (единственное решение системы), под ситуации пунктов №№2-3 отведена статьяНесовместные системы и системы с общим решением. Замечу, что сам алгоритм метода во всех трёх случаях работает одинаково.

Вернемся к простейшей системе с урока Как решить систему линейных уравнений? и решим ее методом Гаусса.

На первом этапе нужно записать расширенную матрицу системы: . По какому принципу записаны коэффициенты, думаю, всем видно. Вертикальная черта внутри матрицы не несёт никакого математического смысла – это просто отчеркивание для удобства оформления.

Справка: рекомендую запомнить термины линейной алгебры. Матрица системы – это матрица, составленная только из коэффициентов при неизвестных, в данном примере матрица системы: . Расширенная матрица системы – это та же матрица системы плюс столбец свободных членов, в данном случае: . Любую из матриц можно для краткости называть просто матрицей.

После того, как расширенная матрица системы записана, с ней необходимо выполнить некоторые действия, которые также называются элементарными преобразованиями.

Существуют следующие элементарные преобразования:

1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки: 

2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу . В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них: .

3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следуетудалить. Рисовать не буду, понятно, нулевая строка – это строка, в которой одни нули.

4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля. Рассмотрим, например, матрицу . Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2: . Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы.

5) Это преобразование вызывает наибольшие затруднения, но на самом деле ничего сложного тоже нет. К строке матрицы можно прибавить другую строку, умноженную на число, отличное от нуля. Рассмотрим нашу матрицу из практического примера: . Сначала я распишу преобразование очень подробно. Умножаем первую строку на –2: , и ко второй строке прибавляем первую строку умноженную на –2: . Теперь первую строку можно разделить «обратно» на –2: . Как видите, строка, которую ПРИБАВЛЯЛИ – не изменилась. Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ.

На практике так подробно, конечно, не расписывают, а пишут короче: Еще раз: ко второй строке прибавили первую строку, умноженную на –2. Умножают строку обычно устно или на черновике, при этом мысленный ход расчётов примерно такой:

«Переписываю матрицу и переписываю первую строку: »

«Сначала первый столбец. Внизу мне нужно получить ноль. Поэтому единицу вверху умножаю на –2: , и ко второй строке прибавляю первую: 2 + (–2) = 0. Записываю результат во вторую строку: »

«Теперь второй столбец. Вверху –1 умножаю на –2: . Ко второй строке прибавляю первую: 1 + 2 = 3. Записываю результат во вторую строку: »

«И третий столбец. Вверху –5 умножаю на –2: . Ко второй строке прибавляю первую: –7 + 10 = 3. Записываю результат во вторую строку: »

Пожалуйста, тщательно осмыслите этот пример и разберитесь в последовательном алгоритме вычислений, если вы это поняли, то метод Гаусса практически «в кармане». Но, конечно, над этим преобразованием мы еще поработаем.

Элементарные преобразования не меняют решение системы уравнений

! ВНИМАНИЕ: рассмотренные манипуляции нельзя использовать, если Вам предложено задание, где матрицы даны «сами по себе». Например, при «классических» действиях с матрицами что-то переставлять внутри матриц ни в коем случае нельзя! Вернемся к нашей системе . Она практически разобрана по косточкам.

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1) Ко второй строке прибавили первую строку, умноженную на –2. И снова: почему первую строку умножаем именно на –2? Для того чтобы внизу получить ноль, а значит, избавиться от одной переменной во второй строке.

(2) Делим вторую строку на 3.

Цель элементарных преобразований – привести матрицу к ступенчатому виду: . В оформлении задания прямо так и отчеркивают простым карандашом «лестницу», а также обводят кружочками числа, которые располагаются на «ступеньках». Сам термин «ступенчатый вид» не вполне теоретический, в научной и учебной литературе он часто называется трапециевидный вид или треугольный вид. 

 В результате элементарных преобразований получена эквивалентная исходной система уравнений:

Теперь систему нужно «раскрутить» в обратном направлении – снизу вверх, этот процесс называется обратным ходом метода Гаусса.

В нижнем уравнении у нас уже готовый результат: .

Рассмотрим первое уравнение системы и подставим в него уже известное значение «игрек»:

Ответ: 

Рассмотрим наиболее распространенную ситуацию, когда методом Гаусса требуется решить систему трёх линейных уравнений с тремя неизвестными.

Пример 1

Решить методом Гаусса систему уравнений:

Запишем расширенную матрицу системы:

Сейчас я сразу нарисую результат, к которому мы придём в ходе решения: И повторюсь, наша цель – с помощью элементарных преобразований привести матрицу к ступенчатому виду. С чего начать действия?

Сначала смотрим на левое верхнее число:  Почти всегда здесь должна находиться единица. Вообще говоря, устроит и –1 (а иногда и другие числа), но как-то так традиционно сложилось, что туда обычно помещают единицу. Как организовать единицу? Смотрим на первый столбец – готовая единица у нас есть! Преобразование первое: меняем местами первую и третью строки:

Теперь первая строка у нас останется неизменной до конца решения. Уже легче.

Единица в левом верхнем углу организована. Теперь нужно получить нули вот на этих местах:

Нули получаем как раз с помощью «трудного» преобразования. Сначала разбираемся со второй строкой (2, –1, 3, 13). Что нужно сделать, чтобы на первой позиции получить ноль? Нужно ко второй строке прибавить первую строку, умноженную на –2. Мысленно или на черновике умножаем первую строку на –2: (–2, –4, 2, –18). И последовательно проводим (опять же мысленно или на черновике) сложение, ко второй строке прибавляем первую строку, уже умноженную на –2:

Результат записываем во вторую строку:

Аналогично разбираемся с третьей строкой (3, 2, –5, –1). Чтобы получить на первой позиции ноль, нужно к третьей строке прибавить первую строку, умноженную на –3. Мысленно или на черновике умножаем первую строку на –3: (–3, –6, 3, –27). И к третьей строке прибавляем первую строку, умноженную на –3:

Результат записываем в третью строку:

На практике эти действия обычно выполняются устно и записываются в один шаг:

Не нужно считать всё сразу и одновременно. Порядок вычислений и «вписывания» результатов последователен и обычно такой: сначала переписываем первую строку, и пыхтим себе потихонечку – ПОСЛЕДОВАТЕЛЬНО и ВНИМАТЕЛЬНО: А мысленный ход самих расчётов я уже рассмотрел выше.

Далее нужно получить единицу на следующей «ступеньке»:

В данном примере это сделать легко, вторую строку делим на –5 (поскольку там все числа делятся на 5 без остатка). Заодно делим третью строку на –2, ведь чем меньше числа, тем проще решение:

На заключительном этапе элементарных преобразований нужно получить еще один ноль здесь:

Для этого к третьей строке прибавляем вторую строку, умноженную на –2: Попробуйте разобрать это действие самостоятельно – мысленно умножьте вторую строку на –2 и проведите сложение.

Последнее выполненное действие – причёска результата, делим третью строку на 3.

В результате элементарных преобразований получена эквивалентная исходной система линейных уравнений: Круто.

Теперь в действие вступает обратный ход метода Гаусса. Уравнения «раскручиваются» снизу вверх.

В третьем уравнении у нас уже готовый результат: 

Смотрим на второе уравнение: . Значение «зет» уже известно, таким образом:

И, наконец, первое уравнение: . «Игрек» и «зет» известны, дело за малым:

Ответ: 

Как уже неоднократно отмечалось, для любой системы уравнений можно и нужно сделать проверку найденного решения, благо, это несложно и быстро.

Пример 2

Решить систему линейных уравнений методом Гаусса

Это пример для самостоятельного решения, образец чистового оформления и ответ в конце урока.

Следует отметить, что ваш ход решения может не совпасть с моим ходом решения, и это – особенность метода Гаусса. Но вот ответы обязательно должны получиться одинаковыми!

Пример 3

Решить систему линейных уравнений методом Гаусса

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами. Я поступил так:  (1) К первой строке прибавляем вторую строку, умноженную на –1. То есть, мысленно умножили вторую строку на –1 и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.

Теперь слева вверху «минус один», что нас вполне устроит. Кто хочет получить +1, может выполнить дополнительное телодвижение: умножить первую строку на –1 (сменить у неё знак).

Дальше алгоритм работает уже по накатанной колее:

(2) Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.

(3) Первую строку умножили на –1, в принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.

(4) К третьей строке прибавили вторую строку, умноженную на 2.

(5) Третью строку разделили на 3.

Скверным признаком, который свидетельствует об ошибке в вычислениях (реже – об опечатке), является «плохая» нижняя строка. То есть, если бы у нас внизу получилось что-нибудь вроде , и, соответственно, , то с большой долей вероятности можно утверждать, что допущена ошибка в ходе элементарных преобразований.

Заряжаем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает, снизу вверх. Да тут подарок получился:

Ответ: .

Пример 4

Решить систему линейных уравнений методом Гаусса

Это пример для самостоятельного решения, он несколько сложнее. Ничего страшного, если кто-нибудь запутается. Полное решение и образец оформления в конце урока. Ваше решение может отличаться от моего решения. 

В последней части рассмотрим некоторые особенности алгоритма Гаусса. Первая особенность состоит в том, что иногда в уравнениях системы отсутствуют некоторые переменные, например: Как правильно записать расширенную матрицу системы? Об этом моменте я уже рассказывал на уроке Правило Крамера. Матричный метод. В расширенной матрице системы на месте отсутствующих переменных ставим нули: Кстати, это довольно легкий пример, поскольку в первом столбце уже есть один ноль, и предстоит выполнить меньше элементарных преобразований.

Вторая особенность состоит вот в чём. Во всех рассмотренных примерах на «ступеньки» мы помещали либо –1, либо +1. Могут ли там быть другие числа? В ряде случаев могут. Рассмотрим систему: .

Здесь на левой верхней «ступеньке» у нас двойка. Но замечаем тот факт, что все числа в первом столбце делятся на 2 без остатка – и другая двойка и шестерка. И двойка слева вверху нас устроит! На первом шаге нужно выполнить следующие преобразования: ко второй строке прибавить первую строку, умноженную на –1; к третьей строке прибавить первую строку, умноженную на –3. Таким образом, мы получим нужные нули в первом столбце.

Или еще такой условный пример: . Здесь тройка на второй «ступеньке» тоже нас устраивает, поскольку 12 (место, где нам нужно получить ноль) делится на 3 без остатка. Необходимо провести следующее преобразование: к третьей строке прибавить вторую строку, умноженную на –4, в результате чего и будет получен нужный нам ноль.

Метод Гаусса универсален, но есть одно своеобразие. Уверенно научиться решать системы другими методами (методом Крамера, матричным методом) можно буквально с первого раза – там очень жесткий алгоритм. Но вот чтобы уверенно себя чувствовать в методе Гаусса, следует «набить руку», и прорешать хотя бы 5-10 десять систем. Поэтому поначалу возможны путаница, ошибки в вычислениях, и в этом нет ничего необычного или трагического.

Дождливая осенняя погода за окном.... Поэтому для всех желающих более сложный пример для самостоятельного решения:

Пример 5

Решить методом Гаусса систему 4-х линейных уравнений с четырьмя неизвестными.

Такое задание на практике встречается не так уж и редко. Думаю, даже чайнику, который обстоятельно изучил эту страницу, интуитивно понятен алгоритм решения такой системы. Принципиально всё так же – просто действий больше.

Случаи, когда система не имеет решений (несовместна) или имеет бесконечно много решений, рассмотрены на уроке Несовместные системы и системы с общим решением. Там же можно закрепить рассмотренный алгоритм метода Гаусса.

Желаю успехов!

Решения и ответы:

Пример 2: Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду. Выполненные элементарные преобразования: (1) Ко второй строке прибавили первую строку, умноженную на –2.  К третьей строке прибавили первую строку, умноженную на –1. Внимание! Здесь может возникнуть соблазн из третьей строки вычесть первую, крайне не рекомендую вычитать – сильно повышается риск ошибки. Только складываем! (2) У второй строки сменили знак (умножили на –1). Вторую и третью строки поменяли местами. Обратите внимание, что на «ступеньках» нас устраивает не только единица, но еще и –1, что даже удобнее. (3) К третьей строке прибавили вторую строку, умноженную на 5. (4) У второй строки сменили знак (умножили на –1). Третью строку разделили на 14.

Обратный ход: 

Ответ: .

Пример 4: Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования: (1) К первой строке прибавили вторую. Таким образом, организована нужная единица на левой верхней «ступеньке». (2) Ко второй строке прибавили первую строку, умноженную на 7.  К третьей строке прибавили первую строку, умноженную на 6.

Со второй «ступенькой» всё хуже, «кандидаты» на неё – числа 17 и 23, а нам нужна либо единичка, либо –1. Преобразования (3) и (4) будут направлены на получение нужной единицы (3) К третьей строке прибавили вторую, умноженную на –1. (4) Ко второй строке прибавили третью, умноженную на –3. Нужная вещь на второй ступеньке получена. (5) К третьей строке прибавили вторую, умноженную на 6. (6) Вторую строку умножили на –1, третью строку разделили на -83.

Обратный ход: 

Ответ: 

Пример 5: Решение: Запишем матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования: (1) Первую и вторую строки поменяли местами. (2) Ко второй строке прибавили первую строку, умноженную на –2.  К третьей строке прибавили первую строку, умноженную на –2. К четвертой строке прибавили первую строку, умноженную на –3. (3) К третьей строке прибавили вторую, умноженную на 4. К четвертой строке прибавили вторую, умноженную на –1. (4) У второй строки сменили знак. Четвертую строку разделили на 3 и поместили вместо третьей строки. (5) К четвертой строке прибавили третью строку, умноженную на  –5.

Обратный ход:

Ответ: 

\

studfiles.net

Решение матриц методом Гаусса, с примерами

Метод Гаусса используется для решения систем линейных уравнений и для нахождения обратной матрицы. Начнем с нахождения обратной матрицы.

Алгоритм нахождения обратной матрицы методом Гаусса

1. Пусть задана квадратная матрица

   

припишем к столбцам матрицы справа столбцы единичной матрицы того же порядка. Получим матрицу

   

2. С помощью элементарных преобразований строк приведем матрицу к матрице, в левой части которой будет стоять единичная матрица:

   

3. Полученная таким образом матрица, стоящая в правой части матрицы , и будет обратной матрицей к матрице

   

Алгоритм применения метода Гаусса для решения СЛУ

Пусть задана система линейных уравнений

   

Записывается матрица – расширенная матрица этой системы:

   

Над строками матрицы производятся элементарные преобразования: разрешается изменять порядок строк, умножать строки на любые отличные от нуля числа и прибавлять к любой строке матрицы любую другую её строку, умноженное на произвольное число. В результате таких элементарных преобразований основная матрица системы должна быть приведена к нижнему треугольному виду

   

Эта матрица эквивалентна системе линейных уравнений

   

Из этой системы последовательно снизу вверх выражаются все неизвестные переменные.

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Метод Гаусса. Примеры

Метод Гаусса заключается в последовательном исключении переменных и преобразовании системы линейных алгебраических уравнений

к треугольному виду

Предположим, что в системе коэффициент . Если это условие не выполняется, то на первое место переносим уравнение, которое ее удовлетворяет. С помощью первого уравнения исключим из остальных уравнений.

Для этого делят первую строчку на , обозначим

.

Дальше второй строки вычитаем первую строку, умноженную на ;от третьего первую строчку, умноженный на ; и так далее до последней строки. Получим таблицу коэффициентов:

Для неизвестных имеем систему уравнений. Выполняя, как и раньше, исключим из всех уравнений, начиная с третьего. Для этого сначала разделим вторую строчку на .

Если коэффициент , то переставим уравнения так, чтобы выполнялось условие .

Обозначив

,

от третьей строки вычтем вторую строчку, умноженный на ;

от четвертой строки вычтем вторую строчку, умноженный на и т.д. Получим таблицу коэффициентов:

Продолжая процесс исключения неизвестных получим таблицу:

Таблица коэффициентов при неизвестных сводится к треугольному виду. Все главной диагонали элементы . Запишем соответствующую систему уравнений:

Переход от первой системы уравнений до последней называется прямым ходом метода Гаусса. Обратный ход метода Гаусса начинается с последней системы уравнений. Ее решают с конца до начала. Из последнего уравнения находят . Подставив это значение в предпоследнее - находят и т.д. Из первого уравнения находят .

Если система уравнений с неизвестными имеет единственное решение, то эта система всегда может быть преобразована к треугольному виду. Для студентов не всегда требуют, чтобы диагональные элементы были равны единице. Достаточно просто свести систему линейных уравнений к верхней треугольной.

--------------------------------------------

Пример 1.

Дана система трех линейных уравнений с тремя неизвестными. Решить систему методом Гаусса.

Решение.

Исключим неизвестную из второго и третьего уравнения. Для этого от них вычтем первое умноженное на

Видим, что наше уравнение в таком виде можно решать обратным ходом метода Гаусса. Для этого из последнего уравнения выразим

Подставим полученное значение в предыдущее уравнение и найдем

Из первого уравнения находим

Решение данной системы равен

-----------------------------------------

В случаях систем больших размеров, а также для удобства, часто на практике используют другую схему решения. Вместо преобразований над системой выполняют соответствующие преобразования над матрицей, составленной из коэффициентов при неизвестных и столбца из свободных членов, который для удобства выделяют вертикальной линией. Такую матрицу называют расширенной матрицей системы.

-----------------------------------------

Пример 2.

Решить систему четырех линейных алгебраических уравнений методом Гаусса.

Решение.

Выпишем расширенную матрицу для данной системы

Сведем ее к треугольному виду с помощью элементарных преобразований.

1.Поменяем местами первый и второй строки.

2. Добавим к элементам второго, третьего и четвертого строк элементы первой строки, умноженные соответственно на

3. Поменяем местами второй и третий строки. Добавим к элементам третьего и четвертого строк элементы второй строки, умноженные соответственно на

4. От четвертого уравнения умноженного на вычитаем третье уравнение умноженное на

Такой расширенной матрицы соответствует следующая система уравнений

С четвертого уравнения находим и подставляем в третье уравнение

Найденные значения подставляем во второе уравнение

Из первого уравнения находим первую неизвестную

Система полностью решена и – ее решение.

-----------------------------------------------------

Посмотреть материалы:

yukhym.com

Метод Гаусса — WiKi

Пусть исходная система выглядит следующим образом:

{a11x1+…+a1nxn=b1…am1x1+…+amnxn=bm{\displaystyle \left\{{\begin{array}{lcr}a_{11}x_{1}+\ldots +a_{1n}x_{n}&=&b_{1}\\\ldots &&\\a_{m1}x_{1}+\ldots +a_{mn}x_{n}&=&b_{m}\\\end{array}}\right.} 

Её можно записать в матричном виде:

Ax=b,{\displaystyle Ax=b,} 

где

A=(a11…a1n…am1…amn),x=(x1⋮xn),b=(b1⋮bm).(1){\displaystyle A=\left({\begin{array}{ccc}a_{11}&\ldots &a_{1n}\\\ldots &&\\a_{m1}&\ldots &a_{mn}\end{array}}\right),\quad x=\left({\begin{array}{c}x_{1}\\\vdots \\x_{n}\end{array}}\right),\quad b=\left({\begin{array}{c}b_{1}\\\vdots \\b_{m}\end{array}}\right).\quad (1)} 

Матрица A{\displaystyle A}  называется основной матрицей системы, b{\displaystyle b}  — столбцом свободных членов.

Тогда, согласно свойству элементарных преобразований над строками, основную матрицу этой системы можно привести к ступенчатому виду (эти же преобразования нужно применять к столбцу свободных членов):

{α1j1xj1+α1j2xj2+…+α1jrxjr+…+α1jnxjn=β1α2j2xj2+…+α2jrxjr+…+α2jnxjn=β2…αrjrxjr+…+αrjnxjn=βr0=βr+1…0=βm,{\displaystyle \left\{{\begin{array}{rcl}\alpha _{1j_{1}}x_{j_{1}}+\alpha _{1j_{2}}x_{j_{2}}+\ldots +\alpha _{1j_{r}}x_{j_{r}}+\ldots +\alpha _{1j_{n}}x_{j_{n}}&=&\beta _{1}\\\alpha _{2j_{2}}x_{j_{2}}+\ldots +\alpha _{2j_{r}}x_{j_{r}}+\ldots +\alpha _{2j_{n}}x_{j_{n}}&=&\beta _{2}\\&\ldots &\\\alpha _{rj_{r}}x_{j_{r}}+\ldots +\alpha _{rj_{n}}x_{j_{n}}&=&\beta _{r}\\0&=&\beta _{r+1}\\&\ldots &\\0&=&\beta _{m}\end{array}}\right.,} 

где α1j1,…,αrjr≠0.{\displaystyle \alpha _{1j_{1}},\ldots ,\alpha _{rj_{r}}\neq 0.} 

При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных xj1,…,xjr{\displaystyle x_{j_{1}},\ldots ,x_{j_{r}}} [3].

Тогда переменные xj1,…,xjr{\displaystyle x_{j_{1}},\ldots ,x_{j_{r}}}  называются главными переменными. Все остальные называются свободными.

Если хотя бы одно число βi≠0{\displaystyle \beta _{i}\neq 0} , где i>r{\displaystyle i>r} , то рассматриваемая система несовместна, т.е. у неё нет ни одного решения.

Пусть βi=0{\displaystyle \beta _{i}=0}  для любых i>r{\displaystyle i>r} .

Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом x{\displaystyle x}  (αiji,i=1,…,r{\displaystyle \alpha _{ij_{i}},\,i=1,\ldots ,r} , где i{\displaystyle i}  — номер строки):

{xj1+α^1j2xj2+…+α^1jrxjr=β^1−α^1jr+1xjr+1−…−α^1jnxjnxj2+…+α^2jrxjr=β^2−α^2jr+1xjr+1−…−α^2jnxjn…xjr=β^r−α^rjr+1xjr+1−…−α^rjnxjn,β^i=βiαiji,α^ijk=αijkαiji(2){\displaystyle \left\{{\begin{array}{rcc}x_{j_{1}}+{\widehat {\alpha }}_{1j_{2}}x_{j_{2}}+\ldots +{\widehat {\alpha }}_{1j_{r}}x_{j_{r}}&=&{\widehat {\beta }}_{1}-{\widehat {\alpha }}_{1j_{r+1}}x_{j_{r+1}}-\ldots -{\widehat {\alpha }}_{1j_{n}}x_{j_{n}}\\x_{j_{2}}+\ldots +{\widehat {\alpha }}_{2j_{r}}x_{j_{r}}&=&{\widehat {\beta }}_{2}-{\widehat {\alpha }}_{2j_{r+1}}x_{j_{r+1}}-\ldots -{\widehat {\alpha }}_{2j_{n}}x_{j_{n}}\\&\ldots &\\x_{j_{r}}&=&{\widehat {\beta }}_{r}-{\widehat {\alpha }}_{rj_{r+1}}x_{j_{r+1}}-\ldots -{\widehat {\alpha }}_{rj_{n}}x_{j_{n}}\\\end{array}}\right.,\qquad {\widehat {\beta }}_{i}={\frac {\beta _{i}}{\alpha _{ij_{i}}}},\quad {\widehat {\alpha }}_{ij_{k}}={\frac {\alpha _{ij_{k}}}{\alpha _{ij_{i}}}}\quad (2)} ,

где i=1,…,r,k=i+1,…,n.{\displaystyle i=1,\ldots ,r,\quad k=i+1,\ldots ,n.} 

Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают.

  Следствия:1: Если в совместной системе все переменные главные, то такая система является определённой.

2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной.

Критерий совместности

Упомянутое выше условие βi=0{\displaystyle \beta _{i}=0}  для всех i>r{\displaystyle i>r}  может быть сформулировано в качестве необходимого и достаточного условия совместности:

Напомним, что рангом совместной системы называется ранг её основной матрицы (либо расширенной, так как они равны).

  Теорема Кронекера — Капелли.Система совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы.

Следствия:

  • Количество главных переменных равно рангу системы и не зависит от её решения.
  • Если ранг совместной системы равен числу переменных данной системы, то она определена.

Алгоритм

Блок схема представлена на рисунке. Данный рисунок адаптированный для написания программы на языке С/С++, где a[0] столбец свободных членов.

  Алгоритм Гаусса для решения СЛАУ
Описание

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа.

  • На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним. После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.
  • На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений. Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (а она там всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх. Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Метод Гаусса требует O(n3){\displaystyle O(n^{3})}  арифметических операций.

Этот метод опирается на:

  Теорема (о приведении матриц к ступенчатому виду).Любую матрицу путём элементарных преобразований только над строками можно привести к ступенчатому виду.
Простейший случай

В простейшем случае алгоритм выглядит так:

{a11⋅x1+a12⋅x2+…+a1n⋅xn=b1(1)a21⋅x1+a22⋅x2+…+a2n⋅xn=b2(2)…am1⋅x1+am2⋅x2+…+amn⋅xn=bm(m){\displaystyle \left\{{\begin{array}{lcc}a_{11}\cdot x_{1}+a_{12}\cdot x_{2}+\ldots +a_{1n}\cdot x_{n}&=b_{1}&(1)\\a_{21}\cdot x_{1}+a_{22}\cdot x_{2}+\ldots +a_{2n}\cdot x_{n}&=b_{2}&(2)\\\ldots &&\\a_{m1}\cdot x_{1}+a_{m2}\cdot x_{2}+\ldots +a_{mn}\cdot x_{n}&=b_{m}&(m)\end{array}}\right.} (2)→(2)−(1)⋅(a21a11):a22′⋅x2+a23′⋅x3+…+a2n′⋅xn=b2′(3)→(3)−(1)⋅(a31a11):a32′⋅x2+a33′⋅x3+…+a3n′⋅xn=b3′…(m)→(m)−(1)⋅(am1a11):am2′⋅x2+am3′⋅x3+…+amn′⋅xn=bn′(3)→(3)−(2)⋅(a32′a22′):a33′′⋅x3+…+a3n′′⋅xn=b3′′…(m)→(m)−(m−1)⋅(am,n−1(m−2)am−1,n−1(m−2)):amm(m−1)⋅xm+…+amn(m−1)⋅xn=bm(m−1){\displaystyle {\begin{array}{ccc}(2)\to (2)-(1)\cdot ({\frac {a_{21}}{a_{11}}})&:&a_{22}^{\prime }\cdot x_{2}+a_{23}^{\prime }\cdot x_{3}+\ldots +a_{2n}^{\prime }\cdot x_{n}=b_{2}^{\prime }\\(3)\to (3)-(1)\cdot ({\frac {a_{31}}{a_{11}}})&:&a_{32}^{\prime }\cdot x_{2}+a_{33}^{\prime }\cdot x_{3}+\ldots +a_{3n}^{\prime }\cdot x_{n}=b_{3}^{\prime }\\\ldots &&\\(m)\to (m)-(1)\cdot ({\frac {a_{m1}}{a_{11}}})&:&a_{m2}^{\prime }\cdot x_{2}+a_{m3}^{\prime }\cdot x_{3}+\ldots +a_{mn}^{\prime }\cdot x_{n}=b_{n}^{\prime }\\(3)\to (3)-(2)\cdot ({\frac {a_{32}^{\prime }}{a_{22}^{\prime }}})&:&a_{33}^{\prime \prime }\cdot x_{3}+\ldots +a_{3n}^{\prime \prime }\cdot x_{n}=b_{3}^{\prime \prime }\\\ldots &&\\(m)\to (m)-(m-1)\cdot ({\frac {a_{m,n-1}^{(m-2)}}{a_{m-1,n-1}^{(m-2)}}})&:&a_{mm}^{(m-1)}\cdot x_{m}+\ldots +a_{mn}^{(m-1)}\cdot x_{n}=b_{m}^{(m-1)}\end{array}}} 
  • Обратный ход. Из последнего ненулевого уравнения выражаем базисную переменную через небазисные и подставляем в предыдущие уравнения. Повторяя эту процедуру для всех базисных переменных, получаем фундаментальное решение.

Пример

Покажем, как методом Гаусса можно решить следующую систему:

{2x+y−z=8−3x−y+2z=−11−2x+y+2z=−3{\displaystyle \left\{{\begin{array}{ccc}2x+y-z&=&8\\-3x-y+2z&=&-11\\-2x+y+2z&=&-3\end{array}}\right.} 

Обнулим коэффициенты при x{\displaystyle x}  во второй и третьей строчках. Для этого прибавим к ним первую строчку, умноженную на 32{\displaystyle \textstyle {\frac {3}{2}}}  и 1{\displaystyle 1} , соответственно:

{2x+y−z=812y+12z=12y+z=5{\displaystyle \left\{{\begin{array}{rcc}2x+y-z&=&8\\{\frac {1}{2}}y+{\frac {1}{2}}z&=&1\\2y+z&=&5\end{array}}\right.} 

Теперь обнулим коэффициент при y{\displaystyle y}  в третьей строке, вычтя из неё вторую строку, умноженную на 4{\displaystyle 4} :

{2x+y−z=812y+12z=1−z=1{\displaystyle \left\{{\begin{array}{rcc}2x+y-z&=&8\\{\frac {1}{2}}y+{\frac {1}{2}}z&=&1\\-z&=&1\\\end{array}}\right.} 

В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.

На втором этапе разрешим полученные уравнения в обратном порядке. Имеем:

z=−1{\displaystyle z=-1}  из третьего; y=3{\displaystyle y=3}  из второго, подставив полученное z{\displaystyle z}  x=2{\displaystyle x=2}  из первого, подставив полученные z{\displaystyle z}  и y{\displaystyle y} .

Таким образом исходная система решена.

В случае, если число уравнений в совместной системе получилось меньше числа неизвестных, то тогда ответ будет записываться в виде фундаментальной системы решений.

ru-wiki.org

Метод Гаусса для решения систем линейных уравнений

1. Система линейных алгебраических уравнений

1.1 Понятие системы линейных алгебраических уравнений

Система уравнений – это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких переменных. Системой линейных алгебраических уравнений (далее – СЛАУ), содержащей m уравнений и n неизвестных, называется система вида:

где числа aij называются коэффициентами системы, числа bi – свободными членами, aij и bi (i=1,…, m; b=1,…, n) представляют собой некоторые известные числа, а x1 ,…, xn – неизвестные. В обозначении коэффициентов aij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент. Подлежат нахождению числа xn . Такую систему удобно записывать в компактной матричной форме: AX=B. Здесь А – матрица коэффициентов системы, называемая основной матрицей;

– вектор-столбец из неизвестных xj. – вектор-столбец из свободных членов bi.

Произведение матриц А*Х определено, так как в матрице А столбцов столько же, сколько строк в матрице Х (n штук).

Расширенной матрицей системы называется матрица A системы, дополненная столбцом свободных членов

1.2 Решение системы линейных алгебраических уравнений

Решением системы уравнений называется упорядоченный набор чисел (значений переменных), при подстановке которых вместо переменных каждое из уравнений системы обращается в верное равенство.

Решением системы называется n значений неизвестных х1=c1, x2=c2,…, xn=cn, при подстановке которых все уравнения системы обращаются в верные равенства. Всякое решение системы можно записать в виде матрицы-столбца

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.

Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.

Решить систему – это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.

Две системы называются эквивалентными (равносильными), если они имеют одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой, и наоборот.

Преобразование, применение которого превращает систему в новую систему, эквивалентную исходной, называется эквивалентным или равносильным преобразованием. Примерами эквивалентных преобразований могут служить следующие преобразования: перестановка местами двух уравнений системы, перестановка местами двух неизвестных вместе с коэффициентами у всех уравнений, умножение обеих частей какого-либо уравнения системы на отличное от нуля число.

Система линейных уравнений называется однородной, если все свободные члены равны нулю:

Однородная система всегда совместна, так как x1=x2=x3=…=xn=0 является решением системы. Это решение называется нулевым или тривиальным.

2. Метод исключения Гаусса

2.1 Сущность метода исключения Гаусса

Классическим методом решения систем линейных алгебраических уравнений является метод последовательного исключения неизвестных – метод Гаусса (его еще называют методом гауссовых исключений). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Процесс решения по методу Гаусса состоит из двух этапов: прямой и обратный ходы.

1. Прямой ход.

На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним.

После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.

На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.

Приведенная ниже система имеет ступенчатый вид:

,

где

Коэффициенты aii называются главными (ведущими) элементами системы.

1-й шаг.

Будем считать, что элемент

(если a11=0, переставим строки матрицы так, чтобы a 11 не был равен 0. Это всегда возможно, т. к. в противном случае матрица содержит нулевой столбец, ее определитель равен нулю и система несовместна).

Преобразуем систему, исключив неизвестное х1 во всех уравнениях, кроме первого (используя элементарные преобразования системы). Для этого умножим обе части первого уравнения на

и сложим почленно со вторым уравнением системы (или из второго уравнения почленно вычтем первое, умноженное на ). Затем умножим обе части первого уравнения на и сложим с третьим уравнением системы (или из третьего почленно вычтем первое, помноженное на ). Таким образом, последовательно умножаем первую строку на число и прибавляем к i -й строке, для i= 2, 3, …, n.

Продолжая этот процесс, получим эквивалентную систему:

Здесь

– новые значения коэффициентов при неизвестных и свободные члены в последних m-1 уравнениях системы, которые определяются формулами:

Таким образом, на первом шаге уничтожаются все коэффициенты, лежащие под первым ведущим элементом a11

0, на втором шаге уничтожаются элементы, лежащие под вторым ведущим элементом а22(1) (если a22(1)0) и т.д. Продолжая этот процесс и дальше, мы, наконец, на (m-1) шаге приведем исходную систему к треугольной системе.

Если в процессе приведения системы к ступенчатому виду появятся нулевые уравнения, т.е. равенства вида 0=0, их отбрасывают. Если же появится уравнение вида

то это свидетельствует о несовместности системы.

На этом прямой ход метода Гаусса заканчивается.

2. Обратный ход.

На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений.

Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (она в нем всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх.

Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Примечание: на практике удобнее работать не с системой, а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a11).

2.2 Примеры решения СЛАУ методом Гаусса

В данном разделе на трех различных примерах покажем, как методом Гаусса можно решить СЛАУ.

Пример 1. Решить СЛАУ 3-го порядка.

Обнулим коэффициенты при

во второй и третьей строчках. Для этого домножим их на 2/3 и 1 соответственно и сложим с первой строкой:

mirznanii.com

Метод Гаусса — Википедия РУ

Пусть исходная система выглядит следующим образом:

{a11x1+…+a1nxn=b1…am1x1+…+amnxn=bm{\displaystyle \left\{{\begin{array}{lcr}a_{11}x_{1}+\ldots +a_{1n}x_{n}&=&b_{1}\\\ldots &&\\a_{m1}x_{1}+\ldots +a_{mn}x_{n}&=&b_{m}\\\end{array}}\right.} 

Её можно записать в матричном виде:

Ax=b,{\displaystyle Ax=b,} 

где

A=(a11…a1n…am1…amn),x=(x1⋮xn),b=(b1⋮bm).(1){\displaystyle A=\left({\begin{array}{ccc}a_{11}&\ldots &a_{1n}\\\ldots &&\\a_{m1}&\ldots &a_{mn}\end{array}}\right),\quad x=\left({\begin{array}{c}x_{1}\\\vdots \\x_{n}\end{array}}\right),\quad b=\left({\begin{array}{c}b_{1}\\\vdots \\b_{m}\end{array}}\right).\quad (1)} 

Матрица A{\displaystyle A}  называется основной матрицей системы, b{\displaystyle b}  — столбцом свободных членов.

Тогда, согласно свойству элементарных преобразований над строками, основную матрицу этой системы можно привести к ступенчатому виду (эти же преобразования нужно применять к столбцу свободных членов):

{α1j1xj1+α1j2xj2+…+α1jrxjr+…+α1jnxjn=β1α2j2xj2+…+α2jrxjr+…+α2jnxjn=β2…αrjrxjr+…+αrjnxjn=βr0=βr+1…0=βm,{\displaystyle \left\{{\begin{array}{rcl}\alpha _{1j_{1}}x_{j_{1}}+\alpha _{1j_{2}}x_{j_{2}}+\ldots +\alpha _{1j_{r}}x_{j_{r}}+\ldots +\alpha _{1j_{n}}x_{j_{n}}&=&\beta _{1}\\\alpha _{2j_{2}}x_{j_{2}}+\ldots +\alpha _{2j_{r}}x_{j_{r}}+\ldots +\alpha _{2j_{n}}x_{j_{n}}&=&\beta _{2}\\&\ldots &\\\alpha _{rj_{r}}x_{j_{r}}+\ldots +\alpha _{rj_{n}}x_{j_{n}}&=&\beta _{r}\\0&=&\beta _{r+1}\\&\ldots &\\0&=&\beta _{m}\end{array}}\right.,} 

где α1j1,…,αrjr≠0.{\displaystyle \alpha _{1j_{1}},\ldots ,\alpha _{rj_{r}}\neq 0.} 

При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных xj1,…,xjr{\displaystyle x_{j_{1}},\ldots ,x_{j_{r}}} [3].

Тогда переменные xj1,…,xjr{\displaystyle x_{j_{1}},\ldots ,x_{j_{r}}}  называются главными переменными. Все остальные называются свободными.

Если хотя бы одно число βi≠0{\displaystyle \beta _{i}\neq 0} , где i>r{\displaystyle i>r} , то рассматриваемая система несовместна, т.е. у неё нет ни одного решения.

Пусть βi=0{\displaystyle \beta _{i}=0}  для любых i>r{\displaystyle i>r} .

Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом x{\displaystyle x}  (αiji,i=1,…,r{\displaystyle \alpha _{ij_{i}},\,i=1,\ldots ,r} , где i{\displaystyle i}  — номер строки):

{xj1+α^1j2xj2+…+α^1jrxjr=β^1−α^1jr+1xjr+1−…−α^1jnxjnxj2+…+α^2jrxjr=β^2−α^2jr+1xjr+1−…−α^2jnxjn…xjr=β^r−α^rjr+1xjr+1−…−α^rjnxjn,β^i=βiαiji,α^ijk=αijkαiji(2){\displaystyle \left\{{\begin{array}{rcc}x_{j_{1}}+{\widehat {\alpha }}_{1j_{2}}x_{j_{2}}+\ldots +{\widehat {\alpha }}_{1j_{r}}x_{j_{r}}&=&{\widehat {\beta }}_{1}-{\widehat {\alpha }}_{1j_{r+1}}x_{j_{r+1}}-\ldots -{\widehat {\alpha }}_{1j_{n}}x_{j_{n}}\\x_{j_{2}}+\ldots +{\widehat {\alpha }}_{2j_{r}}x_{j_{r}}&=&{\widehat {\beta }}_{2}-{\widehat {\alpha }}_{2j_{r+1}}x_{j_{r+1}}-\ldots -{\widehat {\alpha }}_{2j_{n}}x_{j_{n}}\\&\ldots &\\x_{j_{r}}&=&{\widehat {\beta }}_{r}-{\widehat {\alpha }}_{rj_{r+1}}x_{j_{r+1}}-\ldots -{\widehat {\alpha }}_{rj_{n}}x_{j_{n}}\\\end{array}}\right.,\qquad {\widehat {\beta }}_{i}={\frac {\beta _{i}}{\alpha _{ij_{i}}}},\quad {\widehat {\alpha }}_{ij_{k}}={\frac {\alpha _{ij_{k}}}{\alpha _{ij_{i}}}}\quad (2)} ,

где i=1,…,r,k=i+1,…,n.{\displaystyle i=1,\ldots ,r,\quad k=i+1,\ldots ,n.} 

Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают.

  Следствия:1: Если в совместной системе все переменные главные, то такая система является определённой.

2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной.

Критерий совместности

Упомянутое выше условие βi=0{\displaystyle \beta _{i}=0}  для всех i>r{\displaystyle i>r}  может быть сформулировано в качестве необходимого и достаточного условия совместности:

Напомним, что рангом совместной системы называется ранг её основной матрицы (либо расширенной, так как они равны).

  Теорема Кронекера — Капелли.Система совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы.

Следствия:

  • Количество главных переменных равно рангу системы и не зависит от её решения.
  • Если ранг совместной системы равен числу переменных данной системы, то она определена.

Алгоритм

Блок схема представлена на рисунке. Данный рисунок адаптированный для написания программы на языке С/С++, где a[0] столбец свободных членов.

  Алгоритм Гаусса для решения СЛАУ
Описание

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа.

  • На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним. После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.
  • На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений. Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (а она там всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх. Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Метод Гаусса требует O(n3){\displaystyle O(n^{3})}  арифметических операций.

Этот метод опирается на:

  Теорема (о приведении матриц к ступенчатому виду).Любую матрицу путём элементарных преобразований только над строками можно привести к ступенчатому виду.
Простейший случай

В простейшем случае алгоритм выглядит так:

{a11⋅x1+a12⋅x2+…+a1n⋅xn=b1(1)a21⋅x1+a22⋅x2+…+a2n⋅xn=b2(2)…am1⋅x1+am2⋅x2+…+amn⋅xn=bm(m){\displaystyle \left\{{\begin{array}{lcc}a_{11}\cdot x_{1}+a_{12}\cdot x_{2}+\ldots +a_{1n}\cdot x_{n}&=b_{1}&(1)\\a_{21}\cdot x_{1}+a_{22}\cdot x_{2}+\ldots +a_{2n}\cdot x_{n}&=b_{2}&(2)\\\ldots &&\\a_{m1}\cdot x_{1}+a_{m2}\cdot x_{2}+\ldots +a_{mn}\cdot x_{n}&=b_{m}&(m)\end{array}}\right.} (2)→(2)−(1)⋅(a21a11):a22′⋅x2+a23′⋅x3+…+a2n′⋅xn=b2′(3)→(3)−(1)⋅(a31a11):a32′⋅x2+a33′⋅x3+…+a3n′⋅xn=b3′…(m)→(m)−(1)⋅(am1a11):am2′⋅x2+am3′⋅x3+…+amn′⋅xn=bn′(3)→(3)−(2)⋅(a32′a22′):a33′′⋅x3+…+a3n′′⋅xn=b3′′…(m)→(m)−(m−1)⋅(am,n−1(m−2)am−1,n−1(m−2)):amm(m−1)⋅xm+…+amn(m−1)⋅xn=bm(m−1){\displaystyle {\begin{array}{ccc}(2)\to (2)-(1)\cdot ({\frac {a_{21}}{a_{11}}})&:&a_{22}^{\prime }\cdot x_{2}+a_{23}^{\prime }\cdot x_{3}+\ldots +a_{2n}^{\prime }\cdot x_{n}=b_{2}^{\prime }\\(3)\to (3)-(1)\cdot ({\frac {a_{31}}{a_{11}}})&:&a_{32}^{\prime }\cdot x_{2}+a_{33}^{\prime }\cdot x_{3}+\ldots +a_{3n}^{\prime }\cdot x_{n}=b_{3}^{\prime }\\\ldots &&\\(m)\to (m)-(1)\cdot ({\frac {a_{m1}}{a_{11}}})&:&a_{m2}^{\prime }\cdot x_{2}+a_{m3}^{\prime }\cdot x_{3}+\ldots +a_{mn}^{\prime }\cdot x_{n}=b_{n}^{\prime }\\(3)\to (3)-(2)\cdot ({\frac {a_{32}^{\prime }}{a_{22}^{\prime }}})&:&a_{33}^{\prime \prime }\cdot x_{3}+\ldots +a_{3n}^{\prime \prime }\cdot x_{n}=b_{3}^{\prime \prime }\\\ldots &&\\(m)\to (m)-(m-1)\cdot ({\frac {a_{m,n-1}^{(m-2)}}{a_{m-1,n-1}^{(m-2)}}})&:&a_{mm}^{(m-1)}\cdot x_{m}+\ldots +a_{mn}^{(m-1)}\cdot x_{n}=b_{m}^{(m-1)}\end{array}}} 
  • Обратный ход. Из последнего ненулевого уравнения выражаем базисную переменную через небазисные и подставляем в предыдущие уравнения. Повторяя эту процедуру для всех базисных переменных, получаем фундаментальное решение.

Пример

Покажем, как методом Гаусса можно решить следующую систему:

{2x+y−z=8−3x−y+2z=−11−2x+y+2z=−3{\displaystyle \left\{{\begin{array}{ccc}2x+y-z&=&8\\-3x-y+2z&=&-11\\-2x+y+2z&=&-3\end{array}}\right.} 

Обнулим коэффициенты при x{\displaystyle x}  во второй и третьей строчках. Для этого прибавим к ним первую строчку, умноженную на 32{\displaystyle \textstyle {\frac {3}{2}}}  и 1{\displaystyle 1} , соответственно:

{2x+y−z=812y+12z=12y+z=5{\displaystyle \left\{{\begin{array}{rcc}2x+y-z&=&8\\{\frac {1}{2}}y+{\frac {1}{2}}z&=&1\\2y+z&=&5\end{array}}\right.} 

Теперь обнулим коэффициент при y{\displaystyle y}  в третьей строке, вычтя из неё вторую строку, умноженную на 4{\displaystyle 4} :

{2x+y−z=812y+12z=1−z=1{\displaystyle \left\{{\begin{array}{rcc}2x+y-z&=&8\\{\frac {1}{2}}y+{\frac {1}{2}}z&=&1\\-z&=&1\\\end{array}}\right.} 

В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.

На втором этапе разрешим полученные уравнения в обратном порядке. Имеем:

z=−1{\displaystyle z=-1}  из третьего; y=3{\displaystyle y=3}  из второго, подставив полученное z{\displaystyle z}  x=2{\displaystyle x=2}  из первого, подставив полученные z{\displaystyle z}  и y{\displaystyle y} .

Таким образом исходная система решена.

В случае, если число уравнений в совместной системе получилось меньше числа неизвестных, то тогда ответ будет записываться в виде фундаментальной системы решений.

http-wikipediya.ru

Метод Гаусса Википедия

Ме́тод Га́усса — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Назван в честь немецкого математика Карла Фридриха Гаусса. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру), находятся все переменные системы[1].

История[ | код]

Хотя в настоящее время данный метод повсеместно называется методом Гаусса, он был известен и до К. Ф. Гаусса. Первое известное описание данного метода — в китайском трактате «Математика в девяти книгах».[2]

Описание метода[ | код]

Пусть исходная система выглядит следующим образом:

{a11x1+…+a1nxn=b1…am1x1+…+amnxn=bm{\displaystyle \left\{{\begin{array}{lcr}a_{11}x_{1}+\ldots +a_{1n}x_{n}&=&b_{1}\\\ldots &&\\a_{m1}x_{1}+\ldots +a_{mn}x_{n}&=&b_{m}\\\end{array}}\right.}

Её можно записать в матричном виде:

Ax=b,{\displaystyle Ax=b,}

где

A=(a11…a1n…am1…amn),x=(x1⋮xn),b=(b1⋮bm).(1){\displaystyle A=\left({\begin{array}{ccc}a_{11}&\ldots &a_{1n}\\\ldots &&\\a_{m1}&\ldots &a_{mn}\end{array}}\right),\quad x=\left({\begin{array}{c}x_{1}\\\vdots \\x_{n}\end{array}}\right),\quad b=\left({\begin{array}{c}b_{1}\\\vdots \\b_{m}\end{array}}\right).\quad (1)}

Матрица A{\displaystyle A} называется основной матрицей системы, b{\displaystyle b} — столбцом свободных членов.

Тогда, согласно свойству элементарных преобразований над строками, основную матрицу этой системы можно привести к ступенчатому виду (эти же преобразования нужно применять к столбцу свободных членов):

ru-wiki.ru