Решение квадратных неравенств методом параболы. Как решать квадратное неравенство


Квадратные неравенства. Как решать квадратные неравенства?

Квадратными неравенствами называют неравенства, которые можно привести к виду \(ax^2+bx+c\) \(⋁\) \(0\), где \(a\),\(b\) и \(с\) - любые числа (причем \(a≠0\)), \(x\) – неизвестная переменная, а \(⋁\) –  любой из знаков сравнения (\(>\),\(<\),\(≤\),\(≥\)).

Проще говоря, такие неравенства выглядят как квадратные уравнения, но со знаком сравнения вместо знака равно.Примеры:

\(x^2+2x-3>0\) \(3x^2-x≥0\) \((2x+5)(x-1)≤5\)

Как решать квадратные неравенства?

Квадратные неравенства обычно решают методом интервалов. Ниже приведен алгоритм, как решать квадратные неравенства с дискриминантом больше нуля. Решение квадратных неравенств с дискриминантом равным нулю или меньше нуля – разобраны отдельно.

  1. Приведите неравенство к виду \(ax^2+bx+c⋁0\).Примеры:

    \(x^2-6x-16<0\)                                                         \(-9x^2+x+8≤0\)

  2. Разложите выражение слева на множители. Для этого приравняйте его к нулю и решите получившееся уравнение, найдя корни  \(x_1\) и  \(x_2\). Затем запишите исходное выражение в виде \(a(x-x_1 ) (x-x_2 )\) Подробнее об этом можно почитать здесь.

    \(x^2-6x-16=0\)                                                         \(-9x^2+x+8=0\) \(D=36-4 \cdot 1 \cdot (-16)=100=10^2\)                               \(D=1-4 \cdot (-9) \cdot 8=289\)                                     \(x_1=\frac{6-10}{2}=-2\)                                                     \(x_1=\frac{-1+17}{-18}=\frac{16}{-18}=-\frac{8}{9}\)                          \(x_2=\frac{6+10}{2}=8\)                                                         \(x_2=\frac{-1-17}{-18}=\frac{-18}{-18}=1\)    \((x-8)(x+2)<0\)                                                     \(-9(x+\frac{8}{9})(x-1)≤0\)

  3. Начертите числовую ось и отметьте на ней найденные корни. Если неравенство строгое (со знаком \(<\) или \(>\)) то точки должны быть выколоты, если неравенство нестрогое (со знаком \(≤\) или \(≥\)), то точки должны быть закрашены.

                            

  4. Нанесенные корни разбивают числовую ось на несколько интервалов. В первом справа интервале поставьте:    \(-\) знак плюс если перед скобками ничего не стоит или стоит положительное число    \(-\) знак минус если перед скобками стоит знак минус. В следующих за ним интервалах поставьте чередующиеся знаки.

                              

  5. Заштрихуйте подходящие интервалы, то есть числовые промежутки:    \(-\) со знаком «\(+\)», если в неравенстве стояло «\(>0\)» или «\(≥0\)»    \(-\) со знаком «\(-\)», если в неравенстве стояло «\(<0\)» или «\(≤0\)»

                                

  6. Выпишите в ответ те интервалы, которые вы заштриховали.Внимание! При строгих знаках неравенства (\(<\) или \(>\)) границы интервала НЕ ВХОДЯТ в решение, при этом в ответе сам интервал записывается в виде \((x_1;x_2)\) – скобки круглые. При нестрогих знаках неравенства (\(≤\) или \(≥\)) - границы интервала ВХОДЯТ в решение, и ответ записывается в виде \([x_1;x_2]\), с квадратными скобками на точках.

    Ответ: \((-2;8)\)                                                             Ответ: \((-∞;\frac{8}{9}]∪[1;∞)\)

Пример.  Решите квадратное неравенство \(\frac{x^2}{5}+\frac{2x}{3}\)\(≥\) \(\frac{8}{15}\)Решение:

\(\frac{x^2}{5}+\frac{2x}{3}\)\(≥\) \(\frac{8}{15}\)

Чтобы избавиться от дробей, умножим обе части неравенство на \(15\).

\(3x^2+10x≥8\)

Перенесем \(8\) влево.

\(3x^2+10x-8≥0\)

Вот мы и привели неравенство к виду \(ax^2+bx+c⋁0\). Запишем квадратное уравнение вида \(ax^2+bx+c=0\).

\(3x^2+10x-8=0\)

Решим полученное квадратное уравнение.

\(D=100+4⋅3⋅8=196=14^2\) \(x_1=\frac{-10-14}{6}=-4\)          \(x_2=\frac{-10+14}{6}=\frac{2}{3}\)

 

 

Когда корни найдены, запишем неравенство в разложенном на множители виде.

\(3(x+4)(x-\frac{2}{3})≥0\)

Теперь начертим числовую ось, отметим на ней корни и расставим знаки на интервалах.

Выпишем в ответ интересующие нас интервалы . Так как знак неравенства \(≥\), то нам нужны интервалы со знаком \(+\), при этом сами корни мы включаем в ответ (скобки на этих точках – квадратные).

Ответ: \(x∈(-∞;-4]∪[ \frac{2}{3};∞)\)

Квадратные неравенства с отрицательным и равным нулю дискриминантом

Алгоритм выше работает, когда дискриминант больше нуля, то есть квадратный трехчлен имеет \(2\) корня. Что делать в остальных случаях? Например, таких:

\(1) x^2+2x+9>0\)

\(2) x^2+6x+9≤0\)

\(3)-x^2-4x-4>0\)

\(4) -x^2-64<0\)

\(D=4-36=-32<0\)

\(D=36-36=0\)

\(D=16-16=0\)

\(D=-4 \cdot 64<0\)

Если \(D<0\), то квадратный трехчлен имеет постоянный знак, совпадающий со знаком коэффициента \(a\) (тем, что стоит перед \(x^2\)).

То есть, выражение: \(x^2+2x+9\) – положительно при любых \(x\), т.к. \(a=1>0\) \(-x^2-64\) - отрицательно при любых \(x\), т.к. \(a=-1<0\)

Если \(D=0\), то квадратный трехчлен при одном значении \(x\) равен нулю, а при всех остальных имеет постоянный знак, который совпадает со знаком коэффициента \(a\).

То есть, выражение: \(x^2+6x+9\) - равно нулю при \(x=-3\) и положительно при всех остальных иксах, т.к. \(a=1>0\) \(-x^2-4x-4\) - равно нулю при \(x=-2\) и отрицательно при всех остальных, т.к. \(a=-1<0\).

Как найти икс, при котором квадратный трехчлен равен нулю? Нужно решить соответствующее квадратное уравнение.

С учетом этой информации давайте решим квадратные неравенства:

1) \(x^2+2x+9>0\) \(D=4-36=-32<0\)

Неравенство, можно сказать, задает нам вопрос: «при каких \(x\) выражение слева больше нуля?». Выше мы уже выяснили, что при любых. В ответе можно так и написать: «при любых \(x\)», но лучше туже самую мысль, выразить на языке математики.

Ответ: \(x∈(-∞;∞)\)

2) \(x^2+6x+9≤0\) \(D=36-36=0\)

Вопрос от неравенства: «при каких \(x\) выражение слева меньше или равно нулю?» Меньше нуля оно быть не может, а вот равно нулю – вполне. И чтобы выяснить при каком иске это произойдет, решим соответствующие квадратное уравнение.

\(x^2+6x+9=0\)

Давайте соберем наше выражение по формуле \(a^2+2ab+b^2=(a+b)^2\).

\((x+3)^2=0\)

Сейчас нам мешает только квадрат. Давайте вместе подумаем - какое число в квадрате равно нулю? Ноль! Значит, квадрат выражения равен нулю только если само выражение равно нулю.

\(x+3=0\) \(x=-3\)

Это число и будет ответом.

Ответ: \(-3\)

 

3)\(-x^2-4x-4>0\) \(D=16-16=0\)

Когда выражение слева больше нуля?

Как выше уже было сказано выражение слева либо отрицательно, либо равно нулю, положительным оно быть не может. Значит ответ – никогда. Запишем «никогда» на языке математике, с помощью символа «пустое множество» - \(∅\).

Ответ: \(x∈∅\)

4) \(-x^2-64<0\) \(D=-4 \cdot 64<0\)

Когда выражение слева меньше нуля?

Всегда. Значит неравенство выполняется при любых \(x\).

Ответ: \(x∈(-∞;∞)\)

 

Смотрите также:Дробно-рациональные неравенства

Скачать статью

cos-cos.ru

Квадратное неравенство

Квадратное неравенство – «ОТ и ДО». В этой статье мы с вами рассмотрим решение квадратных неравенств что называется до тонкостей. Изучать материал статьи рекомендую внимательно ничего не пропуская. Осилить статью сразу не получится, рекомендую сделать это за несколько подходов, информации много.

Содержание:

Вступление. Важно!Алгоритм решения квадратного неравенства. Метод интервалов. Примеры.Использование графика квадратичной функции. Рекомендую!Решение квадратного неравенства. Все случаи…

Вступление. Важно!

Рекомендую повторить формулы для решения квадратного уравнения и научиться быстро его решать. Без этого о решении квадратных неравенств речи быть не может.

Квадратное неравенство – это неравенство вида:

Если взять квадратное уравнение и заменить знак равенства на любой из указанных выше, то получится квадратное неравенство. Решить неравенство — это значит ответить на вопрос, при каких значениях х данное неравенство будет верно. Примеры:

10x2– 6x+12 ≤ 0

2x2+ 5x –500 > 0

– 15x2– 2x+13 > 0

8x2– 15x+45≠ 0

Квадратное неравенство может быть задано в неявном виде, например:

10x2– 6x+14x2 –5x +2≤ 56

2x2 > 36

8x2<–15x2– 2x+13

0> – 15x2– 2x+13

В этом случае необходимо выполнить алгебраические преобразования и привести его к стандартному виду (1).

*Коэффициенты могут быть и дробными и иррациональными, но в школьной программе такие примеры редкость, а в заданиях ЕГЭ не встречаются вообще. Но вы не пугайтесь, если, например, встретите:

Это тоже квадратное неравенство.

Сначала рассмотрим простой алгоритм решения, не требующий понимания того, что такое квадратичная функция и как её график выглядит на координатной плоскости относительно осей координат. Если вы способны запоминать информацию крепко и надолго, при этом регулярно подкрепляете её практикой, то алгоритм вам поможет. Так же если вам, как говорится, нужно решить такое неравенство «наразок», то алгоритм вам в помощь. Следуя ему вы без труда осуществите решение.

Если же вы учитесь в школе, то настоятельно рекомендую вам начать изучение статьи со второй части, где рассказывается весь смысл решения (смотрите ниже с пункта – использование графика квадратичной функции). Если будет понимание сути, то не учить, не запоминать указанный алгоритм будет не нужно, вы без труда быстро решите любое квадратное неравенство.

Конечно, следовало бы сразу начать разъяснение именно с графика квадратичной функции и oбъяснения самого смысла, но решил «построить» статью именно так.

Ещё один теоретический момент! Посмотрите формулу разложения квадратного трёхчлена на множители:

где х1 и х2  — корни квадратного уравнения ax2+bx+c=0

*Для того, чтобы решить квадратное неравенство, необходимо будет квадратный трёхчлен разложить на множители.

Представленный ниже алгоритм называют ещё методом интервалов. Он подходит для решения неравенств вида  f(x)>0,  f(x)<0,  f(x)≥0 и f(x)≤0. Обратите внимание, что множителей может более двух, например:

(х–10)(х+5)(х–1)(х+104)(х+6)(х–1)<0

Алгоритм решения. Метод интервалов. Примеры.

Дано неравенство ax2 + bx + с > 0 (знак любой).

1. Записываем квадратное уравнение ax2 + bx + с = 0  и решаем его. Получаем х1 и х2 – корни квадратного уравнения. 

2. Подставляем в формулу (2) коэффициент a  и корни. Записываем неравенство в виде:

a (x – x1)(x – x2)>0

3. Определяем интервалы на числовой прямой (корни уравнения делят числовую ось на интервалы):

4. Определяем «знаки» на  интервалах (+ или –) путём подстановки произвольного значения «х» из каждого полученного интервала в выражение:

a (x – x1)(x – x2)

и отмечаем их.

5. Остаётся лишь выписать интересующие нас интервалы, они отмечены:

— знаком «+», если в неравенстве стояло «>0» или «≥0».

— знаком «–», если в неравенстве было «<0» или «≤0».

Далее записываем ответ.

ОБРАТИТЕ ВНИМАНИЕ!!! Сами знаки в неравенстве могут быть:

строгими – это  «>», «<»  и  нестрогими – это «≥», «≤».

Как это влияет на результат решения?

При строгих знаках неравенства границы интервала НЕ ВХОДЯТ в решение, при этом в ответе сам интервал записывается в виде (x1;x2) – скобки круглые.

При нестрогих знаках неравенства границы интервала ВХОДЯТ в решение, и ответ записывается в виде [x1;x2] – скобки квадратные.

*Это касается не только квадратных неравенств. Квадратная скобка означает, что сама граница интервала включена в решение.

На примерах вы это увидите. Давайте разберём несколько, чтобы снять все вопросы по этому поводу. В теории алгоритм может показаться несколько сложным, на самом деле всё просто.

ПРИМЕР 1:   Решить x2– 60x+500 ≤ 0

Решаем квадратное уравнение x2–60x+500=0

D = b2–4ac = (–60)2–4∙1∙500 = 3600–2000 = 1600

Находим корни:

Подставляем коэффициент a и корни в формулу (2), получаем:   

x2–60x+500 = (х–50)(х–10)

Записываем неравенство в виде  (х–50)(х–10) ≤ 0

Корни уравнения делят числовую ось на интервалы. Покажем их на числовой прямой:

Мы получили три интервала (–∞;10), (10;50) и (50;+∞).

Определяем «знаки» на  интервалах, делаем это путём подстановки в выражение (х–50)(х–10) произвольных значений их каждого полученного интервала и смотрим соответствие полученного «знака»  знаку в неравенстве (х–50)(х–10) ≤ 0:

при    х=2        (х–50)(х–10) = 384 > 0   неверно

при    х=20      (х–50)(х–10) = –300 < 0   верно

при    х=60      (х–50)(х–10) = 500 > 0   неверно

Решением будет являться интервал [10;50].  

При всех значениях х из этого интервала неравенство будет верным.

*Обратите внимание, что мы поставили квадратные скобки.

При х = 10 и х = 50 неравенство также будет верно, то есть границы входят в решение.

Ответ: x∊[10;50]

Ещё раз:

— Границы интервала ВХОДЯТ в решение неравенства тогда, когда в условии стоит знак ≤ или ≥  (нестрогое неравенство). При этом на эскизе принято полученные корни отображать ЗАШТРИШОВАННЫМ кружком.

— Границы интервала НЕ ВХОДЯТ в решение неравенства тогда, когда в условии стоит знак < или  > (строгое неравенство). При этом на эскизе принято корень отображать НЕЗАШТРИХОВАННЫМ кружком.

 

ПРИМЕР 2:   Решить x2+ 4x–21 > 0

Решаем квадратное уравнение x2+ 4x–21  = 0

D = b2–4ac = 42–4∙1∙(–21) =16+84 = 100

Находим корни:

Подставляем коэффициент a и корни в формулу (2), получаем:   

x2+ 4x–21 = (х–3)(х+7)

Записываем неравенство в виде  (х–3)(х+7) > 0.

Корни уравнения делят числовую ось на интервалы. Отметим их на числовой прямой:

*Неравенство нестрогое, поэтому обозначения корней НЕзаштрихованы. Получили  три интервала  (–∞;–7), (–7;3) и (3;+∞).

Определяем «знаки» на  интервалах, делаем это путём подстановки в выражение (х–3)(х+7) произвольных значений их этих интервалов и смотрим соответствие  неравенству (х–3)(х+7)> 0:    

при   х= –10       (–10–3)( –10 +7) = 39 > 0    верно

при    х= 0          (0–3)(0 +7) = –21  < 0          неверно

при    х=10         (10–3)(10 +7) = 119 > 0       верно

Решением будут являться два интервала (–∞;–7) и (3;+∞).  При всех значениях х из этих интервалов неравенство будет верным.

*Обратите внимание, что мы поставили круглые скобки. При х = 3 и х = –7  неравенство будет неверным – границы не входят в решение.

Ответ: x∊(–∞;–7) U (3;+∞) 

 

ПРИМЕР 3:   Решить –x2–9x–20 > 0

Решаем квадратное уравнение –x2–9x–20 = 0.

a = –1  b = –9   c = –20 

D = b2–4ac = (–9)2–4∙(–1)∙ (–20) =81–80 = 1.

Находим корни:

Подставляем коэффициент a и корни в формулу (2), получаем:   

–x2–9x–20  =–(х–(–5))(х–(–4))= –(х+5)(х+4)

Записываем неравенство в виде  –(х+5)(х+4) > 0.

Корни уравнения делят числовую ось на интервалы. Отметим на числовой прямой:

*Неравенство строгое, поэтому обозначения корней незаштрихованы. Получили  три интервала  (–∞;–5), (–5; –4) и (–4;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение  –(х+5)(х+4) произвольных значений их этих интервалов и смотрим соответствие неравенству  –(х+5)(х+4)>0:    

при   х= –10      – (–10+5)( –10 +4) = –30 < 0       неверно

при    х= –4,5    – (–4,5+5)(–4,5+4) = 0,25 > 0      верно

при    х= 0         – (0+5)(0 +4) = –20 < 0                неверно

Решением будут являться интервал (–5;–4).  При всех значениях «х» принадлежащих ему неравенство будет верным.

*Обратите внимание, что границы не входят в решение. При х = –5 и х = –4  неравенство будет неверным.

ЗАМЕЧАНИЕ!

При решении квадратного уравнения у нас может получится один корень или корней не будет вовсе, тогда при  использовании данного метода вслепую могут возникнуть затруднения в определении решения.

Небольшой итог! Метод хорош и использовать его удобно, особенно если вы знакомы с квадратичной функцией и знаете свойства её графика. Если нет, то прошу ознакомиться, приступим к следующему разделу.

 

Использование графика квадратичной функции. Рекомендую!

Квадратичная это функция вида:

Её графиком является парабола, ветви параболы направлены вверх, либо вниз:

График может быть расположен следующим образом: может пересекать ось х в двух точках, может касаться её в одной точке (вершиной), может не пересекать. Об этом подробнее в дальнейшем.

Теперь рассмотрим этот подход на примере. Весь процесс решения состоит из трёх этапов. Решим неравенство x2+2x –8 >0.

Первый этап

Решаем уравнение x2+2x–8=0.

D = b2–4ac = 22–4∙1∙(–8) = 4+32 = 36

Находим корни:

Получили   х1=2 и х2 = – 4.

Второй этап

Строим параболу у= x2+2x–8  по точкам:

Точки – 4 и 2  это точки пересечения параболы и оси ох. Всё просто! Что сделали? Мы решили квадратное уравнение x2+2x–8=0. Посмотрите его запись в таком виде:

0 = x2+2x – 8

Ноль у нас это значение «у». При у = 0, мы получаем абсциссы точек пересечения параболы с осью ох. Можно сказать, что нулевое значение «у» это есть ось ох.

Теперь посмотрите при каких значениях х выражение x2+2x – 8  больше (или меньше) нуля? По графику параболы это определить несложно, как говорится, всё на виду:

1. При х < – 4 ветвь параболы лежит выше оси ох. То есть при указанных х трёхчлен x2+2x –8  будет положительным.

2. При –4 < х < 2 график ниже оси ох. При этих х трёхчлен x2+2x –8 будет отрицательным.

3. При х > 2 ветвь параболы лежит выше оси ох. При указанных х трёхчлен x2+2x –8 будет положительным.

Третий этап

По параболе нам сразу видно, при каких х выражение x2+2x–8  больше нуля, равно нулю, меньше нуля. В этом заключается суть третьего этапа решения, а именно увидеть и определить положительные и отрицательные области на рисунке. Сопоставляем полученный результат с исходным неравенством и записываем ответ. В нашем примере необходимо определить все значения х при которых выражение x2+2x–8 больше нуля. Мы это сделали во втором этапе.

Остаётся записать ответ.

Ответ:  x∊(–∞;–4) U (2;∞).

Подведём итог: вычислив в первом шаге корни уравнения, мы можем отметить полученные точки на оси ох (это точки пересечения параболы с осью ох). Далее схематично строим параболу и уже можем увидеть решение. Почему схематично? Математически точный график нам не нужен. Да и представьте, например, если корни получатся 10 и 1500, попробуй-ка построй точный график на листе в клетку с таким разбегом значений. Возникает вопрос! Ну получили мы корни, ну отметили их на оси ох, а зарисовать расположение самой парабола – ветвями вверх или вниз? Тут всё просто! Коэффициент при х2 вам подскажет:

— если он больше нуля, то ветви параболы направлены вверх.

— если меньше нуля, то ветви параболы направлены вниз.

В нашем примере он равен единице, то есть положителен.

*Примечание! Если в неравенстве будет стоять знак нестрогий, то есть ≤ или ≥, то корни на числовой прямой следует заштриховать, этим условно обозначается, что сама граница интервала входит в решение неравенства. В данном случае корни не заштрихованы (выколоты), так как неравенство у нас строгое (стоит знак «>»). При чем в ответе, в данном случае, ставятся круглые скобки, а не квадратные (границы не входят в решение).

Написано много, кого-то запутал, наверное. Но если вы решите минимум 5 неравенств с использованием парабол, то восхищению вашему предела не будет. Всё просто!

Итак, кратко:

1. Записываем неравенство, приводим к стандартному.

2. Записываем квадратное уравнение и решаем его.

3. Рисуем ось ох, отмечаем полученные корни, схематично рисуем параболу, ветвями вверх, если коэффициент при х2 положителен, или ветвями вниз, если он отрицателен.

4. Определяем  визуально положительные или отрицательные области и записываем ответ по исходному неравенству.

Рассмотрим примеры.

ПРИМЕР 1:  Решить x2–15x+50 > 0

Первый этап.

Решаем квадратное уравнение x2–15x+50=0

D = b2–4ac = (–15)2–4∙1∙50 = 225–200 = 25

Находим корни:

Второй этап.

Строим ось ох. Отмечем полученные корни. Так как неравенство у нас строгое, то заштриховывать их не будем. Схематично строим параболу, расположена она ветвями вверх, так как коэффициент при х2 положительный:

Третий этап.

Определяем визуально положительные и отрицательные области, здесь мы их отметили разными цветами для наглядности, можно этого и не делать.

Записываем ответ.

Ответ: x∊(–∞;5) U (10;∞).

*Знак U обозначает объёдинение решение. Образно можно выразиться так, решением является «этот» И « ещё этот» интервал.

 

ПРИМЕР 2:   Решить –x2+x+20 ≤ 0

Первый этап.

Решаем квадратное уравнение –x2+x+20=0

D = b2–4ac = 12–4∙(–1)∙20 = 1+80 = 81

Находим корни:

Второй этап.

Строим ось ох. Отмечем полученные корни. Так как неравенство у нас нестрогое, то заштрихуем обозначения корней. Схематично строим параболу, расположена она ветвями вниз, так как коэффициент при х2 отрицательный (он равен –1):

Третий этап.

Определяем визуально положительные и отрицательные области. Сопоставляем с исходным неравенством (знак у нас ≤ 0). Неравенство будет верно при х ≤ – 4 и х ≥ 5.

Записываем ответ.

Ответ: x∊(–∞;–4] U [5;∞).

*Указаны квадратные скобки – это обозначает, что границы интервала входят в решение. Ось оу мы на эскизах не указали, так как она в данной ситуации не играет никакой роли, то есть при построении эскиза ось оу строить необязательно.

Теперь ещё один важный момент! Мы рассмотрели примеры, в которых при решении квадратного уравнения получается два корня, то есть парабола пересекает ось ох в двух точках. Процесс решения понятен. Но возникают вопросы: а если при решении квадратного уравнения получится один корень или вообще не будет корней (дискриминант отрицательный), то как это осмыслить и как определить есть ли решение?

Некоторые ответы очевидны:

- Если получится один корень (дискриминант равен нулю), то парабола будет касаться оси ох в одной точке, а именно своей вершиной.

- Если решения квадратного уравнения нет (дискриминант отрицательный), то парабола вообще не будет касаться оси ох.

Тогда возникает вопрос, что делать в этих ситуациях и как определять ответ?

И вот тут прошу вас обратить внимание на один ключевой момент, который уже оговаривался в этой статье! В неравенстве при х2 у нас может стоять положительный или отрицательный коэффициент. При положительном коэффициенте ветви параболы направлены вверх, при отрицательном вниз. А теперь переходим к следующему разделу статьи.

 

Решение квадратного неравенства. Все случаи!

Ниже для вас представлены все варианты расположения парабол, которые могут иметь место при решении квадратных неравенств:

Первая группа графиков

(коэффициент а > 0, то есть ветви параболы направлены вверх)

Вторая группа графиков

(коэффициент а < 0, то есть ветви параболы направлены вниз)

Что касается оговоренных выше вопросов по поводу случая, когда квадратное уравнение не имеет решения, обратите внимание на рисунки 9,10,11,12, 21,22,23,24 и всё поймёте. Подробнее:

Например, при решении квадратного уравнения вы обнаружили, что дискриминант отрицательный, то есть коней нет. Что это означает? А то, что ветви параболы не пересекают ось ох, то есть она расположена либо выше оси ох и её ветви направлены вверх, либо ниже оси и её ветви направлены вниз. И тут нам необходимо разобраться куда в вашем случае направлены ветви. Смотрим на коэффициент при х2:

- если он положительный, то схематично рисуем параболу выше оси ох с ветвями направленными вверх.

- если он отрицательный, то схематично рисуем параболу ниже оси ох с ветвями направленными вниз.

Далее только остаётся сопоставить наш рисунок с данным неравенством и учитывая знак в нём просто записать ответ. Всё!!!

Пример: х2 +2х+16 < 0

Решаем квадратное уравнение x2+2x+16=0

D = b2–4ac = 22–4∙2∙16 = 4–128 = –124

Дискриминант отрицательный, коней нет. Значит парабола не пересекает ось ох.

Коэффициент при х2 положительный (равен 1), значит парабола расположена следующим образом – её ветви направлены вверх и расположена она выше оси ох (как на рис. 12).

Нам необходимо записать значения х, при которых х2 +2х+16 отрицательно. Таких "х" нет, это видно по графику (рис 12).

Ответ: x∊∅ (решения нет).

*Если бы знак в этом неравенстве был «>», то решением были бы все действительные числа (рис. 10).

Теперь завершающий момент который стороной никак обойти нельзя, мы ещё не рассматривали решение неравенства вида:

Тут всё просто. Если вы детально изучили материал изложенный выше в статье и пропустили информацию, что называется, через себя, то здесь на эти вопросы вы ответите без труда.

Возможны три случая, если при решении aх2+bх+c = 0 получаем:

1. Два корня, то решением неравенства будет x∊(–∞;х1) U (х1;х2) U (х2;+∞).

2. Один корень, то решением будет x∊(–∞;х) U (х;+∞).

3. Нет корней, то решением будет вся числовая ось x∊(–∞;+∞).

Получить материал статьи в PDF

Понравилась статья — делитесь с коллегами и друзьями, социальные кнопки к вашим услугам. Также можете скачанный файл свободно распространять в сети.

На этом всё, благодарю за внимание. Ёмкая получилась статейка.

С уважением, Александр крутицких

P.S: Буду благодарен Вам, если расскажите о сайте в социальных сетях.

matematikalegko.ru

Квадратные неравенства — урок. Алгебра, 8 класс.

Общий вид квадратных неравенств, это ax2&plus;bx&plus;c>0(<0,≤0,≥0),гдеa≠0.

 Множество решений квадратного неравенства легко определить, приблизительно начертив график функции y=ax2+bx+c (параболу).

 

Шаги решения квадратного неравенства:

 

1. Определяются точки пересечения параболы и оси \(x\) с помощью решения уравнения ax2+bx+c=0.

Вспомним формулы корней квадратного уравнения:

 D=b2−4acx1=−b+D2a,x2=−b−D2a

 

Если  \(D > 0\),

у уравнения два разных корня,

парабола пересекает ось \(x\) в двух точках

 

Если  \(D = 0\),

у уравнения два одинаковых корня, 

вершина параболы находится на оси \(x\)

 

Если  \(D < 0\),

у уравнения нет реальных корней, парабола не пересекает ось \(x\)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Учитывая количество корней и знак коэффициента \(a\), чертится график параболы.

Обрати внимание!

Если \(a > 0\), ветви параболы устремлены вверх, если \(a < 0\), то вниз.

 

Совет: если хочешь, чтобы ветви параболы всегда были уcтремлены вверх, в случаях, когда \(a < 0\), сначала обе части неравенства перемножь на (\(-1\)).

Не забудь, что на противоположный поменяется также знак неравенства.

 

3. Выбираются пустые или закрашенные точки, в зависимости от вида знака неравенства:

•, если стоит знак нестрогого неравенства ≤ или  ≥

о, если стоит знак строгого неравенства \(<\) или \(>\)

 

4. Закрашивается правильный интервал.

 

5. Записывается ответ.

Пример:

Решить квадратное неравенство −2x2+4x−5≤0

Решение:

−2x2&plus;4x−5≤0&verbar;⋅(−1)2x2−4x&plus;5≥0D=16−4⋅2⋅5=−24парабола не пересекает осьOx

 

По рисунку видно, что график положителен любому значению \(x\)

 

Ответ:  x∈−∞;&plus;∞илиx∈R

www.yaklass.ru

Решение квадратных неравенств. Поурочные планы

Дополнительные сочинения

На этом уроке мы рассмотрим квадратные неравенства. Вначале вспомним свойства квадратичных функций и решение квадратных уравнений: дискриминант, теорему Виета, разложение на множители. Решим несколько примеров на рассмотренные темы.

Тема: Рациональные неравенства и их системы

Урок: Решение квадратных неравенств

1. Определение квадратного неравенства

Определение: Квадратное неравенство – это неравенство вида

В случае если a=0, мы получаем линейное неравенство.

Вспомним терминологию.

x - независимая переменная. Необходимо найти множество всех x, при которых неравенство выполняется.

a, b,c – конкретные числа, параметры;

квадратный трехчлен;

квадратичная функция.

Решение квадратного неравенства целиком основано на свойствах квадратичной функции.

Вспомним и изучим эти свойства на примерах.

2. Решение квадратного неравенства, когда трехчлен не имеет корней

Решить неравенства:

a.

Рассмотрим функцию Построим и прочтем ее график.

Графиком квадратичной функции является парабола, шаблон - парабола сдвинутая относительно начала координат.

Определим координаты вершины.

Схематически изобразим график функции. Ветви параболы направлены вверх, т. к. .

Теперь прочтем полученный график.

Функция определена при . Основное свойство данной функции заключается в том, что при всех Более того,

Ответ:

Мы рассмотрели случай, когда график функции не пересекает ось ox.

3. Решение квадратного неравенства, когда трехчлен имеет один корень

b.

Рассмотрим функцию

Найдем корни квадратного трехчлена

D=8-8=0, значит

Схематически построим график функции

Корень x=1;

графиком является парабола, значит ветви направлены вверх.

Прочитаем график.

На промежутке функция положительна. На промежутке функция также положительна. При

Ответ:

Мы рассмотрели случай, когда кривая касается оси ox в одной точке.

4. Решение квадратного неравенства, когда трехчлен имеет два корня

c.

Найдем корни квадратного трехчлена Воспользуемся теоремой Виета.

Схематически изобразим график функции

Это парабола, ветви направлены вверх, т. к.

Прочитаем график. На промежутке функция положительна.

На промежутке функция отрицательна.

В точках пересечения с осью ox функция равна нулю.

Ответ:

       

5. Свойство квадратичной функции с двумя корнями

Мы продемонстрировали методику решения квадратных неравенств для трех случаев:

1. Соответствующий квадратный трехчлен не имеет корней.

2. Квадратный трехчлен имеет один корень.

3. Квадратный трехчлен имеет два корня.

Сформулируем важнейшее свойство квадратичной функции для случая, когда соответствующий квадратный трехчлен имеет два корня.

Функция сохраняет свой знак вне интервала корней трехчлена. Функция сохраняет свой знак внутри интервала корней трехчлена. Функция меняет свой знак при переходе аргумента через корень.

Эти простейшие свойства, которые мы повторили, лежат в основе решения квадратных неравенств.

6. Решение задач

Продолжим решение неравенств.

1.

Рассмотрим функцию

Найдем корни трехчлена Один из корней легко определить методом подбора. Возьмем Проверяем: корень подходит.

Второй корень найдем по теореме Виета.

Построим эскиз графика функции. Графиком является парабола, ветви направлены вверх.

Отметим знаки на интервалах знакопостоянства и выберем интервалы, удовлетворяющие нашим условиям.

Ответ:

Мы продемонстрировали на примере применение методики решения квадратных неравенств. Один из корней мы нашли методом подбора, рассмотрим еще один подобный пример.

2.

Рассмотрим уравнение Можно ли угадать корень такого уравнения? Очевидно, что один из корней Второй корень найдем по теореме Виета.

Графиком функции является парабола, ветви направлены вверх. Построим эскиз графика.

Вне интервала корней функция положительна, внутри интервала – отрицательна. Нашему условию удовлетворяет промежуток внутри интервала корней.

Ответ:

Рассмотрим сопутствующую задачу: найти все целочисленные решения неравенства.

Точки пересечения графика с осью ox выколотые, не являются решениями. В рассматриваемом интервале только одно целочисленное решение,

Ответ:

Бывают неполные квадратные неравенства, вот одно из них:

3.

Рассмотрим функцию

Построим график, ветви параболы направлены вверх.

Нашему условию удовлетворяет интервал вне корней.

Ответ:

7. Заключение

Мы рассмотрели квадратные неравенства, методику их решения, и проиллюстрировали ее на конкретных примерах.

Список рекомендованной литературы

1. Мордкович А. Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. – М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс : учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш. А., Колягин Ю. М., Сидоров Ю. В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

Рекомендованные ссылки на интернет-ресурсы

1. Портал Естественных Наук .

2. Центр образования «Технология обучения» .

3. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку .

4. Виртуальный репетитор .

5. Раздел College. ru по математике .

Рекомендованное домашнее задание

1. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил.№№ 5; 6; 7.

dp-adilet.kz

Квадратные неравенства и их решение

Определение и формулы квадратных неравенств

Чтобы решить квадратное неравенство, нужно знать количество корней соответствующего квадратного уравнения . Сделать это можно с помощью дискриминанта: если дискриминант , то уравнение имеет два корня, — один корень, — действительных корней нет.

Знак старшего коэффициента определяет направление ветвей параболы : если , то ветви параболы направлены вверх, если — вниз. В зависимости от знаков и возможны такие варианты расположения параболы относительно оси абсцисс.

Решением неравенств () будет числовой промежуток, на котором парабола лежит выше оси абсцисс.

Решением неравенств () будет числовой промежуток, на котором парабола лежит ниже оси абсцисс.

Если неравенство нестрогое, то концы промежутка включаются, если строгое, то не включаются.

Примеры решения квадратных неравенств

ru.solverbook.com

Решение квадратных неравенств методом параболы

Поиск Лекций

Задания 4, 8, 21. Уравнения, неравенства и их системы

Пропорция

Отношение – это частное двух чисел.

Пропорция– равенство двух отношений.

Основное свойство пропорции:

Произведение крайних членов пропорции равно произведению ее средних членов.

Пример: Найти неизвестный член пропорции х : 20 = 2 : 5.

Решение: х и 5 — крайние члены пропорции, а 20 и 2 — средние.

5·х = 20·2—применяем основное свойство пропорции;

х = 40:5 — произведение средних членов делим на известный крайний член;

х = 8— получили искомый крайний член пропорции.

Уравнения

Уравнение– это буквенное равенство, которое справедливо только при некоторых значениях входящих в него букв.

Эти буквы называются неизвестными (переменными), а их значения, при которых данное уравнение обращается в верное равенство – корнями уравнения.

Решить уравнение– значит найти все его корни или доказать, что корней нет.

Равносильные уравнения – уравнения, у которых одинаковое решение

Основные тождественные преобразования (свойства уравнений)

Перенос слагаемых из одной части уравнения в другую со сменой знака.

12x – 4=15x – 10

 

12х – 15х = – 10 +4

Умножение или деление обеих частей уравнения на одно и то же число (выражение), отличное от нуля.

· 2

5х – 6 = 2х

3. Замена одного выражения другим, тождественно равным ему.

(3x+ 2)2 = 15x+10

9x2 + 12x + 4 = 15x + 10

Линейное уравнение с одной переменной

Общий вид линейного уравнения: ax + b = 0 , где а и b – любые числа.

Решение линейных уравненийпредполагает использование тождественных преобразований уравнений.

Пример: 3(х – 2) = 10 – (х – 5) - раскроем скобки

3х – 6 = 10 – х + 5 - перенесем слагаемые с х в одну часть, без х в другую

3х + х = 15 + 6 - приведем подобные слагаемые

4х = 21 - обе части уравнения разделим на 4

х = 5,25

Квадратное уравнение

Общий вид квадратного уравнения: + bx + c = 0, гдеa, b, c – числа, x – переменная. Если a = 0, то уравнение становится линейным. Поэтому, говоря о квадратных уравнениях, предполагается, что a ≠ 0.

Если коэффициент а = 1, то квадратное уравнение называют приведенным.

Квадратные уравнения

Полные(a ≠ 0, b ≠ 0, c ≠ 0) Неполные

+ bx + c = 0

+ bx = 0 (с = 0) + с = 0 (b = 0) = 0 (b = 0, с = 0)

Решение квадратных уравнений

1. В общем случае корни находятся через дискриминант D = b2 – 4ac.

® Если D> 0, то уравнение имеет 2 корня:

® Если D = 0, то уравнение имеет 1 корень:

® Если D< 0, то уравнение не имеет корней.

2. Если коэффициент b четный, то можно найти = .

Тогда корни находятся по формуле: .

3. Если уравнение приведенное, то можно использовать т. Виета:

Сумма корней приведенного квадратного уравнения + bx + c = 0 равна коэффициенту перед х, взятому с противоположным знаком, а произведение равно свободному члену.

+ = – b

· = c

4. Неполные квадратные уравнения принято решать не через дискриминант.

+ bx = 0(с = 0) + с = 0(b = 0) = 0(b = 0, с = 0)
х2 – 2х = 0 х(х – 2) = 0 х = 0 или х – 2 = 0 х = 2 х2 – 4 = 0 х2 = 4 х = ± 2 4х2 = 0 : 4 х2 = 0 х = 0

Дробно-рациональные уравнения

1. Найти общий знаменатель дробей;

2. Умножить обе части уравнения на общий знаменатель;

3. Решить получившееся целое уравнение;

4. Найти область допустимых значений (ОДЗ), исключив числа, при которых знаменатель обращается в 0.

5. В ответ записываются все корни, кроме тех, которые не удовлетворяют ОДЗ.

Пример: ∙x(x-5) - умножим дроби на общий знаменатель

x(x-3) + x – 5 = x + 5 ОДЗ: х(х-5) ≠ 0

х2 – 3x – 10 = 0 x≠ 0 и х – 5 ≠ 0

x1 = -2; x2 = 5 х ≠ 5

Ответ: -2

Решение неравенств

Решить неравенство – значит найти границы, внутри которых должны находиться переменные, так чтобы неравенство было верным.

Линейные неравенства

Общий вид линейного неравенства: aх + b < 0 (знак неравенства может быть другим), где aи b – числа, х – неизвестная.

Линейные неравенства решаются с опорой на свойства, аналогично линейным уравнениям.Помним, если было произведено умножение или деление обеих частей неравенства на отрицательное число, то знак неравенства меняется на противоположный. В отличии от уравнений в ответ выписывается не конкретный набор чисел, а числовой промежуток.

Пример:

 

 

 

 
 

 

Ответ: х (- )

Квадратные неравенства

Общий вид квадратного неравенства: ах2 + bх + с < 0(знак неравенства может быть другим), где a, bи с– числа, х – неизвестная.

Для решения квадратных неравенств, есть 2 подхода (метод параболы и метод интервалов).

Решение квадратных неравенств методом параболы

Алгоритм:

ах2 + bх + с < 0 (ах2 + bх + с > 0)

1. Найти корни квадратного трехчлена ах2 + bх + с, для этого решаем квадратное уравнение ах2 + bх + с = 0.

2. Определить, куда направлены ветви параболы

3. Отметить найденные корни на оси х (если неравенство строгое, то точки выколоты).

4. Схематично изобразить график.

5. Определить, для каких х ординаты графика отрицательны (положительны).

Другими словами: для каких х график функции находится ниже (выше) оси х.

6. Выписать промежуток в ответ.

Пример: х2 + х – 6 ≥ 0

▫ х2 + х – 6 = 0

х1 = -3, х2 = 2

▫ у = х2 + х – 6

коэффициент а=1 > 0 => ветви вверх

находим часть параболы, которая выше оси х

Ответ: ( ]

Решение квадратных неравенств методом интервалов.

Алгоритм:

1) Преобразовать неравенство таким образом, чтобы в правой части остался 0.

2) Разложить выражение в левой части на множители.

3) Приравнять это выражение к 0 и решить получившееся уравнение.

Замечание: если уравнение дробно-рациональное, не забываем найти ОДЗ.

4) Полученные корни отметить на координатной прямой (если знак неравенства строгий – точки выколоты, если нестрогий – закрашены).

Замечание: если уравнение дробно-рациональное, то точки, не вошедшие в ОДЗ выкалываем на координатной прямой.

5) Отмеченные точки разбивают координатную прямую на промежутки.

Берем любое число из каждого промежутка, подставляем вместо х в разложенное на множители выражение (п.2) и определяем знак этого выражения.

Над каждым промежутком подписываем этот знак.

6) В ответ берутся те промежутки, которые соответствуют знаку неравенства («+» соответствует >0, «–» соответствует <0)

Пример 1: (х + 3)(х – 2) ≥ 0

(х + 3)(х – 2) = 0

х = -3, х = 2

Ответ: ( )

- перенесем 2 в левую часть неравенства - приведем к общему знаменателю - вычтем дроби - разложим на множители выражение слева (в числителе применяем формулу «квадрат разности») - находим нули числителя и знаменателя - отмечаем на координатной прямой точку 1 (закрашена) и точку 0 (выколота) - получилось 3 промежутка, берем из каждого любое число и подставляем в выражение (х-1)2, везде получается знак +
Пример 2:

х = 1

 

 

Знак неравенства , это значит, что в ответ пойдут промежутки со знаком «–» и точки, отмеченные на оси. Видим, что промежутков со знаком «–» нет и есть всего одна закрашенная точка на оси. Она и идет в ответ.

Ответ: 1

 
 

Системы уравнений

 

 

Пару чисел (х; у), которая одновременно является решением и первого, и второго уравнения системы, называют решением системы уравнений.

Решить систему – значит найти все ее решения или установить, что решений нет.

poisk-ru.ru

2.2.1 Квадратные неравенства

Видеоурок 1: Решение квадратных неравенств

Видеоурок 2: Решение неравенств методом интервалов

Лекция: Квадратные неравенства

Равносильные неравенства

Под решением неравенства понимают нахождение такого значения или промежутка значений, при котором сохраняется знак неравенства.

 

Так бывают такие неравенства, в которых не существует решений. Однако, это необходимо доказать.

Как и в случае с уравнениями и системами уравнений, при решении неравенств сталкиваются с равносильными неравенствами. Неравенства называются равносильными, если они имеют одинаковые решения или не имеют их вообще.

Итак, в каких случаях можно получить равносильные неравенства:

1. При перенесении слагаемого из одной части неравенства в другую, неравенство будет равносильным, если изменить знак слагаемого.

2. Если правую и левую часть неравенства умножить или разделить на любое положительное число или выражение, то знак неравенства останется прежним, а неравенство получится равносильным.

3. Если правую и левую часть неравенства умножить или разделить на любое отрицательное число или выражение, то необходимо изменить знак неравенства. В таком случае получится равносильное неравенство.

Способы решения неравенств

Самым популярным способом решения всех неравенств является метод интервалов.

Чтобы решить неравенство, таким образом, необходимо любое неравенство разложить с одной стороны на множители, а в другой части неравенства получить нуль.

Обратите внимание, в отличие от уравнения, если вы получили множители в знаменателе, то нельзя от них избавляться. Следует заменить деление умножением, с учетом ОДЗ.

Алгоритм решения неравенств методом интервалов:

1. Итак, если Вы получили неравенство, содержащее функцию:

То необходимо найти ОДЗ. Напоминаем, что если в неравенстве содержится корень, то значение под знаком корня не может принимать отрицательное значение. Если некоторый множитель находится в знаменателе, то он не может принимать отрицательное значение.

2. Следующим шагом необходимо найти нули функции. Для этого функцию приравнивают к нулю.

3. Полученные значения нулей следует нанести на числовую прямую. Если неравенство строгое или полученные нули не попадают в ОДЗ, то точки наносятся пустыми кружочками. Если же неравенство не строгое, то кружочки зарисовываем. Пустая точка означает, что данное значение переменной не является решением неравенства.

4. После нанесения точек на прямую необходимо узнать знак, который принимает функция в целом в данном промежутке. А затем расставить знаки над каждым промежутком.

5. После этого все промежутки, которые удовлетворяют знаку неравенства, записать в качестве решения с учетом крайних точек.

Квадратичные неравенства

Если неравенство имеет вид: ax2 + bx + c >0 (<, ≤, ≥), то данное неравенство называется квадратичным.

Прежде, функцию, содержащуюся в неравенстве, необходимо приравнять к нулю и найти корни данного уравнения.

После этого неравенство раскладывается на множители и решается так, как описано выше.

cknow.ru