11 класс. Алгебра. Интеграл. Первообразная. Неопределенный и определенный интеграл. Как решать первообразная


Первообразная. Алгебра, 11 класс: уроки, тесты, задания.

1. Первообразная для функции

Сложность: лёгкое

1
2. Первообразная тригонометрической функции

Сложность: лёгкое

1
3. Первообразные степенной функции

Сложность: лёгкое

3
4. Первообразные дробной функции

Сложность: среднее

4
5. Первообразные функции, содержащей квадратные корни

Сложность: среднее

4
6. Первообразные сложной функции

Сложность: среднее

4
7. Первообразные сложной тригонометрической функции

Сложность: среднее

3
8. Первообразные тригонометрической функции

Сложность: среднее

3
9. Разность первообразных

Сложность: сложное

2
10. Закон движения точки

Сложность: сложное

4
11. Первообразная функции, содержащей квадратный корень, график кот. проходит через данную точку

Сложность: сложное

4

www.yaklass.ru

Примеры решений неопределенных интегралов

  • Попробуйте решить приведенные ниже неопределенные интегралы.
  • Нажмите на изображение интеграла, и вы попадете на страницу с подробным решением.

Примеры на основные формулы и методы интегрирования

См разделОсновные формулы и методы интегрирования > > >

    Решение > > >     Решение > > >     Решение > > >     > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >

Примеры интегрирования рациональных функций (дробей)

См разделИнтегрирование рациональных функций (дробей) > > >

    > > >           > > >           > > >           > > >           > > >           > > >           > > >      

Примеры интегрирования иррациональных функций (корней)

См разделМетоды интегрирования иррациональных функций (корней) > > >

    > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >

Примеры интегрирования тригонометрических функций

См разделМетоды интегрирования тригонометрических функций > > >

    > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >           > > >      

Автор: Олег Одинцов.     Опубликовано: 21-01-2016

1cov-edu.ru

11-а, Решение интегралов

Решение интегралов. Рассказываем, как решать интегралы.

Интеграл – расширенное математическое понятие суммы. Решение интегралов или их нахождение называется интегрированием. Пользуясь интегралом можно найти такие величины, как площадь, объем, массу и другое. Решение интегралов (интегрирование) есть операция обратная диференциированию. Чтобы лучше представлять, что есть интеграл, представим его в следующей форме. Представьте. У нас есть тело, но пока не можем описать его, мы только знаем какие у него элементарные частицы и как они расположены. Для того, чтобы собрать тело в единое целое необходимо проинтегрировать его элементарные частички – слить части в единую систему. В геометрическом виде для функции y=f(x), интеграл представляет собой площадь фигуры ограниченной кривой, осью х, и 2-мя вертикальными линиями х=а и х=b .

Так вот площадь закрашенной области, есть интеграл от функции в пределах от a до b. Не верится? Проверим на любой функции. Возьмем простейшую у=3. Ограничим функцию значениями а=1 и b=2. Построим:Итак ограниченная фигура прямоугольник. Площадь прямоугольника равна произведению длины на ширину. В наше случае длина 3, ширина 1, площадь 3*1=3. Попробуем решить тоже самое не прибегая к построению, используя интегрирование:Как видите ответ получился тот же. Решение интегралов – это собирание во едино каких-либо элементарных частей. В случае с площадью суммируются полоски бесконечно малой ширины. Интегралы могут быть определенными и неопределенными. Решить определенный интеграл значит найти значение функции в заданных границах. Решение неопределенного интеграла сводиться к нахождению первообразной.F(x) – первообразная. Дифференцируя первообразую, мы получим исходное подинтегральное выражение. Чтобы проверить правильно ли мы решили интеграл, мы дифференциируем полученный ответ и сравниваем с исходным выражением. Основные функции и первообразные для них приведены в таблице:

Таблица первообразных для решения интегралов

Основные приемы решения интегралов: Решить интеграл, значит проинтегрировать функцию по переменной. Если интеграл имеет табличный вид, то можно сказать, что вопрос, как решить интеграл, решен. Если же нет, то основной задачей при решении интеграла становиться сведение его к табличному виду. Сначала следует запомнить основные свойства интегралов:

Знание только этих основ позволит решать простые интегралы. Но следует понимать, что большинство интегралов сложные и для их решения необходимо прибегнуть к использованию дополнительных приемов. Ниже мы рассмотрим основные примеры решения интегралов. Приемы будет даны для общего ознакомления без примеров решения, чтобы не перегружать статью. Нужно понимать, что за 5 минут прочтения статьи решать все сложные интегралы вы не научитесь, но правильно сформированный каркас понимания, позволит сэкономить часы времени на обучение и выработку навыков по решению интегралов.

Основные приемы решения интегралов

1. Замена переменной. Для выполнения данного приема потребуется хороший навык нахождения производных.

2. Интегрирование по частям. Пользуются следующей формулой. Применения этой формулы позволяет казалось бы нерешаемые интегралы привести к решению.

3. Интегрирование дробно-рациональных функций. - разложить дробь на простейшие- выделить полный квадрат.- создать в числителе дифференциал знаменателя.

4. Интегрирование дробно-иррациональных функций. - выделить под корнем полный квадрат- создать в числителе дифференциал подкоренного выважения. 5. Интегрирование тригонометрических функций.При интегрировании выражений вида применяет формулы разложения для произведения. Для выраженийm-нечетное, n –любое, создаем d(cosx). Используем тождество sin2+cos2=1 m,n – четные, sin2x=(1-cos2x)/2 и cos2x=(1+cos2x)/2 Для выражений вида: - Применяем свойство tg2x=1/cos2x – 1

1. Разобраться в сути интегралов. Необходимо понять базовую сущность интеграла и его решения. Интеграл по сути есть сумма элементарных частей объекта интегрирования. Если речь идет об интегрирование функции, то интеграл есть площадь фигуры между графиком функции, осью х и границами интегрирования. Если интеграл неопределенный, то есть границы интегрирования не указаны, то решение сводиться к нахождению первобразной. Если интеграл определенный, то необходимо подставить значения границ в найденную функцию. 2. Отработать использование таблицы первообразных и основным свойства интегралов. Необходимо научиться пользоваться таблицей первообразных. По множеству функций первообразные найдены и занесены в таблицу. Если мы имеем интеграл, которые есть в таблице, можно сказать, что он решен. 3. Разобраться в приемах и наработать навыки решения интегралов.Если интеграла не табличного вида, то его решение сводиться к приведению его к виду одного из табличных интегралов. Для этого мы используем основные свойства и приемы решения. В случае, если на каких то этапах применения приемов у вас возникают трудности и непонимания, то вы более подробно разбираетесь именно по этому приему, смотрите примеры подобного плана, спрашиваете у преподавателя. Дополнительно после решения интеграла на первых этапах рекомендуется сверять решение. Для этого мы дифференциируем полученное выражение и сравниваем с исходным интегралом. Отработаем основные моменты на нескольких примерах:

Примеры решения интегралов

Пример 1: Решить интеграл: Интеграл неопределенный. Находим первообразную. Для этого интеграл суммы разложим на сумму интегралов.Каждый из интегралов табличного вида. Смотрим первообразные по таблице. Решение интеграла:Проверим решение(найдем производную):

Пример 2. Решаем интеграл Интеграл неопределенный. Находим первообразную. Сравниваем с таблицей. В таблице нет. Разложить, пользуясь свойствами, нельзя. Смотрим приемы. Наиболее подходит замена переменной. Заменяем х+5 на t5. t5 = x+5 . Получаем. Но dx нужно тоже заменить на t. x= t5 - 5, dx = (t5 - 5)’ = 5t4. Подставляем: Интеграл из таблицы. Считаем:Подставляем в ответ вместо t ,Решение интеграла:

Пример 3. Решение интеграла: Для решения в этом случае необходимо выделить полный квадрат. Выделяем:

В данном случае коэфециент ½ перед интегралом получился в результате замены dx на ½*d(2x+1). Если вы найдете производные x’ = 1 и ½*(2x+1)’= 1, то поймете почему так. В результате мы привели интеграл к табличному виду. Находим первообразную. В итоге получаем:

studfiles.net

Вычисление определенного интеграла

Здравствуйте. Меня зовут Андрей Зварыч. Я онлайн-репетитор сайта Tutoronline по высшей математике. Очень часто ко мне обращаются студенты с просьбой помочь разобраться с вычислением определенных интегралов. Сегодня я покажу несколько примеров решения. Надеюсь, моя статья будет полезной.

Итак, если F(x) – одна из первообразных непрерывной функции f(x) на [a,b], то справедлива формула Ньютона-Лейбница

Если функция f(x) непрерывна на отрезке [a,b], а функция x = φ(t) непрерывно дифференцирована на отрезке [t1,t2], причем a = φ(t1), b = φ(t2), то имеет место формула

Если функции u(x), v(x) и их производные u'(x), v'(x) непрерывны на отрезке [a,b], то справедлива формула интегрирования по частям

Пример 1. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (1) имеем:

Пример 2. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (1) имеем:

Пример 3. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (1) имеем:

Пример 4 Вычислить интеграл

Решение.

На основании формулы произведения синусов, таблицы основных интегралов и формулы (1) имеем:

 

Пример 5. Вычислить интеграл

Решение.

Разложим подынтегральную функцию на сумму простых дробей,

 

Решив систему

Получим 

Тогда на основании таблицы основных интегралов и формулы (1) имеем

Пример 6. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (2) имеем:

Сделаем замену ex + 4 = t2, тогда ex= t2– 4, ex dx = 2t dt,  

Если x= ln5, то t = 3; если x= ln12, то t = 4. Тогда

Пример 7. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (2) имеем:

Пример 8. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (2) имеем:

Сделаем подстановку t = cosx

Если x = 0, то t = cos 0 = 1, если

Следовательно

Пример 9. Вычислить интеграл

Решение.

На основании таблицы основных интегралов и формулы (2) имеем:

Найдем пределы по t:

Находим

Следовательно,

Пример 10. Вычислить интеграл

Решение.

Хороший метод решения интегралов, это метод занесения под дифференциал, его плюс состоит в том, что не требуется менять пределы интегрирования

Пример 11. Вычислить интеграл

Решение. На основании таблицы основных интегралов и формулы (3) имеем (интегрируем по частям)

Если у Вас остались вопросы или Вам нужна помощь в решении "ваших интегралов", записывайтесь на мои занятия. Буду рад Вам помочь!

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Подготовка школьников к ЕГЭ в учебном центре «Резольвента» (Справочник по математике - Элементы математического анализа

Первообразная

      Определение 1. Функцию   F (x) ,   определенную на интервале   (a, b),   называют первообразной функции   f (x) ,   определенной на интервале   (a, b),   если для каждого выполнено равенство

F' (x) = f (x) .

      Например, из справедливости равенства

(sin 2x)' = 2 cos 2x

вытекает, что функция   F (x) = sin 2x   является первообразной функции   f (x) = 2 cos 2x .

      Замечание. Функция   F (x) = sin 2x   не является единственной первообразной функции   f (x) = 2 cos 2x ,   поскольку функция   F (x) = sin 2x + 10 ,   или функция   F (x) = sin 2x – 3 ,   или функции вида   F (x) = sin 2x + c ,   где   c   – любое число, также являются первообразными функции   f (x) = 2 cos 2x .

      Справедлива следующая теорема, доказательство которой выходит за рамки школьного курса математики.

      Теорема 1. Если функция   F (x)   является первообразной функции   f (x)   на интервале   (a, b) ,   то любая другая первообразная функции   f (x)   на интервале   (a, b)   имеет вид

F (x) + с ,

где   c   – некоторое число.

Неопределенный интеграл

      Определение 2. Множество всех первообразных функции   f (x)   называют неопределенным интегралом от функции   f (x)   и обозначают

(1)

      Обозначение (1) читается так: «Неопределенный интеграл от функции   f (x)   по   dx» .

      Если   F (x)   является первообразной   f (x) ,   то в силу теоремы 1 смысл формулы (1) заключается в следующем:

(2)

      Однако для упрощения формулу (2) принято записывать в виде

(3)

подразумевая, но не указывая специально, что   c   – любое число.

      В формуле (3) функцию   f (x)   называют подынтегральной функцией, выражение   f (x) dx   нызывают подынтегральным выражением, а число   c   называют постоянной интегрирования.

      Операцию вычисления (взятия) интеграла по известной подынтегральной функции называют интегрированием функции.

Правила интегрирования. Замена переменной в неопределенном интеграле

      Вычисление интегралов (интегрирование) основано на применении следующих правил, которые непосредственно вытекают из правил вычисления производных.

      Правило 1 (интеграл от произведения числа на функцию). Справедливо равенство

где   k   – любое число.

      Другими словами, интеграл от произведения числа на функцию равен произведению этого числа на интеграл от функции.

      Правило 2 (интеграл от суммы функций). Интеграл от суммы функций вычисляется по формуле

то есть интеграл от суммы функций равен сумме интегралов от этих функций.

      Правило 3 (интеграл от разности функций). Интеграл от разности функций вычисляется по формуле

то есть интеграл от разности функций равен разности интегралов от этих функций.

      Правило 4 (интегрирование при помощи замены переменной). Из справедливости формулы

вытекает, что      

(4)

если все входящие в формулу (4) функции   f (φ (x)),   φ' (x),   F (φ (x))   определены.

      Доказательство правила 4. Воспользовавшись формулой для производной сложной функции, вычислим производную от правой части формулы (4):

      Мы получили подынтегральную функцию из левой части формулы (4), что и требовалось.

      Замечание. Рассмотрим частный случай формулы (4), когда функция   φ (x)   является линейной функцией, то есть

φ (x) = kx + b ,

что   k   и   b   – произвольные числа, .

      В этом случае

φ' (x) = k ,

и формула (4) принимает вид

(5)

      Формула (5) часто используется при решении задач.

Таблица интегралов

      Следующая таблица неопределенных интегралов составлена на основе таблицы производных часто встречающихся функций, а также на основе таблицы производных сложных функций

Основная формулаОбобщения

, где   k – любое число

где   n – любое число, не равное   – 1

,

где   n, k, b – любые числа, ,

где   n – любое число,

,   x > 0

,

где   k, b – любые числа, , kx + b > 0

где   φ (x) > 0

,

где   k, b – любые числа,

где   a – любое положительное число, не равное 1

,

где  a – любое положительное число, не равное 1,   k, b – любые числа,

,

где  a – любое положительное число, не равное 1

,

где   k, b – любые числа,

,

где   k, b – любые числа,

,

где   k, b – любые числа, ,

,

,

где   k, b – любые числа, ,

,

  | x | < 1

где   k, b – любые числа, ,| kx + b | < 1

| φ (x) | < 1

где   a, b – любые числа,

,

где   k, b – любые числа,

где   a, b – любые числа,

Основная формула:

Обобщения:

, где   k – любое число

Основная формула:

где   n – любое число, не равное   – 1 .

Обобщения:

,

где   n, k, b – любые числа, ,

_____

где   n – любое число,

Основная формула:

,   x > 0

Обобщения:

,

где   k, b – любые числа, ,   kx + b > 0

_____

где   φ (x) > 0

Основная формула:

Обобщения:

,

где   k, b – любые числа,

_____

Основная формула:

,

где   a – любое положительное число, не равное 1 .

Обобщения:

,

где  a – любое положительное число, не равное 1,   k, b – любые числа,

_____

,

где  a – любое положительное число, не равное 1

Основная формула:

Обобщения:

,

где   k, b – любые числа,

_____

Основная формула:

Обобщения:

,

где   k, b – любые числа,

_____

Основная формула:

где  

Обобщения:

,

где   k, b – любые числа, ,

_____

,

где  

Основная формула:

где  

Обобщения:

,

где   k, b – любые числа, ,

_____

,

Основная формула:

  | x | < 1

Обобщения:

где   k, b – любые числа, , | kx +b | < 1

_____

где   | φ (x) | < 1

_____

где   a, b – любые числа,

Основная формула:

Обобщения:

,

где   k, b – любые числа,

_____

_____

где   a, b – любые числа,

Примеры решения задач

      Пример 1. Вычислить интеграл

      Решение. Воспользовавшись свойствами степеней, а затем правилами интегрирования и формулами из таблицы неопределенных интегралов формулами из таблицы неопределенных интегралов, получаем

Ответ.

      Пример 2. Значение первообразной   F (x)   функции   f (x) = – 4 sin x   в точке   x = 0   равно   9.   Найти .

      Решение. Поскольку Поскольку

то

      Подставляя в формулу (6) значение   x = 0 ,   находим значение постоянной интегрирования   c:

F (0) = 4 cos 0 + c = 9,

4 + c = 9,     c = 5.

      Следовательно,

F (x) = 4 cos x + 5

      Поэтому

      Ответ.  7

      Пример 3. Найти первообразную   F (x)   функции

если   F (2π) = 2e + 3.

      Решение. Воспользовавшись формулой из таблицы неопределенных интегралов формулой из таблицы неопределенных интегралов

для функции   φ (x) = cos x ,   получаем

      Следовательно,

(7)

      Подставляя в формулу (7) значение   x = 2π,   находим значение постоянной интегрирования   c:

      Итак,

c = 3e +3 .

      Ответ. 

      Пример 4. Вычислить интеграл

      Решение. Воспользовавшись формулой из таблицы неопределенных интегралов формулой из таблицы неопределенных интегралов

для функции   φ (x) = ex,   получаем

      Ответ. 

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

11 класс. Алгебра. Интеграл. Первообразная. Неопределенный и определенный интеграл. - Первообразная. Правила отыскания первообразных.

Комментарии преподавателя

При­мер на­хож­де­ния пер­во­об­раз­ной

Ма­те­ма­ти­че­ские за­да­чи, опе­ра­ции часто раз­ли­ча­ют­ся как пря­мые и об­рат­ные. На­при­мер: сло­же­ние и вы­чи­та­ние, умно­же­ние и де­ле­ние. Мы в по­след­нее время за­ни­ма­лись диф­фе­рен­ци­ро­ва­ни­ем, то есть на­хож­де­ни­ем про­из­вод­ных. На этом уроке мы зай­мем­ся об­рат­ной опе­ра­ци­ей – ин­те­гри­ро­ва­ни­ем, или на­хож­де­ни­ем пер­во­об­раз­ных.

Пря­мая за­да­ча:

Дано: .

Найти:.

При­мер:

Об­рат­ная за­да­ча:

Дано: .

Найти: .

При­мер:

  

 – пер­во­об­раз­ная для .

Стро­гое опре­де­ле­ние пер­во­об­раз­ной функ­ции

Опре­де­ле­ние:

Функ­цию  на­зы­ва­ют пер­во­об­раз­ной для функ­ции  на за­дан­ном про­ме­жут­ке , если для всех  вы­пол­ня­ет­ся ра­вен­ство:

За­кре­пим опре­де­ле­ние кон­крет­ны­ми при­ме­ра­ми.

При­ме­ры:

 – пер­во­об­раз­ная для , так как

 – пер­во­об­раз­ная для , так как

, то есть 

 – пер­во­об­раз­ная для , так как

 

Вспом­ним, что для на­хож­де­ния про­из­вод­ных су­ще­ство­ва­ла таб­ли­ца про­из­вод­ных. Точно так же, для на­хож­де­ния пер­во­об­раз­ных, име­ет­ся таб­ли­ца пер­во­об­раз­ных, часть ко­то­рой пред­став­ле­на далее (Табл. 1):

 

Функ­ция 

Пер­во­об­раз­ная 

1

0

1

2

1

3

4

5

Табл. 1. Таб­ли­ца пер­во­об­раз­ных

Про­ве­рим рас­смот­рен­ную часть таб­ли­цы, то есть про­ве­рим опре­де­ле­ние:

1.  

2. 

3. 

4. 

5.  

Таким об­ра­зом, эта часть таб­ли­цы про­ве­ре­на.

Про­дол­жим изу­че­ние и обос­но­ва­ние таб­ли­цы. Сле­ду­ю­щая часть таб­ли­цы пер­во­об­раз­ных пред­став­ле­на ниже (Табл. 2):

 

Функ­ция 

Пер­во­об­раз­ная 

6

7

8

9

10

Табл. 2. Таб­ли­ца пер­во­об­раз­ных (про­дол­же­ние)

По­лез­но про­ве­рить, обос­но­вать и до­ка­зать дан­ную часть таб­ли­цы.

6.  

7. 

8. 

9.  

10.  

Таб­ли­ца обос­но­ва­на.

Те­перь мы имеем опре­де­ле­ние пер­во­об­раз­ной и таб­ли­цу пер­во­об­раз­ных, обос­но­ван­ную этим опре­де­ле­ни­ем. Про­дол­жим ре­ше­ние задач на опре­де­ле­ние пер­во­об­раз­ной.

До­ка­жи­те: 

 

а) 

До­ка­за­тель­ство:

б) 

До­ка­за­тель­ство:

Рас­смот­рим еще одну за­да­чу.

До­ка­жи­те: 

 

До­ка­за­тель­ство:

На­по­ми­на­ние:

1. 

www.kursoteka.ru

Первообразная и неопределенный интеграл

Константа интегрирования

Доказательство. Так как – первообразная функции , то по определению имеем, что

   

Рассмотрим функцию и покажем, что она также является первообразной для функции . Найдем производную:

   

То есть , а это означает, что и функция является первообразной для функции .

Что и требовалось доказать.

Правила нахождения первообразных

  1. Если – первообразная для функции , а – первообразная функции , то – первообразная функции .
  2. Если – первообразная для функции , а – некоторое число, то является первообразной для функции .
  3. Если является первообразной функции , а и – некоторые числа, то функция – первообразная для функции .
Понравился сайт? Расскажи друзьям!

ru.solverbook.com