Системы счисления. Перевод из одной системы в другую. Как переводить системы счисления


Системы счисления. Перевод из одной системы в другую.

1. Порядковый счет в различных системах счисления.

В современной жизни мы используем позиционные системы счисления, то есть системы, в которых число, обозначаемое цифрой, зависит от положения цифры в записи числа. Поэтому в дальнейшем мы будем говорить только о них, опуская термин «позиционные».

Для того чтобы научиться переводить числа из одной системы в другую, поймем, как происходит последовательная запись чисел на примере десятичной системы.

Поскольку у нас десятичная система счисления, мы имеем 10 символов (цифр) для построения чисел. Начинаем порядковый счет: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Цифры закончились. Мы увеличиваем разрядность числа и обнуляем младший разряд: 10. Затем опять увеличиваем младший разряд, пока не закончатся все цифры: 11, 12, 13, 14, 15, 16, 17, 18, 19. Увеличиваем старший разряд на 1 и обнуляем младший: 20. Когда мы используем все цифры для обоих разрядов (получим число 99), опять увеличиваем разрядность числа и обнуляем имеющиеся разряды: 100. И так далее.

Попробуем сделать то же самое в 2-ной, 3-ной и 5-ной системах (введем обозначение для 2-ной системы, для 3-ной и т.д.):

0 0 0 0
1 1 1 1
2 10 2 2
3 11 10 3
4 100 11 4
5 101 12 10
6 110 20 11
7 111 21 12
8 1000 22 13
9 1001 100 14
10 1010 101 20
11 1011 102 21
12 1100 110 22
13 1101 111 23
14 1110 112 24
15 1111 120 30

Если система счисления имеет основание больше 10, то нам придется вводить дополнительные символы, принято вводить буквы латинского алфавита. Например, для 12-ричной системы кроме десяти цифр нам понадобятся две буквы ( и ):

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10
11
12 10
13 11
14 12
15 13

2.Перевод из десятичной системы счисления в любую другую.

Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание, и дальше до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример 1. Переведем десятичное число 46 в двоичную систему счисления.

Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.

Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.

3. Перевод из любой системы счисления в десятичную.

Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.

Точно так же обстоит дело и в других системах счисления, только умножать будем не на 10, 100 и пр., а на степени основания системы счисления. Для примера возьмем число 1201 в троичной системе счисления. Пронумеруем разряды справа налево начиная с нуля и представим наше число как сумму произведений цифры на тройку в степени разряда числа:

Это и есть десятичная запись нашего числа, т.е.

Пример 4. Переведем в десятичную систему счисления восьмеричное число 511.

Пример 5. Переведем в десятичную систему счисления шестнадцатеричное число 1151.

4. Перевод из двоичной системы в систему с основанием «степень двойки» (4, 8, 16 и т.д.).

Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.

Например, Переведем двоичное 1100001111010110 число в восьмеричную систему. Для этого разобьем его на группы по 3 символа начиная справа (т.к. ), а затем воспользуемся таблицей соответствия и заменим каждую группу на новую цифру:

Таблицу соответствия мы научились строить в п.1.

0 0
1 1
10 2
11 3
100 4
101 5
110 6
111 7

Т.е.

Пример 6. Переведем двоичное 1100001111010110 число в шестнадцатеричную систему.

0 0
1 1
10 2
11 3
100 4
101 5
110 6
111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

5.Перевод из системы с основанием «степень двойки» (4, 8, 16 и т.д.) в двоичную.

Этот перевод аналогичен предыдущему, выполненному в обратную сторону: каждую цифру мы заменяем группой цифр в двоичной системе из таблицы соответствия.

Пример 7. Переведем шестнадцатеричное число С3A6 в двоичную систему счисления.

Для этого каждую цифру числа заменим группой из 4 цифр (т.к. ) из таблицы соответствия, дополнив при необходимости группу нулями вначале:

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Как переводить из десятичной системы счисления в двоичную

Десятичная (основанная на десяти) система счисления имеет 10 возможных значений (0,1,2,3,4,5,6,7,8 или 9) для каждого поместного значения. Двоичная система счисления (основанная на двух), в свою очередь, имеет два возможных значения каждого поместного значения – 0 или 1. Так как двоичная система является внутренним языком компьютеров, то серьезные программисты должны понимать, как переводить из десятичной системы счисления в двоичную, о чем вам и расскажет данная статья.

Способы представления чисел

Двоичные (binary) числа – каждая цифра означает значение одного бита (0 или 1), старший бит всегда пишется слева, после числа ставится буква «b». Для удобства восприятия тетрады могут быть разделены пробелами. Например, 1010 0101b.Шестнадцатеричные (hexadecimal) числа – каждая тетрада представляется одним символом 0…9, А, В, …, F. Обозначаться такое представление может по-разному, здесь используется только символ «h» после последней шестнадцатеричной цифры. Например, A5h. В текстах программ это же число может обозначаться и как 0хА5, и как 0A5h, в зависимости от синтаксиса языка программирования. Незначащий ноль (0) добавляется слева от старшей шестнадцатеричной цифры, изображаемой буквой, чтобы различать числа и символические имена.Десятичные (decimal) числа – каждый байт (слово, двойное слово) представляется обычным числом, а признак десятичного представления (букву «d») обычно опускают. Байт из предыдущих примеров имеет десятичное значение 165. В отличие от двоичной и шестнадцатеричной формы записи, по десятичной трудно в уме определить значение каждого бита, что иногда приходится делать.Восьмеричные (octal) числа – каждая тройка бит (разделение начинается с младшего) записывается в виде цифры 0–7, в конце ставится признак «о». То же самое число будет записано как 245о. Восьмеричная система неудобна тем, что байт невозможно разделить поровну.

Алгоритм перевода чисел из одной системы счисления в другую

Перевод целых десятичных чисел в любую другую системы счисления осуществляется делением числа на основание новой системы счисления до тех пор, пока в остатке не останется число меньшее основания новой системы счис­ления. Новое число записывается в виде остатков деления, начиная с последнего.Перевод правильной десятичной дроби в другую ПСС осуществляется умножением только дробной части числа на основание новой системы счисления до тех пор пока в дробной части не останутся все нули или пока не будет достигнута заданная точность перевода. В результате выполнения каждой операции умножения формируется одна цифра нового числа начиная со старшего.Перевод неправильной дроби осуществляется по 1 и 2 правилу. Целую и дробную часть записывают вместе, отделяя запятой.

ПРИМЕР №1.

Перевод из 2 в 8 в 16 системы счисления.Эти системы кратны двум, следовательно, перевод осуществляется с использованием таблицы соответствия (см. ниже).

Для перевода числа из двоичной системы счисления в восьмиричную (шестнадцатиричную) необходимо от запятой вправо и влево разбить двоичное число на группы по три (четыре – для шестнадцатиричной) разряда, дополняя при необходимости нулями крайние группы. Каждую группу заменяют соответствующей восьмиричной или шестнадцатиричной цифрой.

ПРИМЕР №2. 1010111010,1011 = 1.010.111.010,101.1 = 1272,518здесь 001=1; 010=2; 111=7; 010=2; 101=5; 001=1

При переводе в шестнадцатеричную систему необходимо делить число на части, по четыре цифры, соблюдая те же правила.ПРИМЕР №3. 1010111010,1011 = 10.1011.1010,1011 = 2B12,13HEXздесь 0010=2; 1011=B; 1010=12; 1011=13

Перевод чисел из 2, 8 и 16 в десятичную систему исчисления производят путем разбивания числа на отдельные и умножения его на основание системы (из которой переводится число) возведенное в степень соответствующую его порядковому номеру в переводимом числе. При этом числа нумеруются влево от запятой (первое число имеет номер 0) с возрастанием, а в правую сторону с убыванием (т.е. с отрицательным знаком). Полученные результаты складываются.

ПРИМЕР №4.

Еще раз повторим алгоритм перевода чисел из одной системы счисления в другую ПСС

  1. Из десятичной системы счисления:
    • разделить число на основание переводимой системы счисления;
    • найти остаток от деления целой части числа;
    • записать все остатки от деления в обратном порядке;
  2. Из двоичной системы счисления
    • Для перевода в десятичную систему счисления необходимо найти сумму произведений основания 2 на соответствующую степень разряда;
    • Для перевода числа в восьмеричную необходимо разбить число на триады.Например, 1000110 = 1 000 110 = 1068
    • Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить число на группы по 4 разряда.Например, 1000110 = 100 0110 = 4616

Позиционной называется система, для которой значимость или вес цифры зависит от ее места расположения в числе. Соотношение между системами выражается таблицей.Таблица соответствия систем счисления:

Двоичная СС Шестнадцатеричная СС
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Таблица для перевода в восьмеричную систему счисления

Двоичная СС Восьмеричная СС
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

bichka.info

Как переводить системы счисления

В информационных технологиях вместо привычной нам десятичной системы счисления часто используется двоичная, так как на ней построена работа компьютеров.

Инструкция

  • Основных операций всего две: перевод из десятичной системы счисления в другую (двоичную, восьмеричную и т.п.) и обратно. Название каждой системы счисления происходит от ее основания - это количество элементов в ней (двоичная - 2, десятичная - 10). В системах счисления с основанием больше 10 принято использовать далее в качестве замены двухзначных чисел буквы латинского алфавита (А - 10, B - 11 и т.д.).
  • Операции рассмотрим на примере двоичной системы счисления, как наиболее распространенной. Для всех других систем будут верны те же правила и методы с точностью до замены основания 2 на соответствующее.Итак, у нас есть некоторое число в двоичной системе счисления, состоящее из нескольких цифр. Записываем его в виде суммы произведений его цифр, умноженных на 2. Далее у всех 2 расставляем степени справа налево, начиная с 0. Суммируем. Получившее число и есть искомое.Пример.1011=1*(2^3)+0*(2^2)+1*(2^1)+1*(2^0)=8+0+2+1=11.
  • Теперь рассмотрим обратную операцию.Пусть дано число в десятичной системе. Будем делить его столбиком на основание системы счисления, в которую мы хотим его перевести (в нашем случае это будет 2). Деление продолжаем до самого конца, пока частное не станет меньше основания. Далее, начиная с последнего, записываем все остатки в строчку. Это и будет искомое число.Пример.11/2 = 5 остаток 1, 5/2 = 2, остаток 1, 2/2 = 1 остаток 0 => 1011.Еще один пример приведен на картинке.Для других оснований операции аналогичны. Не забывайте заменять числа, начиная с 10, в соответствующих системах счисления на латинские буквы! В противном случае получившееся число будет считываться неверно, ведь "10" и "1""0" - это абсолютно разные вещи!Основание системы счисления, в которой представлено число, указывается в виде индекса внизу у крайней правой цифры числа.

completerepair.ru

1.2 Перевод чисел из одной системы счисления в другую.

Перевод чисел в десятичную системуосуществляется путем составления степенного ряда с основанием той системы, из которой число переводится. Затем подсчитывается значение суммы.

Пример.

а) Перевести 10101101.1012"10" с.с.

Здесь и в дальнейшем при одновременном использовании нескольких различных систем счисления основание системы к которой относится число будем указывать в виде нижнего индекса.

10101101.1012= 127+ 026+ 125+ 024+ 123+ 122+ 021+ 120+ 12-1+ 02-2+ 12-3=  173.62510

б) Перевести 703.048"10" с.с.

703.048= 782+ 081+ 380+ 08-1+ 48-2= 451.062510

в) Перевести B2E.416"10" с.с.

B2E.416=  11162+ 2161+ 14160+ 416-1= 2862.2510

Перевод целых десятичных чисел в недесятичную системусчисления осуществляется последовательным делением десятичного числа на основание той системы, в которую оно переводится, до тех пор, пока не получится частное меньшее этого основания. Число в новой системе записывается в виде остатков деления, начиная с последнего.

Пример.

а) Перевести 18110"8" с.с.

   

Результат: 18110= 2658

б) Перевести 62210"16" с.с.

   

Результат: 62210= 26E16

Перевод правильных дробей из десятичной системы счисления в недесятичную.Для перевода правильной десятичной дроби в другую систему эту дробь надо последовательно умножать на основание той системы, в которую она переводится. При этом умножаются только дробные части. Дробь в новой системе записывается в виде целых частей произведений, начиная с первого.

Пример.

Перевести 0.312510"8" с.с.

    

Результат: 0.312510= 0.248

Замечание.Конечной десятичной дроби в другой системе счисления может соответствовать бесконечная (иногда периодическая) дробь. В этом случае количество знаков в представлении дроби в новой системе берется в зависимости от требуемой точности.

Пример.

Перевести 0.6510"2" с.с. Точность 6 знаков.

    

Результат: 0.65100.10(1001)2

Для перевода неправильной десятичной дроби в систему счисления с недесятичным основаниемнеобходимо отдельно перевести целую часть и отдельно дробную.

Пример.

Перевести 23.12510"2" с.с.

1) Переведем целую часть:

2) Переведем дробную часть:

Таким образом:  2310= 101112; 0.12510= 0.0012. Результат:  23.12510= 10111.0012.

Необходимо отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Для перевода восьмеричного или шестнадцатеричного числа в двоичную форму достаточно заменить каждую цифру этого числа соответствующим трехразрядным двоичным числом (триадой) (Таб. 1) или четырехразрядным двоичным числом (тетрадой) (Таб. 1), при этом отбрасывают ненужные нули в старших и младших разрядах.

Пример.

а) Перевести 305.48"2" с.с.

б) Перевести 7B2.E16"2" с.с.

Для перехода от двоичной к восьмеричной (шестнадцатеричной) системепоступают следующим образом: двигаясь от точки влево и вправо, разбивают двоичное число на группы по три (четыре) разряда, дополняя при необходимости нулями крайние левую и правую группы. Затем триаду (тетраду) заменяют соответствующей восьмеричной (шестнадцатеричной) цифрой.

Пример.

а) Перевести 1101111001.11012"8" с.с.

б) Перевести 11111111011.1001112"16" с.с.

Перевод из восьмеричной в шестнадцатеричную систему и обратноосуществляется через двоичную систему с помощью триад и тетрад.

Пример. Перевести 175.248"16" с.с.

Результат: 175.248= 7D.516.

studfiles.net

Как переводить в десятичную систему счисления?

Большинство людей на нашей планете при счете пользуются десятичной системой счисления, а вот в компьютерах используется двоичная. Некоторые племена на заре развития человечества использовали двенадцатеричную и шестидесятеричную. Именно от них нам остались 12 часов на циферблате и 60 минут в часу.

Порою необходимо перевести число из одной системы в другую. В этой статье рассмотрим конкретнее, как переводить в десятичную систему из некоторых других популярных систем.

Принцип построения числа из цифр

Прежде всего нужно понять, что такое система счисления и её основание. Система счисления - способ представления чисел в виде комбинации тех или иных цифр. Основание системы - количество цифр, в ней использующихся. Например, в десятичной системе с основанием 10 всего 10 цифр - от 0 до 9. В шестнадцатеричной, соответственно, 16 цифр, для обозначения которых используются арабские цифры 0 - 9 и латинские буквы A - F вместо цифр 10 - 15. Например, 2F7BE16 - число шестнадцатеричной системы. При такой записи нижним индексом обозначается основание системы счисления. Ключевым различием между системами с разными основаниями является "ценность" числа 10. В шестнадцатеричной системе 1016 будет равно 1610, а в двоичной 102 равно всего лишь двум. 10016 будет вычисляться как

10016 = 1016 * 1016 = 1610 * 1610= 25610.

Следует также различать понятия "цифра" и "число". Цифра обозначается одним символом, а число - может и несколькими. Например, число 910 в двоичной системе будет выглядеть как 10012, а цифра 9 в двоичной системе не существует как таковая.

Алгоритм перевода

Чтобы перевести в десятичную систему число, нужно научиться применять несложный алгоритм.

  1. Определить основание системы счисления. Оно обозначается нижним индексом после числа, к примеру, в числе 2F7BE16 основание равно 16.
  2. Каждую цифру числа умножить на основание в степени, равной номеру цифры справа налево, начиная с нуля. В числе 2F7BE16 Е (равное 14) умножается на 16 в нулевой степени, В (цифра 11) - на 16 в первой степени и так далее: 2F7BE16 = 2*164 +15*163 + 7*162 + 11*161 + 14*160. 
  3. Сложить полученные результаты. 

2*164 +15*163 + 7*162 + 11*161 + 14*160 = 19449410.

Рассмотрим на примерах, как самые популярные - шестнадцатеричную, восьмеричную и двоичную системы перевести в десятичную. 

elhow.ru

Перевод целых чисел из одной системы счисления в другую онлайн

См. также: перевод дробных чисел.

Число — это понятие в математике, испульзующееся для счёта предметов (объектов) и их количественного описания.

Цифры — это знаки, используемые для записи чисел.

Система счисления — способ записи чисел с помощью знаков (цифр). Нижний индекс у числа показывает, в какой системе счисления оно записано. Например, 7658 — число записано в восьмеричной системе счисления.

Как перевести целое число из одной системы счисления в другую?

Сначала представляем число в десятичной системе счисления:

   

где — наше число в десятичной системе счисления, — основание исходной системы счисления, а — цифры числа в десятичной системе счисления, — первая цифра числа, а — последняя.

Далее, чтобы перевести число в некоторую систему счисления с основанием (цифры числа лежит в диапазоне ), иначе говоря, в -ичную систему счисления, следует представить его в виде:

   

где — цифры записи числа в системе счисления с основанием , причём — первая цифра числа, а — последняя.

Чтобы получить такое представление, будем делать так:

Находим остаток от деления числа на . Этот остаток равен последней цифре числа — . Затем находим целую часть от деления на . Пусть она равна . Находим остаток от деления на — это будет предпоследняя цифра числа . И так далее.

Рассмотрим алгортим перевода числа на примере.

Пример. Перевести число 11110 в двоичную систему счисления.

Решение. Находим остаток от деления 111 на 2. 111 = 55 · 2 + 1 — остаток равен 1, следовательно, 1 — последняя цифра числа 11110 в двоичном представлении.

Теперь рассматриваем число 55 — это целая часть от деления 111 на 2. 55 = 27 · 2 + 1, остаток равен 1, поэтому 1 — предпоследняя цифра. 111 = 27 · 22 + 1 · 2 + 1.

27 = 13 · 2 + 1, следующая цифра — 1.

13 = 6 · 2 + 1, следующая цифра — 1.

6 = 3 · 2 + 0, следующая цифра — 0.

3 = 1 · 2 + 1, следующая цифра — 1.

1 = 0 · 2 + 1, следующая цифра — 1. Окончательный результат —

Перевод чисел между системами счисления онлайн

Программа быстро переведёт число из одной системы счисления в другую онлайн. Она работает с числами до 2000000000000016, записанными в системе счисления с основанием от 2 до 36. Основания систем счисления нужно записывать в десятичном представлении.

umath.ru

Как перевести число из одной системы в другую

  Как перевести число из одной системы счисления в другую ?

    Перевод из Х позиционной системы в 10-ную

           Прежде всего мы рассмотрим перевод целого числа из любой системы счисления в 10-ную. Надо напомнить что в позиционной системе счисления число можно записать с помощью формулы:        N = an-1qn-1 + an-2qn-2 +…+ a1p1 + a0p0            Где   N - любое произвольное число;             q - основание системы;             an-1 - значение разряда в числе;            n - кол-во разрядов в числе;                     Для того чтобы перевести число из любой системы счисления в 10-ную надо: 1. Записать это число по формуле записи числа в в позиционной системе. 2. В качестве основания взять взять основание той системы из которой производиться перевод. 3. Произвести вычисления в 10- ой системе счисления.  123(8) = 1*82+2*81+3*80 = 64 +16 +3 = 83(10) 123(5) = 1*52+2*51+3*50 = 25+10 +3 = 38(10)          Можно заметить что чем больше основание системы тем длиннее запись числа.

Перевод дробной части из 10-ой в 2-ую

1. Последовательно выполнять умножение исходной десятичной дроби и получаемых дробных частей произведений на основание системы (2), до тех пор пока не получиться нулевая дробная часть или не будет достигнута требуемая точность вычислений. 2. Записать полученные целые части произведения в прямой последовательности.         1)   0,125(10) => 0,001(2)                       2)      0,28(10)=>0,010001(2)               0|125                                                          0|28               0|250                                                          0|56               0|500                                                          1|12               1|000                                                          0|24                                                                                  0|48                                                                                  0|96                                                                                  1|92

Перевод из 10-ой системы счисления в 2-ую, 8-ую, 16-ую.

          Чтобы перевести число из десятичной системы в двоичную(8-ую, 16 -ую) надо производить последовательное деление на 2 (8, 16) до тех пор пока в частном не получиться число меньше делителя.           В качестве результата записать последние значения частного и выписать за ним все остатки в обратном порядке. 1. Способ: 1)   40(10)= >  101000(2)              2)     123(10)=>173(8)           3)  123(10)=>7B

                                                                           2. Способ:    71(10)=> 100111(2)         71|1        35|1        17|1         8 |0         4 |0         2 |0         1                

Перевод чисел из 2-ой в 8-ую(16-ую) и обратно.

          Чтобы перевести число из 8-ой(16-ой) системы в 2-ую надо каждый разряд восьмеричного (16-ого) числа записать триадами(четвёрками), т.е двоичными разрядами согласно таблице.

10-ая 2-ая 8-ая 16-ая
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 A B C D E F

        Чтобы перевести число из двоичной системы в 8-ую(16-ую) надо начиная с младшего разряда разбить число на триады(четверки), а потом каждую из триад(четверок) заменить соответствующей цифрой в 8-ой(16-ой) системе.         

 

syssch.narod.ru