Формула концентрации раствора. Концентрация вещества


Концентрация вещества | Учеба-Легко.РФ - крупнейший портал по учебе

Выше вы уже вычислили, что на 58,5 граммов поваренной соли приходится 941, 5 граммов воды. Подставляя известные величины в формулу m = v/M, где m – значение моляльности, v – количество молей вещества в растворе, а M - масса растворителя в килограммах, получите:

1,0/0,9415 = 1,062 моляльный раствор.

 

Полезные советы:

Концентрацию можно выразить самыми разными способами. Например, с использованием понятий: «массовая доля», «молярность» (то есть, сколько молей вещества находится в 1 литре раствора), «моляльность» (то есть, какое количество молей вещества находится в 1 килограмме растворителя) и т.д.

 

Алгоритм:

Массовая доля – это отношение массы вещества к массе раствора или смеси: w = m(в)/m(р-ра), где w – массовая доля, m(в) – масса вещества, m(р-ра) – масса раствора, или w = m(в)/m(см), где m(см) – масса смеси. Выражается в долях единицы или процентах. Дополнительные формулы, которые могут понадобиться для решения задач на массовую долю вещества: 1)m = V*p, где m – масса, V – объем, p – плотность. 2)m = n*M, где m – масса, n – количество вещества, M –молярная масса.

Мольная доля – это отношение числа молей вещества к числу молей всех веществ: q = n(в)/n(общ), где q – мольная доля, n(в) – количество определенного вещества, n(общ) – общее количество веществ. Дополнительные формулы: 1)n = V/Vm, где n – количество вещества, V – объем, Vm – молярный объем(при нормальных условиях равен 22,4 л/моль). 2)n = N/Na, где n –количество вещества, N – число молекул, Na – постоянная Авогадро(является константой и равна 6,02*10 в 23 степени 1/моль).

Объемная доля – это отношение объема вещества к объему смеси: q = V(в)/V(см), где q – объемная доля, V(в) – объем вещества, V(см) – объем смеси.

Молярная концентрация – отношение количества данного вещества к объему смеси: Cm = n(в)/V(см), где Cm – молярная концентрация(моль/л), n – количество вещества(моль), V(см) – объем смеси(л). Решим задачу на молярную концентрацию. Определите молярную концентрацию раствора, полученного при растворении сульфата натрия массой 42,6 г в воде массой 300 г, если плотность полученного раствора равна 1,12 г/мл. Пишем формулу для вычисления молярной концентрации: Cm = n(Na2SO4)/V(см). Видим, что необходимо найти количество вещества натрия и объем раствора. Рассчитываем: n(Na2SO4) = m(Na2SO4)/M(Na2SO4). M(Na2SO4) = 23*2+32+16*4 = 142 г/моль. n(Na2SO4) = 42,6/142 = 0,3 моль. Ищем объем раствора: V = m/p m = m(Na2SO4) + m(h3O) = 42,6 + 300 = 342,6 г. V = 342,6/1,12 = 306 мл = 0,306 л. Подставляем в общую формулу: Cm = 0,3/0,306 = 0,98 моль/л. Задача решена.

uclg.ru

Концентрация вещества

Концентрация вещества в растворе:

Концентрация - количество растворенного вещества в растворе (выражается в процентах). Например, если соли в 95 г воды 5 г, то раствор 5%. Это массовая доля растворенного вещества (w) по отношению ко всему объему раствора.

Соответственно, если у нас был 1 литр воды, мы добавили туда 1000 г соли, тогда масса всего раствора стала 2 литра, а сам раствор 50% соли, так как соли в нем всего половина (1000/2000).

Если ситуация такая: нужно 500 г 10% (десятипроцентного) раствора.

Всё просто: 10% от 500 - это 50 г.

Остальные 500 - 50 = 450 г - будет растворитель.

Самое сложно, когда нам надо сделать 20% раствор, а жидкости 1 литр. Если мы просто всыпаем туда 200 г соли, то процент не сойдется, т.к. 200/1200 и у нас получится 1/6 или примерно 16-17% раствор.

Поэтому вспоминаем алгебру и считаем так:

Берем за «х» количество растворяемого вещества

Составляем уравнение, в котором растворяемое вещество (х) делим на количество всего получившегося вещества (сколько было жидкости + растворяемое вещество). Всё это должно быть приравнено к их концентрации. Выражаем концентрацию в растворе не в процентах, а в дробных числах от единицы, т.е. 50% - это 0,5 от единицы, по аналогии - 30% - 0,3; 15% - 0,15 и т.д.

Уравнение:

х / (1000 + x) = 0,20

переносим

х = 200 + 0,20x

возвращаем х на левую сторону, получаем:

0,8x = 200

Значит, x = 250

Проверяем:

получаем конечного раствора: 250 + 1000 = 1250

250/1250 = 1/5 = 20%.

Все верно, пора в лабораторию

Растворы можно выражать и через объем с плотностью.

Как в физике:

плотность = масса / объем

p = m / V

т.е. объем - это показатель, сколько грамм в одном миллилитре жидкости (ведь 1 мл разного вещества может весить по-разному).

И теперь, если нам надо вычислить массу вещества и объем воды для приготовления 200 мл 20% раствора (плотность раствора p = 1,25 г/мл).

Сначала нам надо посчитать массу раствора, потому что эти 200 мл могут весить сколько угодно (не путайте их с граммами):

200 мл * 1,25 г/мл = 250 г

Теперь, когда получились граммы, считаем также, как и примеры ранее:

20% от 250 - это 50 г - растворяемое вещество.

А 80% - 200 г - растворитель.

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Добавить новость и получить деньги

uchilegko.info

Способы выражения концентраций

Среди окружающих нас веществ, лишь немногие представляют собой чистые вещества. Большинство являются смесями, состоящими из нескольких компонентов, которые могут находиться в одном или различных фазовых состояниях. Смеси, имеющие однородный состав являются гомогенными, неоднородный состав – гетерогенными. Иначе, гомогенные смеси, называют растворами, в которых одно вещество полностью растворяется в другом (растворителе). Растворитель – это тот компонент раствора, который при образовании раствора сохраняет свое фазовое состояние. Он обычно находится в наибольшем количестве. Существуют  растворы газовые, жидкие и твердые. Но более всего распространены жидкие растворы, поэтому, в данном разделе, именно на них мы сосредоточим свое внимание.Существует множество способов измерить количество вещества, находящегося в единице объема или массы раствора, это так называемые способы выражения концентрации раствора. Каждый их методов занимает важное место в количественном и качественном анализе и находит в химии свое применение, поэтому при изучении химии, необходимы знания о том, каким образом можно выразить концентрацию растворов. Итак, приступим к рассмотрению каждого из методов.

Концентрацию раствора можно охарактеризовать как качественную и количественную.Качественная концентрация характеризуется такими понятиями, как разбавленный и концентрированный раствор.С этой точки зрения растворы можно классифицировать на:

  • Насыщенные – растворы с максимально возможным количеством растворенного вещества. Количество растворяемого вещества, необходимое для получения насыщенного раствора определяет растворимость этого вещества.
  • Ненасыщенные – любые растворы, которые все еще могут растворять введенное вещество.
  • Пересыщенные – растворы, в которых растворено больше вещества, чем максимально возможное. Такие растворы очень нестабильны и в определенных условиях растворенное вещество будет выкристаллизовываться из него, до тех пор, пока не образуется насыщенный раствор.

Количественная концентрация выражается через молярную, нормальную (молярную концентрацию эквивалента), процентную, моляльную концентрации, титр и мольную долю.

  1. Наиболее распространенный способ выражения концентрации растворов –  молярная концентрация растворов или молярность. Она определяется как количество молей n растворенного вещества в одном литре раствора V:

См = n/V, моль/л (моль ·л-1 )

Раствор называют молярным или одномолярным, если в 1 литре раствора растворено 1 моль вещества,  децимолярным – растворено 0,1 моля вещества, сантимолярным — растворено 0,01 моля вещества, миллимолярным — растворено 0,001 моля вещества.

Термин «молярная концентрация» распространяется на любой вид частиц. Вместо обозначения единицы измерения — моль/л, возможно такое ее обозначение – М, например, 0,2 М HCl.

  1. Молярная концентрация эквивалента или нормальная концентрация растворов (нормальность).

Понятие эквивалентности мы уже вводили здесь. Напомним, что эквивалент – это условная частица, которая равноценна по химическому действию одному иону водорода в кислотоно-основных реакциях или одному электрону в окислительно – восстановительных реакциях. Например, эквивалент KMnO4 в окислительно – восстановительной реакции в кислой среде представляет собой 1/5 (KMnO4).

Введем понятие фактор эквивалентности – число, обозначающее, какая доля условной частицы реагирует с 1 ионом водорода в данной  кислотоно-основной реакции или с одним электроном в данной окислительно – восстановительной реакции. Он может быть равен 1 или быть меньше 1. Фактор эквивалентности для предыдущего примера  fэкв(KMnO4) = 1/5.

Следующее понятие – молярная масса эквивалента вещества х. Это масса 1 моля эквивалента этого вещества, равная произведению фактора эквивалентности на молярную массу вещества х:

Мэ = fэкв· М(х)

Молярная концентрация эквивалента определяется числом молярных масс эквивалентов на 1 литр раствора. Эквивалент определяется в соответствии с типом рассматриваемой реакции.

Сн = nэ/V, моль/л (моль ·л-1)

Для обозначения нормальной концентрации допускается сокращение  «н» вместо «моль/л».

  1. Процентная концентрация раствора или массовая доля показывает сколько единиц массы растворенного вещества содержится в 100 единицах массы раствора. Это отношение массы m (х) вещества x к общей массе m раствора или смеси веществ:

ω (х) = m (х)/m,

Массовую долю выражают в долях от единицы или процентах.

  1. Моляльная концентрация раствора b (x) показывает количество молей n растворенного вещества х в 1 кг. растворителя m:

b (x) = n(x)/m, моль/кг

  1. Титр раствора показывает массу растворенного вещества х, содержащуюся в 1 мл. раствора:

Т (х) = m (х)/V, г/мл

  1. Мольная или молярная доля α (х) вещества х в растворе равна отношению количества данного вещества n(х) к общему количеству всех веществ, содержащихся в растворе Σn:

α (х) =  n(х)/ Σn.

Между приведенными способами выражения концентраций существует взаимосвязь, которая позволяет, зная одну единицу измерения концентрации  найти (пересчитать) ее в другие единицы. Существуют формулы, позволяющие провести такой пересчет, которые, в случае необходимости, вы сможете найти в сети.  В разделе задач показано, как произвести такой пересчет, не зная формул.

zadachi-po-khimii.ru

Формула концентрации раствора в химии

Определение и формула концентрации раствора

Наиболее распространены следующие способы выражения концентрации раствора.

Массовая доля – отношение (обычно – процентное) массы растворенного вещества к массе раствора:

w = msolute / msolution× 100%.

Например, 15: (масс.) водный раствор хлорида натрия – это такой раствор, в 100 единицах массы которого содержится 15 единиц массы NaCl и 85 единиц массы воды.

Молярная доля – это отношение количества растворенного вещества (или растворителя) к сумме количеств всех веществ, составляющих раствор. В случае раствора одного вещества в другом молярная доля растворенного вещества (N2) равна:

N2 = n2 / (n1 + n2),

а молярная доля растворителя (N1):

N1 = n1 / (n1 + n2),

где n1иn2 – соответственно количество вещества растворителя и растворенного вещества.

Молярная концентрация, или молярность – отношение количества растворенного вещества к объему раствора:

СМ = n / V.

Обычно молярность обозначается СМили (после численного значения молярности) М. Так, 2М h3SO4 означает раствор, в каждом литре которого содержится 2 моля серной кислоты, т.е. СМ = 2 моль/л.

Моляльная концентрация, или моляльность – это отношение количества растворенного вещества к массе растворителя:

m = nsolute / msolvent.

Обычно моляльность обозначается буквой m. Так, для раствора серной кислоты запись m = 2 моль/кг (воды) означает, что в этом растворе на каждый килограмм растворителя (воды) приходится 2 моля серной кислоты. Моляльность раствора в отличие от его молярности не изменяется при изменении температуры.

Нормальность раствора (нормальная концентрация, молярная концентрация эквивалента) СН(Х) – это отношение количества вещества эквивалента, содержащегося в растворе, к объему этого раствора [моль / м3]. На практике нормальность раствора по аналогии с молярной концентрацией выражают в моль/л. Так, например, с(h3SO4) = 1 моль/л, с(KOH) = 0,01 моль/л. При с(В) = 1 моль/л раствор называют нормальным, при с(В) = 0,01 моль/л – сантимолярным и т.д. Приняты и такие обозначения: 1 н. раствор h3SO4; 0,01 н. раствор KOH.

Эквивалентом называется реальная или условная частица вещества, которая может замещать, присоединять, высвобождать или быть каким-либо другим способом эквивалентна одному иону водорода в кислотно-основных или ионообменных реакциях или одному электрону в окислительно-восстановительных реакциях. Моль вещества эквивалента содержит 6,02×1023 эквивалентов.

Титр раствора – это масса вещества, содержащаяся в одном кубическом сантиметре (одном миллилитре) раствора [г/мл]. Обычно обозначается буквой Т. Например, T(HCl) = 0,02 г/мл означает, что в 1 мл раствора содержится 0,02 г соляной кислоты.

Примеры решения задач

ru.solverbook.com

Концентрация вещества молярная - Справочник химика 21

    В растворах, образованных жидкими и газообразными или твердыми веществами, жидкий компонент называется растворителем, а другой компонент-растворенным вешеством. Если раствор образован двумя жидкими веществами, это различие становится довольно условным, но вещество, присутствующее в большем количестве, обычно рассматривают как растворитель. Наиболее распространенным способом выражения концентрации раствора служит указание его молярной концентрации, или молярности, т. е. [c.76]     I — толщина слоя, см С — концентрация вещества, моль/л е — молярный коэффициент поглощения (экстинкции), л/(моль-см). [c.50]

    Для растворов каких веществ молярная и нормальная концентрации совпадают Приведите примеры. [c.42]

    В выражении (4-15) символ с используется в двух смыслах во-первых, им обозначается молярная концентрация веществ (моль л ), а во-вторых,— число молей вещества С.] [c.184]

    К 500 мл 0,2 М раствора азотнокислого алюминия добавили 900 мл 0,1 и. раствора щелочи. Рассчитайте молярную концентрацию веществ в растворе, если после отделения ссадка суммарный объем раствора уменьшился на 10 мл. [c.28]

    По величине осмотического давления, найденной в предыдущей задаче, рассчитайте молярные концентрации веществ в крови, если известно, что 1/4 осмотического давления крови вызвана присутствием неэлектролитов, а 3/4 — солями, полностью распадающимися на 2 иона. [c.51]

    Под растворимостью парафинов, так же как и под растворимостью других веществ вообще, подразумевается наибольшее количество вещества, которое способно раствориться в рассматриваемом растворителе при данной температуре. Другими словами, растворимость может быть определена как концентрация вещества, образующая в растворителе при данной температуре насыщенный раствор. Величина растворимости может выражаться в тех же единицах, как и концентрация, например количеством долей растворенного вещества в единице количества раствора. Числовое значение растворимости обычно обозначается буквой х. Часто величина растворимости выражается количеством долей растворенного вещества, приходящегося на единицу чистого растворителя и обозначается в этом случае буквой г. Растворимость может выражаться также молярными долями или х . Пересчет числовых значений растворимости из одной системы и другую проводится по следующим соотношениям  [c.81]

    Количественный анализ. После выяснения качественного состава продуктов изучаемой реакции необходимо определить их количественное соотношение. ИК-спектры (в отличие от спектров в УФ-области) приводятся в таблицах с точным указанием положения каждой полосы в спектре и приблизительным описанием интенсивности полос (сильная, средняя, слабая и т. п.). Количественная характеристика — молярный коэффициент поглощения — обычно не приводится. Поэтому невозможно точно определить концентрацию вещества по ИК-спектру, используя только табличные данные. Это можно объяснить сложностью количественных изменений при работе с кюветами для ИК-измерений, а также спецификой ИК-спектрометра. [c.213]

    Введем следующие обозначения [ А]о —исходная концентрация вещества РА] — концентрация триплетных состояний [ А] —концентрация невозбужденных молекул ет, ео —молярные коэффициенты экстинкции триплетного состояния и исходного соединения. Учитывая, что [ А]о = [ А]-1-РА], и выражая концентрацию триплетных молекул через оптическую плотность, получим следующее уравнение  [c.187]

    Концентрации вещества часто выражаются в весовых единицах введение их в уравнения (2-349) и (2-350) вместо молярных долей, которыми обычно пользуются, требует известных преобразований. При этом следует исходить из общих соотношений между этими концентрациями  [c.248]

    Таким же уравнением в симметричной системе стандартных состояний определяется энтропия растворенного вещества. В несимметричной системе стандартных состояний и для моляльных концентраций парциальная молярная энтропия растворенного вещества будет равна [c.379]

    Пусть G — некоторое свойство (давление, оптическая плотность при некоторой длине волны и т. п.), пропорциональное концентрации вещества, и пусть Ga и Gq. — соответствующие молярные величины (т. е. парциальное давление при концентрации 1 моль л, оптическая плотность раствора при концентрации 1 моль л и т. п.) для А и Bj. Тогда [c.156]

    Чтобы расположить в ряд по уменьшению электропроводности растворы приведенных веществ, нужно перейти от процентной концентрации к молярной и учесть количество ионов, образующихся при диссоциации сильных электролитов (хлористый магний, сернокислая медь, азотнокислый цинк), и степень диссоциации слабых электролитов (муравьиная кислота). Глицерин — не электролит. [c.210]

    Молярная концентрация, или молярность (М), — количество молей растворенного вещества в 1 л раствора  [c.33]

    Молярной концентрацией вещества называется отношение его количества (числа моль п), содержащегося в систе и, к объему У системы с= п/У. [c.15]

    Для смесей и растворов часто в качестве стандартного выбирают состояние идеальной смеси или раствора с концентрацией вещества, равной единице (молярности или моляльности). [c.38]

    Молярная концентрация с(Х) — отношение количества вещества X (моль) к объему раствора. В СИ основной единицей является молярная концентрация моль/м , а рекомендуемой для практики единицей является моль/дм или моль/л. Термин молярная концентрация распространяется на концентрацию любых частиц, например молярная концентрация молекул, молярная концентрация ионов и т. п. Например, с (НС1) = =0,1 моль/л, с(Н ) = 1 моль/л. Использование термина молярность не рекомендуется. Однако термин молярный сохраняется. [c.23]

    Как определяют концентрацию вещества фотометрическим методом, используя среднее значение молярного коэффициента погашения  [c.137]

    На практике состав растворов выражают с помощью следующих величин безразмерных — массовая и молярная доли и размерных — молярная концентрация вещества, молярная концентрация вещества эквивалента, мо-ляльность и массовая концентрация вещества. [c.115]

    Свойства раствора определяются качественным и количественным составом раствора. На практике количественный состав растворов выражают при помощи следующих величин а) безразмерных -массовая, объемная и молярная доли б) размерных - массовая концентрация вещества, молярная концентрация вещества, молярная концентрация эквивалента вещества и молялъностъ. [c.58]

    Если концентрация поглощающего вещества выражена в молях иа 1 л и толщина слоя I в сантиметрах, то величина е, являю цаяся коэффициентом пропорциональности между оптической плотностью и концентрацией вещества в растворе илн толщиной поглощающего слоя, называется молярным коэффициентом светопоглощения. При С — ] М и I = ] см г представляет собой О одномолярного раствора, помещенного в кювету с / = 1 см (е — О). [c.462]

    У денствптелыгостп стандартное состояние но может быть состоянием прп бесконечном ра. шеденни, так как оно должно представлять собой определенное термодинамическое состояние с фиксированным составом. Мы понимаем иод бесконечным разведением такое состояние системы, в котором взаимодействие между частицами растворенного вещества пренебрежимо мало, и в реальном стандартном состоянии система будет иметь, следовательно, некоторый состав, отвечающий этому идеальному условию. На практике чаще всего для обозначения концентрации пользуются молярностями, а за стандартное состояние обычно выбирается гипотетический одномолярный раствор , т. е. 1 М раствор, в котором взаимодействие растворенного вещества и растворителя равно нулю. [c.431]

    Пример 10 [26]. Изучалась реакция, протекающая по схеме А + В + С- В в ьодно-спиртовом растворе. На качество и количество продукта О (у) влияли следующие факторы 2, — время реакции, ч 2а — содержание спирта в водно-спгртовом растворе, мол. доли гз — концентрация вещества С, мол. доли 24 — колцентрация вещества В, мол. доли 25 — молярное соотношение веществ В и А. Основной уровень и интервалы варьирования факторов приведены ниже [c.228]

    Смещение равновесия под влиянием изменения давления определяется изменением объема, которое происходит в процессе реакции. Для газовых реакций изменение объема можно определить, принимая во внимание, что молярные объемы различных газов при одинаковых условиях также одинаковы. Таким образом, если реакция идет с уменьшением числа молей (реакция соединения), то ее течение сопровождается уменьшением объема. В тоже время повышение давления при постоянной температуре и постоянных количествах реагирующих веществ осуществляется посредством сжатия системы, т. е. уменьшения ее объема. При этом, очевидно, увеличиваются концентрации всех составляющих систему веществ. Изменение концентрации веществ сильнее сказывается на скорости той из обратимых реакций, когорая идег с уменьшением числа молей. Следовательно, при увеличении давления равновесие сментается в направлении реакции, идущей с уменьшением числа молекул, и, наоборот, понижение давления вызывает смешение равновесия в сторону реакции с увеличением числа молекул. Значительные изменения объема могут происходить только в реакциях, в которых участвуют газы, т. е. когда хотя бы одно нз [c.103]

    Если подобрать эталонный раствор известного вещества и определенной молярной концентрации так, чтобы растворитель не перегонялся из него в ту часть прибора, в которой помещен раствор с исследуемым веществом, то в этом случае изотермическая перегонка паров растворителя будет идти в обратном направлении, т. е. пз раствора исследуемого вещества к эталонному раствору до тех нор, пока не установится равновесие между обоими растворами. Равновесие же наступит тогда, когда будет достигнуто равенство молярных концентраций (долей) компонентов в эталонном и исследуемом растворах. Зная молярную концентрацию вещества в эталонном растворе, определяют и равную ей молярную концентрацию раствора исследуемого вещества, и весо- вую концентрацию последнего. Исходя из этих данных вычисляют молекулярный вес исследуемого вещества. В качестве растворителя в опытах использовался толуол, а в качестве эталонного вещества — азобензол. Размер капель в приборе измерялся с помощью микроскопа. При обеспечении достаточной нрецезионности измерения размеров капель метод этот представляется перспективным. [c.81]

    При монохроматическом излучении и отсутствии наложения соседних полос ИК-полоса характеризуется положением максимума Vм. к , пропусканием Т = 1Ио (%) или оптической плотностью D = g(Io l), коэффициентом молярного поглощения в максимуме вмаг.о = П1С1 (л/моль-см), где С — концентрация вещества, моль/л  [c.213]

    К 1000 лл 0,2 н. раствора хлористого бария прибавлено 88,5 мл 14,2%-ного раствора сернокислого натрия (плотность 1,13). Определите молярную концентрацию вещества, содержащегсся в растворе, если после отделения ссадка суммарный объем раствора уменьшился на 13,5 мл. [c.28]

    Как мы уже знаем, химическая формула вещества, заключенная в квадратные скобки, например [N113], означает концентрацию данного вещества. Для реакций в растворах концентрации обычно выражают в молях на литр, т. е. указывают молярную концентрацию, или молярность. Для реакций в газовой фазе в качестве единиц измерения концентрации можно также пользоваться молярностью, но можно наряду с этим измерять концентрации парциальными давлениями соответствующих газов, выраженными в атмосферах. При использовании молярных концентраций константу равновесия обозначают символом К а при измерении концентраций газообразных веществ в атмосферах константу равновесия обозначают символом Поскольку численные зна- [c.46]

    Выведите формулу для расчета задач типа В каком объемном отношении нужно смешать Л-нормальный и В-нормальный растворы некоторого вещества для получения С-нбрмального раствора Будет ли такая формула справедливой, если нормальную концентрацию заменить молярной  [c.31]

    Коэффициент к называют коэффициентом поглощения его определяет электронное строение поглощающего соединения. Абсолютное значение коэффициента к зависит от способа выражения концентрации вещества в растворе и толщины поглощающего слоя. Если концентрация выражена в моль/л, а толщина слоя в см, то коэффициент поглощения называется молярным коэффициентом погашения (е) при с=1М и /=1 см величина е = Л, т. е. молярный коэффициент погашения численно равен оптической плотности раствора с концентрацией 1 М, помещенного в кювету с толщиной слоя 1 см. Его размерность — МОЛЬ Xсм2 — безразмерная величина). [c.47]

    Количество вещества (символ п ) измеряют в молях. Моль -это количество вещества, содержащее столько реальных или условных частиц, сколько атомов содержится в 0,012 кг углероц-12. При использовании моль как единицы количества вещества нужно указывать, какие именно реальные или условные частиЩ) имеются в виду. Под реальными частицами подразумевают атомы, ионы, молекулы, радикалы, электроны и т.п., а под условными частицами (УЧ) такие, как, например, 1/2 молекулы Н2 0 , 1/6 молекулы К2СГ2О7, 1/5 молекулы КМпО/ и т.п. Молярная концентрация вещества может бьггь также выражена  [c.49]

    Эта формулировка в более общей форме была дана позднее Гульдбергом и Вааге (1867) скорость химической реакции пропорциональна действующим массам. Под действующими массами понимаются молярные концентрации веществ, участвующих в реакциях. [c.181]

    Раствором называется однофазная система, образованная не менее чем двумя компонсрпами и способр1ая в известных пределах к непрерывному изменению состава. Состав раствора или его концентрацию чаще всего выражают в молях растворенного вещества на один литр раствора (молярная концентрация), в молях растворенного вещества иа 1000 г растворителя (моляльная концентрация), в молярных долях или в весовых процентах. Для перехода от одного способа выражения концентрации раствора к другому необходимо знать молекулярные веса компонентов и, в некоторых случаях, плотность раствора (при переходе от весовой концентрации к объемной и обратно). [c.180]

chem21.info

Концентрация растворов - это... Что такое Концентрация растворов?

Концентрация  — величина, характеризующая количественный состав раствора.

Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л), то есть это отношение неоднородных величин.

Те величины, которые являются отношением однотипных величин (отношение массы растворённого вещества к массе раствора, отношение объёма растворённого вещества к объёму раствора), правильно называть долями. Однако на практике для обоих видов выражения состава применяют термин концентрация и говорят о концентрации растворов.

Существует много способов выражения концентрации растворов.

Массовая доля

Массовая доля — отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах.

,

где:

  • m1 — масса растворённого вещества, г ;
  • m — общая масса раствора, г .

Массовое процентное содержание компонента, m%

m%=(mi/Σmi)*100

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят 2 измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Пример. Зависимость плотности растворов h3SO4 от её массовой доли в водном растворе при 25 °C[источник не указан 235 дней]
ω, % 5 10 15 20 30 40 50 60 70 80 90 95
ρ h3SO4, г/мл 1,032 1,066 1,102 1,139 1,219 1,303 1,395 1,498 1,611 1,727 1,814 1,834

Объёмная доля — отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.

,

где:

  • V1 — объём растворённого вещества, л;
  • V — общий объём раствора, л.

Как и было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)

Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также распространено выражение в «молярности». Возможно другое обозначение молярной концентрации , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным. Примечание: единица «моль» не склоняется по падежам. После цифры пишут «моль», подобно тому, как после цифры пишут «см», «кг» и т. д.

,

где:

Нормальная концентрация (мольная концентрация эквивалента, или просто «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

,

где:

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор h3SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

Мольная (молярная) доля

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

,

где:

  • νi — количество i-го компонента, моль;
  • n — число компонентов;

Моляльность (молярная весовая концентрация, моляльная концентрация)

Моляльность — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

,

где:

Следует обратить особое внимание, что несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Титр раствора

Титр раствора — масса растворённого вещества в 1 мл раствора.

,

где:

  • m1 — масса растворённого вещества, г;
  • V — общий объём раствора, мл;

В аналитической химии обычно концентрацию титранта пересчитывают применительно к конкретной реакции титрования таким образом, чтобы объём использованного титранта непосредственного показывал массу определяемого вещества; то есть титр раствора показывает, какой массе определяемого вещества (в граммах) соответствует 1 мл титрованного раствора.

Весообъёмные проценты

Соответствуют отношению массы одной части вещества (например, 1 г) к 100 частям объёма раствора (например, к 100 мл).[1] Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[2]

Другие способы выражения концентрации растворов

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, в фотометрии часто используют массовую концентрацию, равную массе растворённого вещества в 1 л раствора. При приготовлении растворов кислот часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Концентрация загрязнений в воздухе может выражаться в частях на миллион (ppm). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций растворов к другим

От массовой доли к молярности:

,

где:

  • ρ — плотность раствора, г/л;
  • ω — массовая доля растворенного вещества в долях от 1;
  • M1 — молярная масса растворенного вещества, г/моль.

От молярности к нормальности:

,

где:

От массовой доли к титру:

,

где:

  • ρ — плотность раствора, г/л;
  • ω — массовая доля растворенного вещества в долях от 1;

От молярности к титру:

,

где:

  • M — молярность, моль/л;
  • M1 — молярная масса растворенного вещества, г/моль.

От молярности к моляльности:

,

где:

  • M — молярность, моль/л;
  • ρ — плотность раствора, г/мл;
  • M1 — молярная масса растворенного вещества, г/моль.

От моляльности к мольной доле:

,

где:

  • mi — моляльность, моль/кг;
  • M2 — молярная масса растворителя, г/моль.

Наиболее распространённые единицы

Эта статья содержит незавершённый перевод с английского языка.

Вы можете помочь проекту, переведя её до конца.

Примечания

biograf.academic.ru

Концентрация растворов

Концентрация растворов - понятие, довольно распространенное как в научном обороте, так и в бытовой лексике – характеризует количественную структуру состава какого-либо раствора. В соответствии со стандартами и определениями ИЮПА́К (международный реестр химических соединений) под концентрацией понимается соотношение масс вещества и раствора. Измерение этого соотношения производится в единицах моль/л, или г/л.

Если мы рассматриваем вещества, пропорция которых может быть выражена однотипными величинами (например, масса к массе), то их соотношение принято отражать долями, но в практике большее распространение получило использование именно понятия концентрация растворов.

Существует несколько вариантов, с помощью которых можно отразить концентрацию. Для растворов чаще всего применяется выражение структуры раствора в массовых и объемных (для жидкостей) процентах, можно выражать концентрацию в молях, кроме того, концентрация растворов может быть выражена и в грамм-эквивалентах. В некоторых случаях используют вариант отражения концентрации с помощью титра или показателя молярности.

Как правило, концентрация растворов, которые не требуют большой точности в своем выражении, показывается массовыми процентами. Там же, где необходима высокая точность, используются моли, титры, либо же грамм-эквиваленты.

При использовании массовых процентов следует применять правило, согласно которому, выражение концентрации указывается в одних и тех же единицах, например, сколько граммов вещества содержится в таком-то количестве граммов раствора. Нельзя совмещать отражение в граммах и единицах объема (например: количество граммов вещества в 100 миллилитрах раствора).

К примеру, если нам необходимо выразить состав 10%-го раствора поваренной соли, формула которой NaCl, то это следует понимать таким образом, что 100 граммовый раствор включает 10 г соли и 90 г воды. В том случае, если концентрация задана в единицах процентной массы вещества (например, 25%-ный раствор), а необходимо использовать такое количество раствора, чтобы в нем было некоторое точно указанное количество вещества (например, 5 г), то раствор следует брать по массе (в данном примере – это 20 г).

Для каждого варианта отражения концентрации существует своя формула. Так, если используется процентная концентрация раствора, формула имеет следующий вид:

С = m1/m, в которой: m1 — масса вещества, растворенного в данном растворе, и выраженная в граммах или килограммах, m — масса раствора, выраженная в тех же единицах.

Молярная концентрация вещества в растворе определяется формулой: C(M) = n / V, где n — количество вещества в молях, V — объём раствора в литрах. При использовании грамм-эквивалентов формула приобретает вид: C(N) = z / V, в которой V — объём раствора, выраженный в литрах, z — число эквивалентности.

В тех случаях, когда известна плотность раствора, удобнее отражать его по объему. Но это только в том случае, когда речь идет о достаточно концентрированных растворах (меньше 1%), так как ошибка в таком случае может быть незначительной.

Выраженная в количестве молей концентрация в химии называется молярностью. Если говорят: «одномолярный раствор», то это значит, что в 1 литре жидкости содержится 1 моль вещества. Такой раствор еще называют просто «молярным».

Если концентрация выражается количеством грамм-эквивалентов, которые содержатся в единице объема жидкости, то в этом случае используют выражение «нормальность», которое показывает, что, например, в 1 литре жидкости находится 1 грамм-эквивалент. Чаще всего такой раствор просто называют нормальным.

В статье рассмотрены лишь некоторые, основные методы выражения концентраций. В иных случаях, когда речь идет о сложных растворах, для этого могут использоваться и иные единицы.

fb.ru