Преобразование выражений, содержащих квадратные корни. Как решать подкоренные выражения


Преобразование и упрощение более сложных выражений с корнями (алгебра 8 класс)

Дополнительные сочинения

В начале урока мы повторим основные свойства квадратных корней, а затем рассмотрим несколько сложных примеров на упрощение выражений, содержащих квадратные корни.

Тема: Функция . Свойства квадратного корня

Урок: Преобразование и упрощение более сложных выражений с корнями

1. Повторение свойств квадратных корней

Вкратце повторим теорию и напомним основные свойства квадратных корней.

Свойства квадратных корней:

1. , следовательно, ;

2. ;

3. ;

4. .

2. Примеры на упрощение выражений с корнями

Перейдем к примерам использования этих свойств.

Пример 1. Упростить выражение .

Решение. Для упрощения число 120 необходимо разложить на простые множители:

. Квадрат суммы раскроем по соответствующей формуле:

.

Ответ. 11.

Пример 2. Упростить выражение .

Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ: ().

Приведем выражение в скобках к общему знаменателю и распишем числитель последней дроби как разность квадратов:

при.

Ответ. при.

Пример 3. Упростить выражение .

Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.

. Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:

. После сокращения дроби применяем формулу разности квадратов.

Ответ. 13.

3. Пример на избавление от иррациональности

Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) ; б) .

Решение. а) Для того чтобы избавиться от иррациональности в знаменателе, применяется стандартный метод домножения и числителя и знаменателя дроби на сопряженный к знаменателю множитель (такое же выражение, но с обратным знаком). Это делается для дополнения знаменателя дроби до разности квадратов, что позволяет избавиться от корней в знаменателе. Выполним этот прием в нашем случае:

.

б) выполним аналогичные действия:

       

.

Ответ.; .

4. Пример на доказательство и на выделение полного квадрата в сложном радикале

Пример 5. Докажите равенство .

Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:

. Раскроем скобки по формуле квадрата суммы:

, получили верное равенство.

Доказано.

Пример 6. Упростить выражение .

Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых является претендентом на роль удвоенного произведения в формуле квадрата разности (разности, т. к. присутствует минус). Распишем его в виде такого произведения: , тогда на роль одного из слагаемых полного квадрата претендует , а на роль второго – 1.

. Подставим это выражение под корень:

. Модуль раскрывается в таком виде, т. к. .

Ответ..

На этом занятии мы заканчиваем тему «Функция . Свойства квадратного корня», а на следующем уроке начинаем новую тему «Действительные числа».

Список литературы

1. Башмаков М. И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С. М., Потапов М. А., Решетников Н. Н., Шевкин А. В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал xenoid. ru .

2. Математическая школа .

3. Интернет-портал XReferat. Ru .

Домашнее задание

1. №357, 360, 372, 373, 382. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Избавьтесь от иррациональности в знаменателе: а) , б) .

3. Упростите выражение: а) , б) .

4. Докажите тождество .

dp-adilet.kz

Упрощение выражений, содержащих корни и степени

При упрощении выражений, содержащих корни и степени, прежде чем воспользоваться свойствами степени,  полезно совершить такие предварительные действия:

1. Записать корни в виде степени. Для этого нужно воспользоваться следующим  свойством:

2. Десятичную дробь записать в виде обыкновенной.

Например: 

3. Смешанные числа записать в виде неправильных дробей.

Например: 

4. Разложить основания степеней на простые множители. Или, по крайней мере, разложить на множители так, чтобы количество различных оснований было минимальным.

Решим несколько задач из Задания В11 из  Открытого банка заданий для подготовки к ЕГЭ  по математике , воспользовавшись этим правилом.

1. Задание В10 ( 26745) Найдите значение выражения .

Запишем корни в виде степени и воспользуемся свойствами степеней с одинаковым основанием:

Ответ: 1.

2. Задание В10 ( 26748) Найдите значение выражения  

Разложим число 10 в знаменателе дроби на простые множители и воспользуемся свойствами степеней:

Ответ: 5.

3.  Задание В10( 26749) Найдите значение выражения   .

Представим число 0,8 в виде обыкновенной дроби, разложим число 20 на  множители и воспользуемся свойствами степеней:

Ответ: 20.

4. Задание В10 ( 26749) Найдите значение выражения  .

Разложим число 42 на множители и воспользуемся свойствами степеней.

 

Ответ: 42.

5. Задание В10 ( 26749) Найдите значение выражения  при  .

1. Запишем корни в виде степени:

2. Воспользуемся свойствами степени, получим:

Ответ: 0,25

Вероятно, Ваш браузер не поддерживается. Попробуйте скачатьFirefox

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Как упростить сложный радикал

Автор Сергей

Четверг, Январь 26, 2017

В 8 классе школьники на уроках математики знакомятся с таким понятием, как «радикал» или, попросту говоря, «корень». Тогда же они впервые сталкиваются с такой проблемой, как упрощение сложных радикалов. Сложные радикалы – это такие выражения, в которых один корень находится под другим. Поэтому их ещё иногда называют вложенными радикалами. В данной статье репетитор по математике и физике подробно рассказывает о том, как упростить сложный радикал.

Методы упрощения сложных радикалов

Упростить сложный радикал — значит избавиться от внешнего корня. Правильнее всего начать изучение этой темы с упрощения двойных радикалов. Ведь если мы научимся упрощать двойные радикалы, то и более сложные тоже сумеем.

Пример 1. Упростить сложный радикал:

   

Как нам избавиться от внешнего корня? Понятно, что для этого нужно преобразовать подкоренное выражение, представив его в виде полного квадрата. Для этого воспользуемся известной формулой «Квадрат разности»:

   

Здесь, как видите, справа у отрицательного члена есть множитель . Поэтому и под корнем давайте получим этот множитель. Для этого представим в виде произведения на :

   

Тогда и . Осталось только обратить внимание на то, что . Теперь видно, что под корнем у нас получился квадрат разности:

   

Теперь вспоминаем, что . Именно модулю. Здесь это очень важно, потому что квадратный корень – положительное число. Тогда получаем:

   

Ну а поскольку , модуль раскрывается со знаком минус. В результате в ответе получаем:

yourtutor.info

Алгебра. 8-й класс. "Преобразование корней"

Разделы: Математика

Цели: Вывести правило «Вынесение множителя из-под знака корня», вывести правило «Внесение множителя под знак корня».

Ход урока

1. Актуализация.

Ученикам предлагается выполнить первое задание «Третий лишний». В каждой строке даны три элемента, надо установить лишний элемент. (На уроке используется презентация – Приложение 1)

Второе задание. На сколько групп можно разделить данные примеры?

  • назовите номера примеров, которые можно вычислить по теореме корень из произведения?
  • назовите номера примеров, которые можно вычислить по теореме произведение корней?

2. Проблемная ситуация.

Задание называется «Скорость счета». Задача учащихся решить 12 примеров за 1 минуту. В тетради записывать только ответы.

На доске даны примеры:

Проверка ответов см. Презентацию.

У учащихся возникает проблемная ситуация – как решить пример, если подкоренные выражения различны.

В ходе фронтальной беседы учитель подводит учащихся к тому, что сначала надо преобразовать подкоренные выражения.

3. Изучение нового материала.

3.1. Учитель объясняет, что сегодня ученики узнают два преобразования. Поэтому для удобства надо разделить полстраницы пополам. И оставить строку для названия преобразований.

Учитель: В левом столбце упростите . Каким образом можно представить подкоренное выражение?

В ходе фронтальной беседы учитель с учениками перебирают возможные варианты разложения числа 12. Обсуждают, какое из разложений удобно. Решают пример, обосновывая каждый шаг.

Появляется запись . Сравнивают подкоренные выражения в начале примера и в конце. Делают вывод, что упростили подкоренное выражение. Повторяют шаги.

Один из учеников у доски пробует таким же образом упростить ? Обсуждают название данного преобразования.

Формулируют алгоритм вынесения множителя из-под корня. В это время алгоритм появляется на экране.

3.2. После этого переходят ко второй колонке. Определяют, какое там будет преобразование. Решают пример – представить в виде корня . Обсуждают способ решения. Применяют этот способ для примера . Формулируют алгоритм, в ходе повторения шагов. Появляется алгоритм.

4. Этап закрепления нового материала.

4.1. Учитель раздает листочки, на которых записаны алгоритмы, и приведены примеры, которые решали. (Приложение 2). Ученики читают хором каждый алгоритм.

Алгоритм

Вынести множитель из-под корня

Внести множитель под корень

1. Разложить подкоренное выражение на множители удобным способом.   

1. Число, стоящее перед корнем, представить в виде корня.

2. Применить теорему «корень из произведения».

2. Применить теорему «произведение корней».

4.2. После прочтения алгоритмов, ученики решают два номера – на вынесения и внесение множителя. В каждом номере по три примера. Первый пример разбирают устно на экране компьютера. Второй пример записывают в тетради, работая с доской. Третий пример решают самостоятельно, затем решение проверяют по экрану.

Сопутствующие вопросы:

  • Кто самостоятельно решил пример?
  • У кого возникали сомнения в ходе решения?
  • Кому требуется помощь в решении примеров?
  • Кто не понял решение примера?
  • С какой целью выполнили это задание?

5. Итог урока

  • Над какой темой работали?
  • Какие цели ставили в начале урока?
  • Кто достиг поставленной цели?
  • Дать качественную оценку работы учеников на уроке.

Учитель проверяет первичное усвоение темы и получает обратную связь. На экране нужно найти соответствие между выражениями из первой и второй строк.

Ученики предлагают варианты, обсуждают и проверяют.

Учитель возвращает учеников к проблемной ситуации, возникшей вначале урока. Ученики применяют новые знания для решения примера.

Учитель совместно с учениками определяет дальнейшие действия на следующие уроки: закреплять правила и решать примеры.

6. Домашнее задание.

Выучить 2 алгоритма, выполнить примеры по листочку.

Домашнее задание.

  1. Вынести множитель из-под корня:  ; ; .
  2. Внести множитель под корень: ; ; ; .
  3. Вычислить: а); б).

Приложение 1Приложение 2Приложение 3

Поделиться страницей:

xn--i1abbnckbmcl9fb.xn--p1ai

Преобразование выражений, содержащих знак корня

Вопросы занятия:

·  вспомнить основные понятия, связанные с квадратными корнями;

·  вспомнить свойства арифметического квадратного корня;

· рассмотреть, какие преобразования можно выполнять в выражениях, содержащих знак корня.

Материал урока

Стоит напомнить, что квадратным корнем из числа 𝑎 называют такое число 𝑏, квадрат которого равен 𝑎 ().

Например, числа 8 и –8 квадратные корни из числа 64, так как  и .

Из любого неотрицательного действительного числа существует квадратный корень.

Квадратный корень из отрицательного числа не существует.

Если  – квадратный корень из числа а, то  также является квадратным корнем из числа а, и других квадратных корней из числа а нет.

Также вы помните, что арифметическим квадратным корнем из числа а называют неотрицательное число, квадрат которого равен а и обозначается он так:

Например,

Знак  называется знаком арифметического квадратного корня.

Выражение, стоящее под знаком корня, называется подкоренным выражением.

Извлечь квадратный корень из числа а – это значит найти значение выражения .

Выражение  при  не имеет смысла.

Не путайте квадратный корень и арифметический квадратный корень из числа.

Запись  читают «квадратный корень из а». Слово «арифметический» при чтении опускают.

Значок  всегда означает «арифметический квадратный корень из числа».

Из определения квадратного корня следует тождество:

Например,

Напомним, что над выражениями, содержащими квадратные корни можно выполнять ряд преобразований. К таким преобразованиям относят: преобразования корней из произведения, дроби и степени; умножение и деление корней; вынесение множителя за знак корня, внесение множителя под знак корня и избавление от иррациональности в знаменателе.

Теперь стоит повторить свойства арифметического квадратного корня и их применения.

Итак, первое свойство: если  и , то .

Чтобы извлечь квадратный корень из произведения неотрицательных чисел, можно извлечь его из каждого сомножителя отдельно и результаты перемножить.

Следует помнить, что это свойство распространяется и на тот случай, когда подкоренное выражение представляет собой произведение трёх, четырёх и т.д. неотрицательных множителей.

Например, если , , , то .

Сделаем вывод: корень из неотрицательных множителей равен произведению корней из этих множителей.

Верно и обратное утверждение: произведение корней из неотрицательных чисел равно корню из произведения этих чисел.

Задание.

Вычислить значение выражения:

а) ;                                        б) .

Первое выражение: . Воспользуемся свойством корня из произведения. Тогда корень из произведения этих чисел можно записать произведением корней, т.е. произведением . Найдём значения каждого из корней. В результате получим,

Следующее выражение: . Воспользуемся свойством корня из произведения. Тогда произведение этих корней равно корню из произведения . Затем представим подкоренное выражение в виде множителей, каждый из которых является квадратом целого числа. Тогда произведение значений каждого корня равно:

Следующее свойство: если  и , то .

Чтобы извлечь квадратный корень из дроби, можно извлечь корень отдельно из числителя и знаменателя и первый результат разделить на второй.

Сделаем вывод: корень из дроби, числитель которой неотрицателен, а знаменатель положителен, равен корню из числителя, делённому на корень из знаменателя.

Верно и обратное утверждение: частное корней равно корню из частного этих чисел.

Задание.

Вычислить значение выражения:

а);                                                      б) .

Первое выражение: . Найдём его значение. Представим подкоренное выражение в виде неправильной дроби. Получим,

Следующее выражение: . Воспользуемся свойством корня из дроби. Тогда получим,

Перейдём к следующему свойству: при любом значении а верно равенство: .

Равенство  является тождеством. Это тождество применяется при извлечении квадратного корня из степени с чётным показателем.

Чтобы извлечь корень из степени с чётным показателем, достаточно представить подкоренное выражение в виде квадрата некоторого выражения и воспользоваться тождеством: .

Задание.

Найти значение выражения:

а) ;                           б) ;                     в) .

Первое выражение: . Видим, в подкоренном выражении записана чётная степень. Применим свойство корня из степени с чётным показателем. Тогда, получим,

Следующее выражение: . Как и в предыдущем  выражении под корнем имеем чётную степень. Значит, можем воспользоваться свойством корня из чётной степени. Тогда получим,

И последнее выражение: . Перепишем подкоренное выражение, как . Теперь в подкоренном выражении имеем чётную степень. По свойству корня из степени с чётным показателем получим,

А теперь давайте перейдём к таким преобразованиям выражений, содержащих квадратные корни, как вынесение множителя из-под знака корня и внесение множителя под знак корня.

Итак, если  и , то .

Такое преобразование называют вынесением множителя из-под знака корня.

Задание.

Вынесите множитель из-под знака корня:

а) ;                                                            б) .

Первое выражение: . Представим подкоренное выражение в виде произведения 16 и 2. Число 16 – это, в свою очередь, 42. Тогда получим,

Следующее выражение: . Аналогично предыдущему примеру, подкоренное выражение представим в виде произведения 4 и 17. Упростим произведение. В итоге получим,

Если  и , то .

Если  и , то .

Такое преобразование называют внесением множителя под знак корня.

Задание.

Внесите множитель под знак корня:

а) ;                                                            б) .

Первое выражение: . Представим число 5 в виде арифметического квадратного корня. Выполним умножение, применяя свойство корня из произведения. Получим,

Следующее выражение: . Число 0,3 представим в виде произведения  и 0,3. Затем число 0,3 представим в виде корня. Воспользуемся свойством корня из произведения. Посчитаем. Получим,

Очень важное место в преобразовании выражений, содержащих квадратные корни, занимает избавление от иррациональности в знаменателе или числителе дроби.

Если , то .

Такое преобразование называют избавлением от иррациональности в знаменателе дроби.

Задание.

Избавиться от иррациональности в знаменателе дроби:

а) ;                         б) ;                     в) .

Первое выражение: . Чтобы избавиться от иррациональности в знаменателе дроби, нам пригодится основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же число, не равное нулю, то значение дроби не изменится. Т.е. чтобы избавиться от корня в знаменателе дроби мы можем числитель и знаменатель дроби умножить на этот корень. Умножим числитель и знаменатель нашей дроби на . Упростим числитель и знаменатель дроби. Получим,

Следующее выражение. Умножим числитель и знаменатель дроби на . Упростим. В итоге получим,

Следующее выражение немного посложнее: . Но не стоит сразу пугаться! Чтобы избавиться от иррациональности в данной дроби, нам следует обратиться к формуле разности квадратов. Для применения этой формулы нам нужно умножить числитель и знаменатель дроби на выражение . Сворачивая знаменатель по формуле разности квадратов, получим,

Посмотрите, мы избавились от иррациональности в знаменателе. Выражение  называют сопряжённым выражением по отношению к выражению . Поэтому очень часто вместо того чтобы говорить умножим числитель и знаменатель на сумму или разность тех или иных выражений, говорят просто «умножим на сопряжённое выражение знаменателю (числителю)».

А теперь давайте рассмотрим задания на преобразование выражений, которые содержат квадратные корни.

Задание.

Упростить выражение:

.

Рассмотрим выражение: . Каждое подкоренное выражение представим в виде произведения, таким образом, чтобы хотя бы один из множителей являлся квадратом натурального числа. Затем воспользуемся свойством корня из произведения. Теперь применим свойство корня из степени с чётным показателем. Упростим получившееся выражение. Обратите внимание, все слагаемые в нашем примере имеют корни с одинаковыми подкоренными выражениями. И отличаются лишь коэффициентами, записанными перед ними. Корни, которые имеют одинаковые подкоренные выражения, являются подобными слагаемыми. Чтобы привести подобные слагаемые достаточно сложить их коэффициенты и умножить на одинаковое выражение, содержащее корень. Приведём подобные слагаемые в нашем примере. Получим,

Задание.

Преобразовать выражение:

.

Воспользуемся формулой квадрата суммы. Упростим это выражение. Воспользуемся следствием из определения квадратного корня. Затем применим свойство корня из произведения. Приведём подобные. В итоге получим,

Задание.

Сократить дроби:

а) ;                                                        б) .

Рассмотрим первую дробь: . Напомним, что для выполнения сокращения дроби необходимо разложить выражения (в числителе или знаменателе) на множители. Для этого используют вынесение общего множителя за скобки или же применяют формулы сокращённого умножения. В нашем случае в числителе дроби число 7 можно представить, как . Тогда вынесем общий множитель  за скобку. Смотрите, дробь можно сократить на выражение . После сокращения получим,

Теперь перейдём ко второй дроби: . Заметим, что в числителе  можно представить, как , а 2, как . Тогда числитель данной дроби можно разложить по формуле разности квадратов двух выражений. Сократим дробь на выражение . В результате получим,

Итоги урока

На этом уроке поговорили о «преобразовании выражений, содержащих знак корня». Вспомнили основные понятия, связанные с квадратными корнями. Поговорили о свойствах арифметического квадратного корня. А затем рассмотрели, какие преобразования можно выполнять в выражениях, содержащих знак корня.

videouroki.net

Преобразование выражений, содержащих квадратные корни (2)

Тема: Преобразование выражений, содержащих квадратные корни

Лекция.

- Вспомним основные понятия, связанные с квадратным корнем.

Теорема 1. Если , то .

Теорема 2. Если , то .

Теорема 3. При любом значении х верно равенство .

.

Теорема 4. , при .

- Рассмотрим простейшие примеры на применение свойств квадратного корня.

Пример 1. Найти значение выражения .

Для нахождения значения выражения, воспользуемся теоремой о корне из произведения:

Пример 2. Вычислить значение выражения .

- При вычислении значения выражения необходимо: во-первых, определить, можно ли применить теорему о корне из произведения, то есть можно ли извлечь корень из каждого множителя, если нет, то, во-вторых, следует подкоренное выражение представить в виде произведения множителей, каждый из которых является квадратом целого числа и применить теорему о корне из произведения.

Пример 3. Найти значение выражения

- По теореме о корне из дроби имеем

Пример 4. Найти значение выражения .

Применим тождество .

Получим: =4.

Пример 5. Найти значение выражения

Применим тождество

Получим:

Пример 6. Упростить выражение

Представим степень в виде и воспользуемся тождеством , получим:.

Так как при любом m, то . Итак, .

Также можно воспользоваться равенством .

.

Говоря простым языком, если под корнем степень с четным показателем, то при извлечении квадратного корня из этой степени, получаем степень с показателем в 2 раза меньшим.

Пример 7. Вычислить

Решение.

1 способ: Возведем в квадрат каждое число, из полученного уменьшаемого вычтем вычитаемое.

2 способ: Воспользуемся формулой сокращенного умножения

Пример 8. Вычислить , не используя таблицу квадратов чисел и микрокалькулятор.

Решение.

Разложим подкоренное число на простые множители:

Значит, . Получаем, что

Вынесение множителя за знак корня

Для того чтобы вынести множитель из под знака корня, необходимо, выражение, стоящее под знаком корня, разложить на множители так, чтобы корень извлекался хотя бы из одного множителя.

Пример 9.

а) ;

b) ;

c)

Внесение множителя под знак корня

Для того чтобы внести множитель под знак квадратичного корня, надо возвести в квадрат этот множитель и внести его под корень.

Пример 10. а) ;

b) ;

c) .

Пример 11. Расположите числа в порядке возрастания :

- Чтобы расположить числа в порядке возрастания, сначала в каждом из чисел внесем множитель под знак корня:

- Расположим в порядке возрастания полученные числа, т.е. больше то число, у которого подкоренное выражение больше:

Следовательно

Пример 12. Упростить выражение .

Решение.

Воспользуемся тождеством .

Раскроем знак модуля, т.е. воспользуемся тем, что . Значит,

. Но тогда .

Пример 13. Упростить выражение .

Приведем к наименьшему общему знаменателю дроби, применим формулы сокращенного умножения:

Пример 14. Упростить выражение .

Решение:

Воспользуемся свойством умножения корней, т.е. подкоренные выражения внесем под один корень, далее воспользуемся формулой разности квадратов:

.

gigabaza.ru

Как упростить подкоренное выражение

5 методика:Квадратные числаЧисла, из которых берется целый кубический кореньОбычные подкоренные выраженияПодкоренные выражения с переменнойПодкоренные выражения с переменными и коэффициентами

Подкоренное выражение – математическое выражение, стоящее под знаком корня. Корнем может быть квадратный корень, кубический корень или корень любой другой степени. Упрощение подкоренного выражения может помочь вам решить задачу. Упрощение подкоренных выражений включает в себя вынесение из-под корня (когда это возможно) или уменьшение подкоренного выражения настолько, насколько это возможно. Если вы хотите научиться упрощать подкоренные выражения, выполните следующие действия.

Шаги

Метод 1 из 5: Квадратные числа

  1. 1 Упрощение подкоренных выражений, являющихся квадратными числами. Квадратное число – любое целое число, квадратный корень которого тоже целое число. Например, 81, квадратный корень которого = 9 (9 х 9 = 81). Для упрощения подкоренного выражения, которое является квадратным числом, просто удалите знак корня и запишите число, которое является квадратным корнем из квадратного числа.
    • Например, 121 – квадратное число, потому что 11 х 11 = 121. Вы можете просто удалить знак корня и написать 11 в качестве ответа.
    • Чтобы упростить этот процесс, вы должны запомнить первые двенадцать квадратов : 1 х 1 = 1, 2 х 2 = 4 , 3 х 3 = 9 , 4 х 4 = 16, 5 х 5 = 25 , 6 х 6 = 36 , 7 х 7 = 49 , 8 х 8 = 64 , 9 х 9 = 81 , 10 х 10 = 100 , 11 х 11 = 121 , 12 х 12 = 144

Метод 2 из 5: Числа, из которых берется целый кубический корень

  1. 1 Упрощение подкоренных выражений, представляющие собой числа, из которых берется целый кубический корень. Это такие целые числа, кубический корень которых тоже целое число. Например, число 27, кубический корень которого = 3 (3 х 3 х 3 = 27). Для упрощения подкоренного выражения, которое является таким числом, просто удалите знак корня и запишите число, которое является кубическим корнем подкоренного числа.
    • Например, из 512 можно извлечь целый кубический корень, потому что 8 х 8 х 8 = 512. Таким образом, кубический корень из 512 = 8.

Метод 3 из 5: Обычные подкоренные выражения

  1. 1 Разложите обычное подкоренное выражение на множители. Пара множителей - два числа, которые при перемножении дают исходное число. Например, 5 и 4 пара множителей числа 20. Чтобы разложить обычное подкоренное выражение на множители, запишите все множители этого числа (или столько, сколько вы можете представить, если это число большое) и найдите среди них квадратное число.
    • Например, множители числа 45: 1 , 3 , 5, 9 , 15 и 45. 9 - множитель 45 (9 х 5 = 45) и также является квадратным числом.
  2. 2 Вынести из-под корня квадратные числа. 9 является квадратным числом, потому что 3 х 3 = 9. Вынесите 9 из-под корня и напишите 3 перед ним, оставив 5 под корнем. Если вы внесете число 3 назад под корень, оно умножится сама на себя, что =9, а это значение, умноженное на 5, = 45. 3 корень из 5 есть упрощенная форма корня из 45.

Метод 4 из 5: Подкоренные выражения с переменной

  1. 1 Найдите квадратную переменную. Квадратный корень из а во второй степени будет а. Квадратный корень из а в третьей степени разлагается на квадратный корень из произведения а в квадрате на а (при умножении степени складываются, поэтому заменяем 3=2+1).
    • Таким образом, квадратной переменной в выражении а в кубе есть а в квадрате.
  2. 2 Вынесите любые переменные, которые являются квадратными, из-под знака корня. Теперь возьмите а в квадрате и вынесите его из-под корня, что равно а. Упрощенная форма корня из а в кубе есть а корень из а.

Метод 5 из 5: Подкоренные выражения с переменными и коэффициентами

  1. 1 Упрощение подкоренного выражения с переменными и коэффициентами, которые являются квадратными . Чтобы сделать это, просто разбейте выражение на две части: сначала ищете квадратные коэффициенты , а затем ищете квадратные переменные. Затем вынесите их из-под корня. Рассмотрим пример квадратного корня из 36 x a в квадрате.
    • 36 – квадратное число, потому что 6 х 6 = 36.
    • a в квадрате – квадратная переменная, так как a умножить на a равно a в квадрате.
    • Теперь, когда вы нашли квадратные коэффициенты и переменные, вынесите их из-под корня. Квадратный корень из 36 x a в квадрате равно 6a.
  2. 2 Упрощение подкоренного выражения с коэффициентами и переменными, которые не являются квадратными. Чтобы сделать это, просто разбейте выражение на две части: сначала ищите любые квадратные коэффициенты, а затем ищите любые квадратные переменные. Затем вынесите найденные квадратные переменные и коэффициенты из-под знака корня. Например, рассмотрим квадратный корень из 50 x a в кубе.
    • Разложите 50 на множители, чтобы найти среди них квадратное число. 25 х 2 = 50 и 25 является квадратным числом, потому что 5 х 5 = 25 . Для упрощения корня из 50, вынесите 5 из-под корня и оставьте 2 под корнем.
    • Разложите "а" в третьей степени, чтобы найти квадратную переменную. а в кубе равно произведению а в квадрате на а, где а в квадрате – квадратная переменная. Вынесите а из-под знака корня и оставьте а под знаком корня. Таким образом, корень из а в кубе равен а корень из а.
    • Соедините две части. Просто перемножьте между собой все, что вы вынесли из-под знака корня. Так же поступите с выражениями, оставшимися под корнем. Соедините 5 корень из 2 и а корень из а в выражение: 5 х а корень из 2 х а.

Советы

  • Существуют сайты в Интернете , на которых можно упростить подкоренное выражение. Вы просто вводите подкоренное выражение и в результате видите упрощенное выражение.

Дополнительные статьи

ves-mir.3dn.ru