Модуль. Раскрытие модуля. Простешие уравнения с модулем. Как раскрывать модуль в функции


Построение функций, содержащих модули

Здравствуйте, уважаемые посетители! В этой статье мы попробуем подробно разобраться, как построить график функции, если эта функция содержит модуль. В статье разобраны различные примеры с пошаговым построением и подробным объяснением, как получен тот или иной график.1. Начнем с построения графика

 

В “основе” его лежит график функции

и все мы знаем, как он выглядит:

Теперь построим график

Чтобы получить этот график, достаточно всего лишь сдвинуть полученный ранее график на три единицы вправо. Заметим, что, если бы в знаменателе дроби стояло бы выражение х+3, то мы сдвинули бы график влево:

Теперь необходимо умножить на два все ординаты, чтобы получить график функции

Наконец, сдвигаем график вверх на две единицы:

Последнее, что нам осталось сделать, это построить график данной функции, если она заключена под знак модуля. Для этого отражаем симметрично вверх всю часть графика, ординаты которой отрицательны (ту часть, что лежит ниже оси х):

2. Теперь построим график функции

Выражение, стоящее под знаком модуля, меняет знак в точке х=2/3. При х<2/3 функция запишется так:

При х>2/3 функция запишется так:

То есть точка х=2/3 делит нашу координатную плоскость на две области, в одной из которых (правее) мы строим функцию

 

а в другой (левее) – график функции

Строим:

3. Следующий график – также ломаная, но имеет две точки излома, так как содержит два выражения под знаками модуля:

Посмотрим, в каких точках подмодульные выражения меняют знак:

Расставим знаки для подмодульных выражений на координатной прямой:

Раскрываем модули на первом интервале:

На втором интервале:

На третьем интервале:

Таким образом, на интервале (-∞; 1.5] имеем график, записанный первым уравнением, на интервале [1.5; 2] – график, записанный вторым уравнением, и на интервале [2;∞) – график по третьему уравнению:

Строим:

4. Теперь можем построить  график, похожий на один из предыдущих, и все же отличающийся:

В основе опять знакомый нам график функции

но, если в знаменателе x стоит под знаком модуля,

то график имеет вид:

Теперь произведем сдвиг на три единицы,

 при этом сдвинутся обе части: правая – вправо, левая – влево (своеобразное зеркало : отходишь дальше – видно больше)

График этой функции, умноженной на два,

выглядит так:

Теперь можно поднять график по оси у:

и тогда он будет таким:

Наконец, строим окончательный вид графика, отражая все, что ниже оси абсцисс, вверх:

5.Очень интересно выглядит график функции

В точках 2 и (-2) знак подмодульного выражения меняет знак, поэтому функция состоит из трех кусков (точки 2 и (-2) выколоты). На участках  (-∞; -2) и (2; ∞) справедливо первое уравнение, а на участке (-2;2) – второе:

6. Две следующие функции отличаются знаком, и графики их выглядят по-разному:

7. Еще два похожих графика, вид которых меняется в зависимости от х в показателе степени:

Первый:

Второй:

 

8.Теперь построим график такой функции:

Здесь точкой перемены знака подмодульного выражения является х=4. Тогда на интервале (-∞; 4] функция выглядит так:

А на интервале [4; ∞)  так:

Точка вершины первой параболы (2;-12), она обращена вниз ветвями, точка вершины второй параболы (6, -20), ветви ее обращены вверх. В итоге имеем:

9. Построим график функции, которая, на первый взгляд, выглядит устрашающе:

Однако многочлен в числителе раскладывается на множители:

Точки перемен знака подмодульных выражений – 4 и (-2). Точки эти (они выколоты) разбивают числовую прямую на три интервала, на которых данная функция будет выглядеть:

На первом интервале (-∞; -2):

На втором интервале (-2;4):

На третьем интервале (4;∞):

Строим:

Внесем небольшие изменения, добавив двойку в знаменатель исходной функции:

Тогда точки перемены знака остаются те же, но функция выглядит иначе на разных интервалах:

На первом интервале (-∞; -2):

На втором интервале (-2;4):

На третьем интервале (4;∞):

График изменится:

10. Наконец, последний график мы построим для функции

Начнем построение с “базовой” для этого графика функции

она выглядит так:

Далее добавим знак модуля под корень:

Теперь опустим этот график вниз на 4 единице по оси у:

“Опрокинем” все, что ниже оси х, вверх,

и не забудем поделить все ординаты на 2:

easy-physic.ru

Обучение учащихся построению графиков функций с модулем

Обучение учащихся построению графиков функций с модулем

Построение графиков, содержащих модуль, осуществляется двумя способами:

  1. На основании определения модуля

Построение графика функции

Приведем пример построения графика функции

Построение графика функции

Приведем пример построения графика функции

  1. На основании правил геометрического преобразования графиков функций.

Какие геометрические преобразования, можно использовать при построении графиков функций? (параллельный перенос вдоль осей ОХ и ОУ, симметричное отображение относительно осей или точки)

Построение графика .

Чтобы построить график функции , если известен график функции , нужно оставить на месте ту его часть, где , и симметрично отобразить относительно оси Х другую его часть, где .

Алгоритм построения графика:

1. Построить график функции ,

2. Часть графика , лежащая над осью ОХ, сохраняется, а часть его, лежащая под осью ОХ, отображается симметрично относительно оси ОХ.

Построение графика .

Чтобы построить график функции , если известен график функции , нужно оставить на месте ту его часть, где , а при отобразить построенную часть симметрично относительно оси ОУ.

Алгоритм построения графика:

Построить график функции ,

При график сохраняется, а при отображается построенная часть симметрично относительно оси ОУ.

В “основе” его лежит график функции, он выглядит так :

Теперь построим график

Чтобы получить этот график, достаточно всего лишь сдвинуть полученный ранее график на три единицы вправо. Заметим, что, если бы в знаменателе дроби стояло бы выражение х+3, то мы сдвинули бы график влево:

Теперь необходимо умножить на два все ординаты, чтобы получить график функции

Наконец, сдвигаем график вверх на две единицы:

Последнее, что нам осталось сделать, это построить график данной функции, если она заключена под знак модуля. Для этого отражаем симметрично вверх всю часть графика, ординаты которой отрицательны (ту часть, что лежит ниже оси х):

Выражение, стоящее под знаком модуля, меняет знак в точке х=2/3. При х<2/3 функция запишется так:

При х>2/3 функция запишется так:

То есть точка х=2/3 делит нашу координатную плоскость на две области, в одной из которых (правее) мы строим функцию ,

а в другой (левее) – график функции

  • Следующий график – также ломаная, но имеет две точки излома, так как содержит два выражения под знаками модуля:

Посмотрим, в каких точках подмодульные выражения меняют знак:

Расставим знаки для подмодульных выражений на координатной прямой:

Раскрываем модули на первом интервале:

На втором интервале:

На третьем интервале:

Таким образом, на интервале (-∞; 1.5] имеем график, записанный первым уравнением, на интервале [1.5; 2] – график, записанный вторым уравнением, и на интервале [2;∞) - график по третьему уравнению:

Строим:

4. Теперь можем построить  график, похожий на один из предыдущих, и все же отличающийся:

В основе опять знакомый нам график функции

но, если в знаменателе x стоит под знаком модуля,

то график имеет вид:

Теперь произведем сдвиг на три единицы,

 при этом сдвинутся обе части: правая - вправо, левая - влево (своеобразное зеркало : отходишь дальше - видно больше)

График этой функции, умноженной на два,

выглядит так:

Теперь можно поднять график по оси у:

и тогда он будет таким:

Наконец, строим окончательный вид графика, отражая все, что ниже оси абсцисс, вверх:

5.Очень интересно выглядит график функции

В точках 2 и (-2) знак подмодульного выражения меняет знак, поэтому функция состоит из трех кусков (точки 2 и (-2) выколоты). На участках  (-∞; -2) и (2; ∞) справедливо первое уравнение, а на участке (-2;2) - второе:

6. Две следующие функции отличаются знаком, и графики их выглядят по разному:

7. Еще два похожих графика, вид которых меняется в зависимости от х в показателе степени:

Первый:

Второй:

 

8.Теперь построим график такой функции:

Здесь точкой перемены знака подмодульного выражения является х=4. Тогда на интервале (-∞; 4] функция выглядит так:

А на интервале [4; ∞)  так:

Точка вершины первой параболы (2;-12), она обращена вниз ветвями, точка вершины второй параболы (6, -20), ветви ее обращены вверх. В итоге имеем:

9. Построим график функции, которая, на первый взгляд, выглядит устрашающе:

Однако многочлен в числителе раскладывается на множители:

Точки перемен знака подмодульных выражений – 4 и (-2). Точки эти (они выколоты) разбивают числовую прямую на три интервала, на которых данная функция будет выглядеть:

На первом интервале (-∞; -2):

На втором интервале (-2;4):

На третьем интервале (4;∞):

Строим:

Внесем небольшие изменения, добавив двойку в знаменатель исходной функции:

Тогда точки перемены знака остаются те же, но функция выглядит иначе на разных интервалах:

На первом интервале (-∞; -2):

На втором интервале (-2;4):

На третьем интервале (4;∞):

График изменится:

10. Наконец, последний график мы построим для функции

Начнем построение с “базовой” для этого графика функции

она выглядит так:

Далее добавим знак модуля под корень:

Теперь опустим этот график вниз на 4 единице по оси у:

“Опрокинем” все, что ниже оси х, вверх,

и не забудем поделить все ординаты на 2:

infourok.ru

Простейшие уравнения с модулем. Тест

Определение. Геометрический смысл

 

Модуль (или абсолютная величина)   числа   (обозначается как )— неотрицательное число, определение которого зависит от типа числа  

А именно:

Мы будем называть данное правило правилом раскрытия модуля.

Например, так как , попадаем в первую строку (ситуацию)

так как попадаем во вторую ситуацию.

С геометрической точки зрения,  – есть расстояние между числом   и началом координат.

Решением уравнения, например,  являются числа и , потому что расстояние от точки координатной прямой до нуля равно , и расстояние от точки   до нуля также равно 6.

|| с геометрической точки зрения означает расстояние между точками и .

 

Полезные примеры

 

1) Раскрыть модуль:

Так как больше, чем , то , а значит согласно правилу раскрытия модуля.

2) Раскрыть модуль:

Так как больше нуля при всех значениях , то согласно правилу раскрытия модуля.

3) Раскрыть модуль:

Так как , то , а значит, согласно правилу раскрытия модуля.

Решение уравнений

 

1) Решить уравнение .

Модуль – всегда неотрицательная величина, поэтому уравнение решений не имеет.

Ответ: { }

2) Решить уравнение: .

Модуль раскрывается таким образом в случае, когда  .

Ответ:

3) Решить уравнение:

Согласно геометрическому смыслу модуля левая и правая части равенства представляют из себя одно и то же.

Ответ:

4)  Решить уравнение:

Раскрываем модуль согласно правилу раскрытия модуля:

а)

Имеем: ,     

Откуда .

Поскольку мы находимся в ситуации , то подходит только корень .

б)

Имеем: ,    

Откуда или .

Поскольку мы находимся в ситуации , то ни один корень из найденных в пункте (б) нам не подходит.

Ответ: .

Коротко можно было бы решение оформить так:

5) Решить уравнение:

Раскрываем модуль согласно правилу раскрытия модуля:

a) Первый случай:

Что равносильно .

б) Второй случай:

Что равносильно

Ответ:

6) Решить уравнение:

Можно было бы действовать согласно правилу раскрытия модуля, но проще будет в данном случае рассуждать так:

Внутри модуля может «скрываться» как так и .

Поэтому или

или

Из первого уравнения или , а второе уравнение корней не имеет.

Ответ:

 

7) Решить уравнение:

Раскрываем модуль согласно правилу раскрытия модуля:

а) Первый случай:

Рассмотрим отдельно первую строку системы:

Рассмотрим уравнение из системы:

или

Разложим на множители левую часть уравнения способом группировки, предварительно разбив среднее слагаемое на два:

Откуда (трехчлен в скобках корней не имеет).

Данный корень удовлетворяет первой строке системы, он пойдет  в ответ.

б) Второй случай:

Решение неравенства системы:

Корень удовлетворяет решению неравенства системы.

Собираем решения.

Ответ:

 

Также, смотрите «Модуль. Простейшие неравенства с модулем» здесь.

Вы можете пройти тест  по теме «Модуль. Раскрытие модуля. Простешие уравнения с модулем»

egemaximum.ru

Методы построения графиков функций содержащих модуль

Разделы: Математика, Конкурс «Презентация к уроку»

Презентация к уроку

Загрузить презентацию (200,7 кБ)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока:

  • повторить построение графиков функций содержащих знак модуля;
  • познакомиться с новым методом построения графика линейно-кусочной функции;
  • закрепить новый метод при решении задач.

Оборудование:

  • мультимедиа проектор,
  • плакаты.

Ход урока

Актуализация знаний

На экране слайд 1 из презентации.

Что является графиком функции y=|x| ? (слайд 2).

(совокупность биссектрис 1 и 2 координатных углов)

Найдите соответствие между функциями и графиками, объясните ваш выбор (слайд 3).

Рисунок 1

y=| x+3|

y=| x| +3

y=-2| x| -2

y=6-| x-5|

y=1/3| x-6| -3

Расскажите алгоритм построения графиков функций вида y=|f(x)| на примере функции y=|x2-2x-3| (слайд 4)

Ученик: чтобы построить график данной функции нужно

- построить параболу y=x2-2x-3

- часть графика над ОХ сохранить, а часть графика расположенную ниже ОХ отобразить симметрично относительно оси ОХ (слайд 5)

Рисунок 2

Рисунок 3

Расскажите алгоритм построения графиков функций вида y=f(|x|) на примере функции y=x2-2|x|-3 (слайд 6).

Ученик: Чтобы построить график данной функции нужно:

- построить параболу.

- часть графика при х 0 сохраняется и отображается симметрии относительно оси ОУ (слайд 7)

Рисунок 4

Расскажите алгоритм построения графиков функций вида y=|f(|x|)| на примере функции y=|x2-2|x|-3| (слайд 8).

Ученик: Чтобы построить график данной функции нужно:

- нужно построить параболу у=x2-2x-3

- строим у= x2-2|x|-3, часть графика сохраняем и симметрично отображаем относительно ОУ

- часть над ОХ сохраняем, а нижнюю часть симметрично отображаем относительно ОХ (слайд 9)

Рисунок 5

Следующее задание выполняем письменно в тетрадях.

1. Построить график линейно-кусочной функции у=|х+2|+|х-1|-|х-3|

Ученик на доске с комментарием:

- находим нули подмодульных выражений х1=-2, х2=1, х3=3

- разбиваем ось на промежутки

- для каждого промежутка запишем функцию

при х < -2, у=-х-4

при -2 х<1, у=х

при 1 х<3, у = 3х-2

при х 3, у = х+4

- строим график линейно-кусочной функции.

Мы с вами построили график функции используя определение модуля (слайд 10).

Рисунок 6

Предлагаю вашему вниманию “метод вершин”, который позволяет строить график линейно-кусочной функции (слайд 11). Алгоритм построения дети записывают в тетрадь.

Метод вершин

Алгоритм:

  1. Найдем нули каждого подмодульного выражения
  2. Составим таблицу, в которой кроме нулей запишем по одному значению аргумента слева и справа
  3. Нанесем точки на координатную плоскость и соединим последовательно

2. Разберем этот метод на той же функции у=|х+2|+|х-1|-|х-3|

Учитель на доске, дети в тетрадях.

Метод вершин:

- найдем нули каждого подмодульного выражения;

- составим таблицу, в которой кроме нулей запишем по одному значению аргумента слева и справа

х -3 -2 1 3 4

у -1 -2 1 7 8

- нанесем точки на координатную плоскость и соединим последовательно.

Графиком линейно-кусочной функции является ломанная с бесконечными крайними звеньями (слайд 12) .

Рисунок 7

Каким же методом график получается быстрее и легче?

3. Чтобы закрепить данный метод предлагаю выполнить следующее задание:

При каких значения х функция у=|х-2|-|х+1| принимает наибольшее значение.

Следуем алгоритму; ученик на доске.

у=|х-2|-|х+1|

х1=2, х2=-1

у(-2)=4-1=3

у(-1)=3

у(2)=-3

у(3)=1-4=3, соединяем последовательно точки.

унаиб = 3

4. Дополнительное задание

При каких значениях а уравнение ||4+x|-|x-2||=a имеет два корня.

5. Домашняя работа

а) При каких значениях Х функция у =|2x+3|+3|x-1|-|x+2| принимает наименьшее значение.

б) Построить график функции y=||x-1|-2|-3| .

Поделиться страницей:

xn--i1abbnckbmcl9fb.xn--p1ai

Функция с модулем

Пример 1. Построить график функции y=||1-x2|-3|. Построим график функции y=1-x2 и применим к нему операцию «модуль» (часть графика, расположенная ниже оси OX симметрично отражается относительно оси OX).

Выполним сдвиг графика вниз на 3.

Применим операцию «модуль» и получим окончательный график функции y=||1-x2|-3|

Пример 2. Построить график функции y=||x2-2x|-3|. В результате преобразования получаем y=|x2-2x|=|(x-1)2-1|. Построим график функции y=(x-1)2-1: строим параболу y=x2 и выполняем сдвиг вправо на 1 и вниз на 1.

Применим к нему операцию «модуль» (часть графика, расположенная ниже оси OX симметрично отражается относительно оси OX).

Выполним сдвиг графика вниз на 3 и применим операцию «модуль», в результате получим окончательный график.

Пример 3. Построить график функции . Чтобы раскрыть модуль, надо рассмотреть два случая: 1)x>0, тогда модуль раскроется со знаком "+" = 2)x=

Построим график для первого случая.

Отбросим часть графика, где x

Построим график для второго случая и аналогично отбросим часть, где x>0, в итоге получим.

Соединим два графика и получим окончательный.

Пример 4. Построить график функции . Построим сначала график функции .Для этого удобно выделить целую часть, получим . Строя по таблице значений, получаем график.

Применим операцию модуль (часть графика, расположенная ниже оси OX симметрично отражается относительно оси OX). Получаем окончательный график

Пример 5. Построить график функции y=|-x2+6x-8|. Cначала упростим функцию до y=1-(x-3)2 и построим её график

Теперь применим операцию «модуль» и отразим часть графика ниже оси OX, относительно оси OX

Пример 6. Построить график функции y=-x2+6|x|-8. Также упростим функцию до y=1-(x-3)2 и построим её график

Теперь применим операцию «модуль» и отразим часть графика правее оси оY, в левую часть

Пример 7. Построить график функции . Построим график функции

Построим график функции

Выполним параллельный перенос на 3 единичных отрезка вправо и 2 вверх. График примет вид:

Применим операцию «модуль» и отразим часть графика правее прямой x=3 в левую полуплоскость.

Пример 8. Построить график функции . Построим график функции

Построим график функции

Построим график функции

Выполним параллельный перенос на 3 единичных отрезка вправо и 2 вверх. График примет вид:

Теперь применим операцию «модуль» и симметрично отразим часть графика правее оси OY

Пример 9. Построить график функции . Построим график функции из Примера 7,

Теперь применим операцию «модуль» ко всей функции

Пример 10. Построить график функции . Построим график функции из Примера 8,

Теперь применим операцию «модуль» ко всей функции

www.tofmal.ru

Уравнения с модулями. Графический метод

Простыми уравнения с модулями называем уравнения вида

|x|=5; |x-3|=2; ||2x-1|-5|=3; |1-x|=4

в которых переменная входит однократно и линейно. Решать модульные уравнения можно как с помощью метода раскрытия модулей так и графически. В данной статье большое внимание будет уделено именно графическому методу раскрытия модулей. Для этого постепенно будет раскрыта суть преобразований с модулями. Таким образом удается решить множество тестовых задач в которых требуется найти количество решений уравнения с модулем.Для наглядности приведем график модуль функции y=|x| ( "галочки")

Далее представим смещение графика модуль функции по оси Ox, например y=|x-7|. Такая запись означает что функция равна нулю когда дужка равна нулюx-7=0; –> x=7. Так что "галочка" переносится вправо на 7.

Если подмодульную функцию умножить на (-1) то график функции не изменится |7-x|=|x-7|.Если в модуле имеем суммирование |x+5| то смещение графика модуль функции выполняем в сторону отрицательных переменных

Самое интересное в вычислениях происходит когда имеем уравнение вида модуль в модуле||x|-6|, ||x|+3| Тогда выполняем перенос графика внутреннего модуля по оси вниз или вверх и симметричное отображение значений, которые идут ниже оси Oх вверх.

Следующая функция это модуль поднят вверх на три.

Далее, если в задании спрашивают "Какое количество корней уравнения ||x|-6|=2?" то необходимо провести лишь линию y=2 и подсчитать количество точек пересечения с графиком модуль функции

Уравнение имеет 4 решения. Лучше решать графически уравнение с модулями на листке в клеточку, есть лучшая привязка к квадратикам. Задача в каждом из случаев сводится к смещению, отображения и параллельному переносу графика модуль функции |x|. Решим несколько примеров чтоб Вы понимали насколько эффективная методика графического раскрытия модулей.

 

Пример 1. Найти корни уравнения ||x-2|-5|=3. Решение: Имеем задания типа модуль от модуля. Выполняем построение первого (внутреннего) модуля

Далее параллельно переносим линии вниз на 5, чтобы получить график функции y=|x-2|-5

Следующим шагом отражаем все что находится ниже оси абсцисс. Это и будет искомая модуль функция y=||x-2|-5|. Также выполняем построение прямой у=3

Нетрудно определить по рисунку что решениями уравнения с модулями будут значенияx=-6; x=0;x=4; x=10.На этом пример выполнен. Далее будет меньше детализации, однако суть алгоритма графического построения Вам будет понятен.

 

Пример 2. Найти количество корней следующего уравнения с модулем |||x+1|-3|-5|=2.Решение: Имеем уравнения с двумя вложенными модулями. График первого вложенного модуля получим смещением в отрицательную сторону оси абсцисс модуль функции на единицу. Далее параллельно переносим полученный график вниз на 3 и отразим относительно оси Ox все минусовые y. Полученный график снова опускаем вниз, на этот раз на 5 клеток и симметрично отражаем все что находится ниже оси Ox. Выполняем построение правой стороны уравнения – прямой y=2.В результате у Вас должен получиться похожий конечный график модуль функции

Из построения видим, что имеем пять точек пересечения прямой с модуль-функцией, а следовательно и 5 корней уравнения. Вот и все решения примера с модулями. Классическое раскрытие модулей для этого примера занимает очень много времени и существует вероятность неправильного решения уравнения. Преимущество графического метода по времени решения видна невооружённым глазом.

 

Пример 3. При каком значении параметра a уравнение с модулем ||x-4|-2|=a-3 имеет три, четыре корня? Решение: Выполняем построение модулей, которые находятся в левой части уравнения

Из построения видим, если правая сторона уравнения с модулями равна 2 то имеем три точки пересечения. Если от 0 до 2 не учитывая краев – 4 корни уравнения. Отсюда получим уравнение для определеения параметра

a-3=2; – > a=5.

и неровности

a-3>0; a>3; a-3< 2; a < 5 .

В итоге: уравнение имеет 3 корня когда параметр равен a=5 и 4 корня если параметр принадлежит интервалу a=(3..5).

В подобных примерах надо быть очень внимательными так как часто именно вопрос ставится так, чтобы помочь Вам или наоборот "навредить". Например: "Сколько положительных корней имеет уравнение с модулями?", "Найдите сумму решений уравнения", "Найдите наибольшее целое значение параметра" и тому подобные. Поэтому вдумчиво читайте что от Вас требуют, а уже потом приступайте к вычислениям.

Похожие материалы:

yukhym.com

Решение уравнений с модулем

Решение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа,  и как правильно раскрывать выражения, содержащие знак модуля, то наличие в уравнении выражения, стоящего под знаком модуля, перестает быть препятствием для его решения.

Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.

Например, число +5, или просто 5 имеет знак "+" и абсолютное значение 5.

Число -5  имеет знак "-" и абсолютное значение 5.

Абсолютные значения чисел 5 и -5 равны 5.

Абсолютное значение числа х называется модулем числа и обозначается |x|.

Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.

Это же касается любых выражений, которые стоят под знаком модуля.

Правило раскрытия модуля выглядит так:

|f(x)|= f(x),   если f(x) ≥ 0, и

|f(x)|= - f(x), если f(x) < 0

Например |x-3|=x-3,  если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0.

Чтобы решить уравнение , содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля.

Тогда наше уравнение или неравенство преобразуется в два  различных уравнения, существующих на двух различных числовых промежутках.

Одно уравнение  существует на числовом  промежутке, на котором выражение, стоящее под знаком модуля неотрицательно.

А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно.

Рассмотрим простой пример.

Решим уравнение:

|x-3|=-x2+4x-3

1.  Раскроем модуль.

|x-3|=x-3, если x-3≥0, т.е. если х≥3

|x-3|=-(x-3)=3-x, если  x-3<0, т.е. если х<3

2. Мы получили два числовых промежутка:  х≥3 и х<3.

Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке:

А) При  х≥3 |x-3|=x-3, и наше уранение имеет вид:

x-3=-x2+4x-3

Внимание! Это уравнение существует только на промежутке х≥3!

Раскроем скобки, приведем подобные члены:

x2 -3х=0

и решим это уравнение.

Это уравнение имеет корни:

х1=0, х2=3

Внимание! поскольку  уравнение x-3=-x2+4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х2=3.

Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид:

3-x=-x2+4x-3

Внимание! Это уравнение существует только на промежутке х<3!

Раскроем скобки, приведем подобные члены. Получим уравнение:

x2-5х+6=0

х1=2, х2=3

Внимание! поскольку  уравнение 3-х=-x2+4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х1=2.

Итак: из первого промежутка мы берем только корень х=3, из второго - корень  х=2.

Ответ:  х=3, х=2

 

ege-ok.ru