Степени окисления - это какая величина? Как определить степень окисления элементов? Как определяется степень окисления химических элементов


Таблица степени окисления химических элементов

Порядковый номер

Русское / англ. название

Химический символ

Степень окисления

1

Водород / Hydrogen

H

(+1), (-1)

2

Гелий / Helium

He

0

3

Литий / Lithium

Li

(+1)

4

Бериллий / Beryllium

Be

(+2)

5

Бор / Boron

B

(-1), 0, (+1), (+2), (+3)

6

Углерод / Carbon

C

(-4), (-3), (-2), (-1), 0, (+2), (+4)

7

Азот / Nitrogen

N

(-3), (-2), (-1), 0, (+1), (+2), (+3), (+4), (+5)

8

Кислород / Oxygen

O

(-2), (-1), 0, (+1), (+2)

9

Фтор / Fluorine

F

(-1)

10

Неон / Neon

Ne

0

11

Натрий / Sodium

Na

(+1)

12

Магний / Magnesium

Mg

(+2)

13

Алюминий / Aluminum

Al

(+3)

14

Кремний / Silicon

Si

(-4), 0, (+2), (+4)

15

Фосфор / Phosphorus

P

(-3), 0, (+3), (+5)

16

Сера / Sulfur

S

(-2), 0, (+4), (+6)

17

Хлор / Chlorine

Cl

(-1), 0, (+1), (+3), (+5), (+7), редко (+2) и (+4)

18

Аргон / Argon

Ar

0

19

Калий / Potassium

K

(+1)

20

Кальций / Calcium

Ca

(+2)

21

Скандий / Scandium

Sc

(+3)

22

Титан / Titanium

Ti

(+2), (+3), (+4)

23

Ванадий / Vanadium

V

(+2), (+3), (+4), (+5)

24

Хром / Chromium

Cr

(+2), (+3), (+6)

25

Марганец / Manganese

Mn

(+2), (+3), (+4), (+6), (+7)

26

Железо / Iron

Fe

(+2), (+3), редко (+4) и (+6)

27

Кобальт / Cobalt

Co

(+2), (+3), редко (+4)

28

Никель / Nickel

Ni

(+2), редко (+1), (+3) и (+4)

29

Медь / Copper

Cu

+1, +2, редко (+3)

30

Цинк / Zinc

Zn

(+2)

31

Галлий / Gallium

Ga

(+3), редко (+2)

32

Германий / Germanium

Ge

(-4), (+2), (+4)

33

Мышьяк / Arsenic

As

(-3), (+3), (+5), редко (+2)

34

Селен / Selenium

Se

(-2), (+4), (+6), редко (+2)

35

Бром / Bromine

Br

(-1), (+1), (+5), редко (+3), (+4)

36

Криптон / Krypton

Kr

0

37

Рубидий / Rubidium

Rb

(+1)

38

Стронций / Strontium

Sr

(+2)

39

Иттрий / Yttrium

Y

(+3)

40

Цирконий / Zirconium

Zr

(+4), редко (+2) и (+3)

41

Ниобий / Niobium

Nb

(+3), (+5), редко (+2) и (+4)

42

Молибден / Molybdenum

Mo

(+3), (+6), редко (+2), (+3) и (+5)

43

Технеций / Technetium

Tc

(+6)

44

Рутений / Ruthenium

Ru

(+3), (+4), (+8), редко (+2), (+6) и (+7)

45

Родий / Rhodium

Rh

(+4), редко (+2), (+3) и (+6)

46

Палладий / Palladium

Pd

(+2), (+4), редко (+6)

47

Серебро / Silver

Ag

(+1), редко (+2) и (+3)

48

Кадмий / Cadmium

Cd

(+2), редко (+1)

49

Индий / Indium

In

(+3), редко (+1) и (+2)

50

Олово / Tin

Sn

(+2), (+4)

51

Сурьма / Antimony

Sb

(-3), (+3), (+5), редко (+4)

52

Теллур / Tellurium

Te

(-2), (+4), (+6), редко (+2)

53

Иод / Iodine

I

(-1), (+1), (+5), (+7), редко (+3), (+4)

54

Ксенон / Xenon

Xe

0

55

Цезий / Cesium

Cs

(+1)

56

Барий / Barium

BA

(+2)

57

Лантан / Lanthanum

La

(+3)

58

Церий / Cerium

Ce

(+3), (+4)

59

Празеодим / Praseodymium

Pr

(+3)

60

Неодим / Neodymium

Nd

(+3), (+4)

61

Прометий / Promethium

Pm

(+3)

62

Самарий / Samarium

Sm

(+3), редко (+2)

63

Европий / Europium

Eu

(+3), редко (+2)

64

Гадолиний / Gadolinium

Gd

(+3)

65

Тербий / Terbium

Tb

(+3), (+4)

66

Диспрозий / Dysprosium

Dy

(+3)

67

Гольмий / Holmium

Ho

(+3)

68

Эрбий / Erbium

Er

(+3)

69

Тулий / Thulium

Tm

(+3), редко (+2)

70

Иттербий / Ytterbium

Ib

(+3), редко (+2)

71

Лютеций / Lutetium

Lu

(+3)

72

Гафний / Hafnium

Hf

(+4)

73

Тантал / Tantalum

Ta

(+5), редко (+3), (+4)

74

Вольфрам / Tungsten

W

(+6), редко (+2), (+3), (+4) и (+5)

75

Рений / Rhenium

Re

(+2), (+4), (+6), (+7), редко (-1), (+1), (+3), (+5)

76

Осмий / Osmium

Os

(+3), (+4), (+6), (+8), редко (+2)

77

Иридий / Iridium

Ir

(+3), (+4), (+6), редко (+1) и (+2)

78

Платина / Platinum

Pt

(+2), (+4), (+6), редко (+1) и (+3)

79

Золото / Gold

Au

(+1), (+3), редко (+2)

80

Ртуть / Mercury

Hg

(+1), (+2)

81

Талий / Thallium

Tl

(+1), (+3), редко (+2)

82

Свинец / Lead

Pb

(+2), (+4)

83

Висмут / Bismuth

Bi

(+3), редко (+3), (+2), (+4) и (+5)

84

Полоний / Polonium

Po

(+2), (+4), редко (-2) и (+6)

85

Астат / Astatine

At

86

Радон / Radon

Ra

0

87

Франций / Francium

Fr

88

Радий / Radium

Ra

(+2)

89

Актиний / Actinium

Ac

(+3)

90

Торий / Thorium

Th

(+4)

91

Проактиний / Protactinium

Pa

(+5)

92

Уран / Uranium

U

(+3), (+4), (+6), редко (+2) и (+5)

ru.solverbook.com

таблица Менделеева и алгоритм действий :: SYL.ru

Как определить степень окисления? Таблица Менделеева позволяет записывать данную количественную величину для любого химического элемента.

Определение

Для начала попробуем понять, что представляет собой данный термин. Степень окисления по таблице Менделеева представляет собой количество электронов, которые приняты либо отданы элементом в процессе химического взаимодействия. Она может принимать отрицательное и положительное значение.

Связь с таблицей

Как определяется степень окисления? Таблица Менделеева состоит из восьми групп, расположенных вертикально. В каждой из них есть две подгруппы: главная и побочная. Для того чтобы установить показатели для элементов, необходимо использовать определенные правила.

Инструкция

Как рассчитать степени окисления элементов? Таблица позволяет в полной мере справиться с подобной проблемой. Щелочные металлы, которые располагаются в первой группе (главной подгруппе), степень окисления проявляют в соединениях, она соответствует +, равна их высшей валентности. У металлов второй группы (подгруппы А) +2 степень окисления.

Таблица позволяет определить данную величину не только у элементов, проявляющих металлические свойства, но и у неметаллов. Их максимальная величина будет соответствовать высшей валентности. Например, для серы она составит +6, для азота +5. Как вычисляется у них минимальная (низшая) цифра? Таблица отвечает и на этот вопрос. Необходимо вычесть номер группы из восьми. Например, у кислорода она составит -2, у азота -3.

Для простых веществ, которые не вступали в химическое взаимодействие с другими веществами, определяемый показатель считается равным нулю.

Попробуем выявить основные действия, касающиеся расстановки в бинарных соединениях. Как поставить в них степень окисления? Таблица Менделеева помогает решить проблему.

Для примера возьмем оксид кальция СаО. Для кальция, расположенного в главной подгруппе второй группы, величина будет являться постоянной, равной +2. У кислорода, имеющего неметаллические свойства, данный показатель будет являться отрицательной величиной, и он соответствует -2. Для того чтобы проверить правильность определения, суммируем полученные цифры. В итоге мы получим ноль, следовательно, вычисления верны.

Определим подобные показатели еще в одном бинарном соединении CuO. Так как медь располагается в побочной подгруппе (первой группе), следовательно, изучаемый показатель может проявлять разные значения. Поэтому для его определения необходимо сначала выявить показатель для кислорода.

У неметалла, располагающегося в конце бинарной формулы, степень окисления имеет отрицательное значение. Так как этот элемент располагается в шестой группе, при вычитании из восьми шести получаем, что степень окисления у кислорода соответствует -2. Так как в соединении отсутствуют индексы, следовательно, показатель степени окисления у меди будет положительным, равным +2.

Как еще используется химическая таблица? Степени окисления элементов в формулах, состоящих из трех элементов, также вычисляются по определенному алгоритму. Сначала расставляют эти показатели у первого и последнего элемента. Для первого этот показатель будет иметь положительное значение, соответствовать валентности. У крайнего элемента, в качестве которого выступает неметалл, данный показатель имеет отрицательное значение, он определяется в виде разности (от восьми отнимают номер группы). При вычислении степени окисления у центрального элемента используют математическое уравнение. При расчетах учитывают индексы, имеющиеся у каждого элемента. Сумма всех степеней окисления должна быть равна нулю.

Пример определения в серной кислоте

Формула данного соединения имеет вид h3SO4. У водорода степень окисления составит +1, у кислорода она равна -2. Для определения степени окисления у серы, составим математическое уравнение: + 1 * 2 + Х + 4 * (-2) = 0. Получаем, что степень окисления у серы соответствует +6.

Заключение

При использовании правил можно расставлять коэффициенты в окислительно-восстановительных реакциях. Данный вопрос рассматривается в курсе химии девятого класса школьной программы. Кроме того, информация о степенях окисления позволяет выполнять задания ОГЭ и ЕГЭ.

www.syl.ru

Как определить степень окисления атома химического элемента :: SYL.ru

Формальный заряд атома в соединениях — вспомогательная величина, обычно ее используют в описаниях свойств элементов в химии. Этот условный электрический заряд и есть степень окисления. Его значение изменяется в результате многих химических процессов. Хотя заряд является формальным, он ярко характеризует свойства и поведение атомов в окислительно-восстановительных реакциях (ОВР).

Окисление и восстановление

В прошлом химики использовали термин «окисление», чтобы описать взаимодействие кислорода с другими элементами. Название реакций произошло от латинского наименования кислорода - Oxygenium. Позже выяснилось, что другие элементы тоже окисляют. В этом случае они восстанавливаются — присоединяют электроны. Каждый атом при образовании молекулы изменяет строение своей валентной электронной оболочки. В этом случае появляется формальный заряд, величина которого зависит от количества условно отданных или принятых электронов. Для характеристики этой величины ранее применяли английский химический термин "oxidation number", который в переводе означает «окислительное число». При его использовании исходят из допущения, что связывающие электроны в молекулах или ионах принадлежат атому, обладающему более высоким значением электроотрицательности (ЭО). Способность удерживать свои электроны и притягивать их от других атомов хорошо выражена у сильных неметаллов (галогенов, кислорода). Противоположными свойствами обладают сильные металлы (натрий, калий, литий, кальций, другие щелочные и щелочноземельные элементы).

Определение степени окисления

Степенью окисления называют заряд, который атом приобрел бы в том случае, если бы принимающие участие в образовании связи электроны полностью сместились к более электроотрицательному элементу. Есть вещества, не имеющие молекулярного строения (галогениды щелочных металлов и другие соединения). В этих случаях степень окисления совпадает с зарядом иона. Условный или реальный заряд показывает, какой процесс произошел до того, как атомы приобрели свое нынешнее состояние. Положительное значение степени окисления — это общее количество электронов, которые были удалены из атомов. Отрицательное значение степени окисления равно числу приобретенных электронов. По изменению состояния окисления химического элемента судят о том, что происходит с его атомами в ходе реакции (и наоборот). По цвету вещества определяют, какие произошли перемены в состоянии окисления. Соединения хрома, железа и ряда других элементов, в которых они проявляют разную валентность, окрашены неодинаково.

Отрицательное, нулевое и положительное значения степени окисления

Простые вещества образованы химическими элементами с одинаковым значением ЭО. В этом случае связывающие электроны принадлежат всем структурным частицам в равной степени. Следовательно, в простых веществах элементам несвойственно состояние окисления (Н02, О02, С0). Когда атомы принимают электроны или общее облако смещается в их сторону, заряды принято писать со знаком "минус". Например, F–1,О–2, С–4. Отдавая электроны, атомы приобретают реальный или формальный положительный заряд. В оксиде OF2 атом кислорода отдает по одному электрону двум атомам фтора и находится в состоянии окисления О+2. Считают, что в молекуле или многоатомном ионе более электроотрицательные атомы получают все связывающие электроны.

Сера — элемент, проявляющий разные валентность и степени окисления

Химические элементы главных подгрупп зачастую проявляют низшую валентность равную VIII. Например, валентность серы в сероводороде и сульфидах металлов — II. Для элемента характерны промежуточные и высшая валентность в возбужденном состоянии, когда атом отдает один, два, четыре или все шесть электронов и проявляет соответственно валентности I, II, IV, VI. Такие же значения, только со знаком "минус" или "плюс", имеют степени окисления серы:

  • в сульфиде фтора отдает один электрон: –1;
  • в сероводороде низшее значение: –2;
  • в диоксиде промежуточное состояние: +4;
  • в триоксиде, серной кислоте и сульфатах: +6.

В своем высшем состоянии окисления сера только принимает электроны, в низшей степени — проявляет сильные восстановительные свойства. Атомы S+4 могут проявлять в соединениях функции восстановителей или окислителей в зависимости от условий.

Переход электронов в химических реакциях

При образовании кристалла поваренной соли натрий отдает электроны более электроотрицательному хлору. Степени окисления элементов совпадают с зарядами ионов: Na+1Cl–1. Для молекул, созданных путем обобществления и смещения электронных пар к более электроотрицательному атому, применимы только представления о формальном заряде. Но можно предположить, что все соединения состоят из ионов. Тогда атомы, притягивая электроны, приобретают условный отрицательный заряд, а отдавая, — положительный. В реакциях указывают, какое число электронов смещается. Например, в молекуле диоксида углерода С+4О-22 указанный в верхнем правом углу индекс при химическом символе углерода отображает количество электронов, удаленных из атома. Для кислорода в этом веществе характерно состояние окисления –2. Соответствующий индекс при химическом знаке О — количество добавленных электронов в атоме.

Как подсчитать степени окисления

Подсчет количества отданных и присоединенных атомами электронов может отнять много времени. Облегчают эту задачу следующие правила:

  1. В простых веществах степени окисления равны нулю.
  2. Сумма окисления всех атомов или ионов в нейтральном веществе равна нулю.
  3. В сложном ионе сумма степеней окисления всех элементов должна соответствовать заряду всей частицы.
  4. Более электроотрицательный атом приобретает отрицательное состояние окисления, которое записывают со знаком "минус".
  5. Менее электроотрицательные элементы получают положительные степени окисления, их записывают со знаком "плюс".
  6. Кислород в основном проявляет степень окисления, равную –2.
  7. Для водорода характерное значение: +1, в гидридах металлов встречается: Н–1.
  8. Фтор — наиболее электроотрицательный из всех элементов, его состояние окисления всегда равно –4.
  9. Для большинства металлов окислительные числа и валентности совпадают.

Степень окисления и валентность

Большинство соединений образуются в результате окислительно-восстановительных процессов. Переход или смещение электронов от одних элементов к другим приводит к изменению их состояния окисления и валентности. Зачастую эти величины совпадают. В качестве синонима к термину «степень окисления» можно использовать словосочетание «электрохимическая валентность». Но есть исключения, например, в ионе аммония азот четырехвалентен. Одновременно атом этого элемента находится в состоянии окисления –3. В органических веществах углерод всегда четырехвалентен, но состояния окисления атома С в метане СН4, муравьином спирте СН3ОН и кислоте НСООН имеют другие значения: –4, –2 и +2.

Окислительно-восстановительные реакции

К окислительно-восстановительным относятся многие важнейшие процессы в промышленности, технике, живой и неживой природе: горение, коррозия, брожение, внутриклеточное дыхание, фотосинтез и другие явления.

При составлении уравнений ОВР подбирают коэффициенты, используя метод электронного баланса, в котором оперируют следующими категориями:

  • степени окисления;
  • восстановитель отдает электроны и окисляется;
  • окислитель принимает электроны и восстанавливается;
  • число отданных электронов должно быть равно числу присоединенных.

Приобретение электронов атомом приводит к понижению его степени окисления (восстановлению). Утрата атомом одного или нескольких электронов сопровождается повышением окислительного числа элемента в результате реакций. Для ОВР, протекающих между ионами сильных электролитов в водных растворах, чаще используют не электронный баланс, а метод полуреакций.

www.syl.ru

Как определить степень окисления?

Степень окисления — это численная величина условного электрического заряда, образующегося на том или ином атоме химического элемента.

При определении степени окисления, как правило, предполагают, что общие пары полностью смещены в сторону атома более электроотрицательного элемента. На практике это бывает не всегда, а только в случае соединений с ионной решёткой.

Степень окисления сокращённо называется СО.

Записывается СО в виде числа из арабской цифры или цифр. Данное число пишется над символом соответствующего элемента. Перед числом СО ставится знак: плюс или минус.

Обратите внимание: именно впереди. Если плюс или минус стоИт после цифры — то это ужЕ не СО, а заряд иона.

Основные правила определения степени окисления таковы:

1) Степень окисления элемента в простом веществе равна нулю. Например: N2 (0), O2 (0).

2) Щелочные металлы в соединениях всегда имеют СО +1.

3) Щёлочно-земельные металлы в соединениях имеют СО +2.

4) Алюминий в соединениях почти всегда имеет СО +3.

5) Водород имеет СО, равную +1, при условии, если помимо водорода в рассматриваемом соединении имеется ещё хотя бы один неметалл.

Если же рассматривается соединение водорода с металлом (гидрид), например, NaH или KH, то знайте, что в данном случае у водорода СО равна –1.

6) Кислород в соединениях имеет СО, равную –2, с двумя исключениями:

а) в соединении со фтором OF2 кислород имеет СО, равную +2. Причина состоит в том, что фтор — более электроотрицательный элемент, и он перетягивает на себя электронную пару.

б) в перекисных соединениях (например, h3O2) кислород, как правило, имеет СО, равную –1. Причина состоит в том, что в перекисях имеется связь – O – O –.

7) Сумма СО всех атомов в молекуле равна нулю.

Данное правило позволяет находить СО у элементов, у которых мы её заранее не знаем.

Например, соединение K2SO3.

Согласно правилу номер 2, у калия СО равна +1 (так как калий — это щелочной металл).

Смотрим кислород. У нас не фторид и не перекись. А значит, у кислорода СО равна –2.

Какая же СО у серы?

Составляем уравнение:

(+1)*2 + x + (–2)*4 = 0

2 + x – 8 = 0

x = –2 + 8

x = 6.

Итак, у серы в соединении K2SO4 СО равна 6. Вернее, +6.

Ещё пример.

Соединение HNO3.

Это не гидрид, значит, у водорода СО равна +1 (см. правило номер 5).

У кислорода СО равна –2.

Нужно найти у азота.

Опять же, составляем уравнение:

+1 + x + (–2)*3 = 0

1 + x – 6 = 0

x = –1 + 6

x = 5.

Значит, мы определили, что у азота в азотной кислоте СО равна +5.

И помните, что очень опасно приравнивать валентность к степени окисления!

Например, у азота в HNO3 СО, как мы вычислили, равна +5. Однако валентность равна 4.

Углерод в органических соединениях имеет постоянную валентность 4. Но степень окисления углерода равна: в метане — –4, в этане — –3, а в пропане вообще дробная валентность: минус две целых две третьих. Есть также органические соединения, в которых углерод проявляет положительную СО, например, в муравьиной кислоте (HCOOH) у углерода СО равна +2. А в формальдегиде (HCOH) СО углерода равна нулю.

www.bolshoyvopros.ru

Таблица степеней окисления химических элементов. Максимальная и минимальная степень окисления. Возможные степени окисления химических элементов.

Таблица степеней окисления химических элементов. Возможные степени окисления химических элементов. Стандартные, высшие, низшие, редкие степени окисления, исключения. Максимальная степень окисления и минимальная степень окисления.

Степень окисления – это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип. Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе – заряду иона.
  1. Степени окисления металлов в соединениях всегда положительные.
  2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au+3 (I группа), Cu+2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru.
  3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:
    • если с атомом металла, то степень окисления отрицательная;
    • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.
  4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.
  5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.
  6. В неорганической химии обычно применяется понятие степень окисления, а в органической химии — валентность, так как многие из неорганических веществ имеют немолекулярное строение, а органических — молекулярное.
Таблица: Элементы с неизменными степенями окисления.
Элемент Характерная степень окисления Исключения

H

+1

Гидриды металлов: LIH-1

F

-1

O

-2

F2O+2; пероксиды, надпероксиды, озониды

Li, Na, K, Rb, Cs, Fr

Be, Mg, Ca, Sr, Ba, Ra

Al

Справочно: как читать римские цифры и числа.
Таблица. Степени окисления химических элементов по алфавиту.
Элемент Название Степень окисления

7N

Азот (степень окисления)

-III, 0, +I, II, III, IV, V

89Ас

Актиний (степень окисления)

0, + III

13Al

Алюминий (степень окисления)

0, +III

95Am

Америций (степень окисления)

0, + II , III, IV

18Ar

Аргон (степень окисления)

0

85At

Астат (степень окисления)

-I, 0, +I, V

56Ba

Барий (степень окисления)

0, +II

4Be

Бериллий (степень окисления)

0,+ IV

97Bk

Берклий (степень окисления)

0, +III, IV

5B

Бор (степень окисления)

-III, 0, +III

107Bh

Борий (степень окисления)

0, +VII

35Br

Бром (степень окисления)

-I, 0, +I, V, VII

23V

Ванадий (степень окисления)

0, + II , III, IV, V

83Bi

Висмут (степень окисления)

0, +III, V

1H

Водород (степень окисления)

-I, 0, +I

74W

Вольфрам (степень окисления)

0, +IV, VI

64Gd

Гадолиний (степень окисления)

0, +III

Элемент Название Степень окисления

31Ga

Галлий (степень окисления)

0, +III

72Hf

Гафний (степень окисления)

0,+IV

2He

Гелий (степень окисления)

0

32Ge

Германий (степень окисления)

0, +II, IV

67Ho

Гольмий (степень окисления)

0, + III

66Dy

Диспрозий (степень окисления)

0, + III

105Db

Дубний (степень окисления)

0, +V

63Еu

Европий (степень окисления)

0, +II, III

26Fe

Железо (степень окисления)

0, +II, III, VI

79Au

Золото (степень окисления)

0, + I , III

49In

Индий (степень окисления)

0 , + III

77Ir

Иридий (степень окисления)

0, +III, IV

39Y

Иттрий (степень окисления)

0, +III

70Yb

Иттербий (степень окисления)

0, + II , III

53I

Йод (степень окисления)

-I, 0, +I, V, VII

48Cd

Кадмий (степень окисления)

0, + II

19К

Калий (степень окисления)

0, +I

98Cf

Калифорний (степень окисления)

0, +Ш, IV

Элемент Название Степень окисления

20Ca

Кальций (степень окисления)

0, + II

54Xe

Ксенон (степень окисления)

0, + II , IV, VI, VIII

8O

Кислород (степень окисления)

-II, I, 0, +II

27Co

Кобальт (степень окисления)

0, +II, III

36Кr

Криптон (степень окисления)

0, + II

14Si

Кремний (степень окисления)

-IV, 0, +11, IV

96Cm

Кюрий (степень окисления)

0, +III, IV

57La

Лантан (степень окисления)

0, +III

3Li

Литий (степень окисления)

0, +I

103Lr

Лоуренсий (степень окисления)

0, +III

71Lu

Лютеций (степень окисления)

0, +III

12Mg

Магний (степень окисления)

0, + II

25Mn

Марганец (степень окисления)

0, +II, IV, VI, VIII

29Cu

Медь (степень окисления)

0, +I, -II

109Mt

Мейтнерий (степень окисления)

0, +IV?

101Md

Менделевий (степень окисления)

0, +II, III

42Mo

Молибден (степень окисления)

0 , +IV, VI

33As

Мышьяк (степень окисления)

- III , 0 , +III, V

11Na

Натрий (степень окисления)

0, +I

Элемент Название Степень окисления

60Nd

Неодим (степень окисления)

0, +III

10Ne

Неон (степень окисления)

0

93Np

Нептуний (степень окисления)

0, +III, IV, VI, VII

28Ni

Никель (степень окисления)

0, +II, III

41Nb

Ниобий (степень окисления)

0, +IV, V

102No

Нобелий (степень окисления)

0, +II, III

50Sn

Олово (степень окисления)

0, + II , IV

76Os

Осмий (степень окисления)

0, +IV, VI, VIII

46Pd

Палладий (степень окисления)

0, +II, IV

91Pa.

Протактиний (степень окисления)

0, +IV, V

61Pm

Прометий (степень окисления)

0, + III

84Рo

Полоний (степень окисления)

0, +II, IV

59Рг

Празеодим (степень окисления)

0, +III, IV

78Pt

Платина (степень окисления)

0, +II, IV

94PU

Плутоний (степень окисления)

0, +III, IV, V, VI

88Ra

Радий (степень окисления)

0, + II

37Rb

Рубидий (степень окисления)

0, +I

75Re

Рений (степень окисления)

0, +IV, VII

104Rf

Резерфордий (степень окисления)

0, +IV

Элемент Название Степень окисления

45Rh

Родий (степень окисления)

0, +III, IV

86Rn

Радон (степень окисления)

0, + II , IV, VI, VIII

44Ru

Рутений (степень окисления)

0, +II, IV, VI, VIII

80Hg

Ртуть (степень окисления)

0 , +I, II, IV

16S

Сера (степень окисления)

-II, 0, +IV, VI

47Ag

Серебро (степень окисления)

0, +I

51Sb

Сурьма (степень окисления)

0, +III, V

21Sc

Скандий (степень окисления)

0, +III

34Se

Селен (степень окисления)

-II, 0,+IV, VI

106Sg

Сиборгий (степень окисления)

0, +VI

62Sm

Самарий (степень окисления)

0, + II , III

38Sr

Стронций (степень окисления)

0, + II

82РЬ

Свинец (степень окисления)

0, +II, IV

81Тl

Таллий (степень окисления)

0, + I , II

73Ta

Тантал (степень окисления)

0, +IV, V

52Te

Теллур (степень окисления)

-II, 0, +IV, VI

65Tb

Тербий (степень окисления)

0, +III, IV

43Tc

Технеций (степень окисления)

0, +IV, VII

22Ti

Титан (степень окисления)

0, + II , III, IV

Элемент Название Степень окисления

90Th

Торий (степень окисления)

0, +IV

69Tm

Тулий (степень окисления)

0 , +III

6C

Углерод (степень окисления)

-IV, I, 0, +II, IV

92U

Уран (степень окисления)

0, +III, IV, VI

100Fm

Фермий (степень окисления)

0, +II, III

15P

Фосфор (степень окисления)

-III, 0, +I, III, V

87Fr

Франций (степень окисления)

0, +I

9F

Фтор (степень окисления)

-I, 0

108Hs

Хассий (степень окисления)

0, +VIII

17Cl

Хлор (степень окисления)

-I, 0, +I, III, IV, V, VI, VII

24Cr

Хром (степень окисления)

0, + II , III , VI

55Cs

Цезий (степень окисления)

0, +I

58Ce

Церий (степень окисления)

0, + III , IV

30Zn

Цинк (степень окисления)

0, + II

40Zr

Цирконий (степень окисления)

0, +IV

99ES

Эйнштейний (степень окисления)

0, +II, III

68Еr

Эрбий (степень окисления)

0, +III

Таблица. Степени окисления химических элементов по номеру.
Элемент Название Степень окисления

1H

Водород (степень окисления)

-I, 0, +I

2He

Гелий (степень окисления)

0

3Li

Литий (степень окисления)

0, +I

4Be

Бериллий (степень окисления)

0,+ IV

5B

Бор (степень окисления)

-III, 0, +III

6C

Углерод (степень окисления)

-IV, I, 0, +II, IV

7N

Азот (степень окисления)

-III, 0, +I, II, III, IV, V

8O

Кислород (степень окисления)

-II, I, 0, +II

9F

Фтор (степень окисления)

-I, 0

10Ne

Неон (степень окисления)

0

11Na

Натрий (степень окисления)

0, +I

12Mg

Магний (степень окисления)

0, + II

13Al

Алюминий (степень окисления)

0, +III

14Si

Кремний (степень окисления)

-IV, 0, +II, IV

15P

Фосфор (степень окисления)

-III, 0, +I, III, V

16S

Сера (степень окисления)

-II, 0, +IV, VI

17Cl

Хлор (степень окисления)

-I, 0, +I, III, IV, V, VI, VII

Элемент Название Степень окисления

18Ar

Аргон (степень окисления)

0

19К

Калий (степень окисления)

0, +I

20Ca

Кальций (степень окисления)

0, + II

21Sc

Скандий (степень окисления)

0, +III

22Ti

Титан (степень окисления)

0, + II , III, IV

23V

Ванадий (степень окисления)

0, + II , III, IV, V

24Cr

Хром (степень окисления)

0, + II , III , VI

25Mn

Марганец (степень окисления)

0, +II, IV, VI, VIII

26Fe

Железо (степень окисления)

0, +II, III, VI

27Co

Кобальт (степень окисления)

0, +II, III

28Ni

Никель (степень окисления)

0, +II, III

29Cu

Медь (степень окисления)

0, +I, -II

30Zn

Цинк (степень окисления)

0, + II

31Ga

Галлий (степень окисления)

0, +III

32Ge

Германий (степень окисления)

0, +II, IV

33As

Мышьяк (степень окисления)

- III , 0 , +III, V

34Se

Селен (степень окисления)

-II, 0,+IV, VI

35Br

Бром (степень окисления)

-I, 0, +I, V, VII

Элемент Название Степень окисления

36Кr

Криптон (степень окисления)

0, + II

37Rb

Рубидий (степень окисления)

0, +I

38Sr

Стронций (степень окисления)

0, + II

39Y

Иттрий (степень окисления)

0, +III

40Zr

Цирконий (степень окисления)

0, +IV

41Nb

Ниобий (степень окисления)

0, +IV, V

42Mo

Молибден (степень окисления)

0 , +IV, VI

43Tc

Технеций (степень окисления)

0, +IV, VII

44Ru

Рутений (степень окисления)

0, +II, IV, VI, VIII

45Rh

Родий (степень окисления)

0, +III, IV

46Pd

Палладий (степень окисления)

0, +II, IV

47Ag

Серебро (степень окисления)

0, +I

48Cd

Кадмий (степень окисления)

0, + II

49In

Индий (степень окисления)

0 , + III

50Sn

Олово (степень окисления)

0, + II , IV

51Sb

Сурьма (степень окисления)

0, +III, V

52Te

Теллур (степень окисления)

-II, 0, +IV, VI

53I

Йод (степень окисления)

-I, 0, +I, V, VII

54Xe

Ксенон (степень окисления)

0, + II , IV, VI, VIII

Элемент Название Степень окисления

55Cs

Цезий (степень окисления)

0, +I

56Ba

Барий (степень окисления)

0, +II

57La

Лантан (степень окисления)

0, +III

58Ce

Церий (степень окисления)

0, + III , IV

59Рг

Празеодим (степень окисления)

0, +III, IV

60Nd

Неодим (степень окисления)

0, +III

61Pm

Прометий (степень окисления)

0, + III

62Sm

Самарий (степень окисления)

0, + II , III

63Еu

Европий (степень окисления)

0, +II, III

64Gd

Гадолиний (степень окисления)

0, +III

65Tb

Тербий (степень окисления)

0, +III, IV

66Dy

Диспрозий (степень окисления)

0, + III

67Ho

Гольмий (степень окисления)

0, + III

68Еr

Эрбий (степень окисления)

0, +III

69Tm

Тулий (степень окисления)

0 , +III

70Yb

Иттербий (степень окисления)

0, + II , III

71Lu

Лютеций (степень окисления)

0, +III

72Hf

Гафний (степень окисления)

0,+IV

73Ta

Тантал (степень окисления)

0, +IV, V

Элемент Название Степень окисления

74W

Вольфрам (степень окисления)

0, +IV, VI

75Re

Рений (степень окисления)

0, +IV, VII

76Os

Осмий (степень окисления)

0, +IV, VI, VIII

77Ir

Иридий (степень окисления)

0, +III, IV

78Pt

Платина (степень окисления)

0, +II, IV

79Au

Золото (степень окисления)

0, + I , III

80Hg

Ртуть (степень окисления)

0 , +I, II, IV

81Тl

Таллий (степень окисления)

0, + I , II

82РЬ

Свинец (степень окисления)

0, +II, IV

83Bi

Висмут (степень окисления)

0, +III, V

84Рo

Полоний (степень окисления)

0, +II, IV

85At

Астат (степень окисления)

-I, 0, +I, V

86Rn

Радон (степень окисления)

0, + II , IV, VI, VIII

87Fr

Франций (степень окисления)

0, +I

88Ra

Радий (степень окисления)

0, + II

89Ас

Актиний (степень окисления)

0, + III

90Th

Торий (степень окисления)

0, +IV

91Pa.

Протактиний (степень окисления)

0, +IV, V

92U

Уран (степень окисления)

0, +III, IV, VI

Элемент Название Степень окисления

93Np

Нептуний (степень окисления)

0, +III, IV, VI, VII

94PU

Плутоний (степень окисления)

0, +III, IV, V, VI

95Am

Америций (степень окисления)

0, + II , III, IV

96Cm

Кюрий (степень окисления)

0, +III, IV

97Bk

Берклий (степень окисления)

0, +III, IV

98Cf

Калифорний (степень окисления)

0, +Ш, IV

99ES

Эйнштейний (степень окисления)

0, +II, III

100Fm

Фермий (степень окисления)

0, +II, III

101Md

Менделевий (степень окисления)

0, +II, III

102No

Нобелий (степень окисления)

0, +II, III

103Lr

Лоуренсий (степень окисления)

0, +III

104Rf

Резерфордий (степень окисления)

0, +IV

105Db

Дубний (степень окисления)

0, +V

106Sg

Сиборгий (степень окисления)

0, +VI

107Bh

Борий (степень окисления)

0, +VII

108Hs

Хассий (степень окисления)

0, +VIII

109Mt

Мейтнерий (степень окисления)

0, +IV?

www.dpva.ru

Степени окисления - это какая величина? Как определить степень окисления элементов?

Такой предмет школьной программы как химия вызывает многочисленные затруднения у большинства современных школьников, мало кто может определить степень окисления в соединениях. Наибольшие сложности у школьников, которые изучают неорганическую химию, то есть учеников основной школы (8-9 классы). Непонимание предмета приводит к возникновению неприязни у школьников к данному предмету.

Педагоги выделяют целый ряд причин такой «нелюбви» учеников средних и старших классов к химии: нежелание разбираться в сложных химических терминах, неумение пользоваться алгоритмами для рассмотрения конкретного процесса, проблемы с математическими знаниями. Министерством образования РФ были внесены серьезные изменение в содержание предмета. К тому же "урезали" и количество часов на преподавание химии. Это негативно сказалось на качестве знаний по предмету, снижению интереса к изучению дисциплины.

Какие темы курса химии даются школьникам труднее всего?

По новой программе в курс учебной дисциплины «Химия» основной школы включено несколько серьезных тем: периодическая таблица элементов Д. И. Менделеева, классы неорганических веществ, ионный обмен. Труднее всего дается восьмиклассникам определение степени окисления оксидов.

Правила расстановки

Прежде всего ученики должны знать, что оксиды являются сложными двухэлементными соединениями, в состав которых включен кислород. Обязательным условием принадлежности бинарного соединения к классу оксидов является расположение кислорода вторым в данном соединении.

Рассчитать такой показатель в любых формулах данного класса получится, только если школьник владеет определенным алгоритмом.

Алгоритм для кислотных оксидов

Для начала заметим, что степени окисления это численные выражения валентности элементов. Кислотные оксиды образованы неметаллами либо металлами с валентностью от четырех до семи, вторым в таких оксидах обязательно стоит кислород.

В оксидах валентность кислорода всегда соответствует двум, определить ее можно по периодической таблице элементов Д. И. Менделеева. Такой типичный неметалл как кислород, находясь в 6 группе главной подгруппы таблицы Менделеева, принимает два электрона, чтобы полностью завершить свой внешний энергетический уровень. Неметаллы в соединениях с кислородом чаще всего проявляют высшую валентность, которая соответствует номеру самой группы. Важно напомнить, что степень окисления химических элементов это показатель, предполагающий положительное (отрицательное) число.

Неметалл, стоящий в начале формулы, обладает положительной степенью окисления. Неметалл кислород же в оксидах стабилен, его показатель -2. Для того чтобы проверить достоверность расстановки значений в кислотных окислах, придется перемножить все поставленные вами цифры на индексы у конкретного элемента. Расчеты считаются достоверными, если суммарный итог всех плюсов и минусов поставленных степеней получается 0.

Составление двухэлементных формул

Степень окисления атомов элементов дает шанс создавать и записывать соединения из двух элементов. При создании формулы, для начала оба символа прописывают рядом, обязательно вторым ставят кислород. Сверху над каждым из записанных знаков прописывают значения степеней окисления, затем между найденными числами находится то число, что будет без какого-либо остатка делиться на обе цифры. Данный показатель необходимо поделить по отдельности на числовое значение степени окисления, получая индексы для первого и второго компонентов двухэлементного вещества. Высшая степень окисления равна численно значению высшей валентности типичного неметалла, идентична номеру группы, где стоит неметалл в ПС.

Алгоритм постановки числовых значений в основных оксидах

Подобными соединениями считаются оксиды типичных металлов. Они во всех соединениях имеют показатель степени окисления не более +1 либо +2. Для того чтобы понять, какую будет иметь степень окисления металл, можно воспользоваться периодической системой. У металлов основных подгрупп первой группы, данный параметр всегда постоянный, он аналогичен номеру группы, то есть +1.

Металлы основной подгруппы второй группы также характеризуются стабильной степенью окисления, в цифровом выражении +2. Степени окисления оксидов в сумме с учетом их индексов (числа) должны давать нуль, поскольку химическая молекула считается нейтральной, лишенной заряда, частицей.

Расстановка степеней окисления в кислородсодержащих кислотах

Кислоты представляют собой сложные вещества, состоящими из одного или нескольких атомов водорода, которые связаны с каким-то кислотным остатком. Учитывая, что степени окисления это цифровые показатели, для их вычисления потребуются некоторые математические навыки. Такой показатель для водорода (протона) в кислотах всегда стабилен, составляет +1. Далее можно указать степень окисления для отрицательного иона кислорода, она также стабильная, -2.

Лишь только после этих действий, можно вычислять степень окисления у центрального компонента формулы. В качестве конкретного образца рассмотрим определение степени окисления элементов в серной кислоте h3SO4. Учитывая, что в молекуле данного сложного вещества содержится два протона водорода, 4 атома кислорода, получаем выражение такого вида +2+X-8=0. Для того чтобы в сумме образовывался ноль, у серы будет степень окисления +6

Расстановка степеней окисления в солях

Соли представляют собой сложные соединения, состоящие из ионов металла и одного либо нескольких кислотных остатков. Методика определения степеней окисления у каждого из составных частей в сложной соли такая же, как и в кислородсодержащих кислотах. Учитывая, что степень окисления элементов - это цифровой показатель, важно правильно обозначить степень окисления металла.

Если металл, образующий соль, располагается в главной подгруппе, его степень окисления будет стабильной, соответствует номеру группы, является положительной величиной. Если же в соли содержится металл подобной подгруппы ПС, проявляющий разные валентности, определить валентность металла можно по кислотному остатку. После того как установлена будет степень окисления металла, ставят степень окисления кислорода (-2), далее вычисляют степень окисления центрального элемента, воспользовавшись химическим уравнением.

В качестве примера рассмотрим определение степеней окисления у элементов в нитрате натрия (средней соли). NaNO3. Соль образована металлом главной подгруппы 1 группы, следовательно, степень окисления натрия будет +1. У кислорода в нитратах степень окисления составляет -2. Для определения численного значения степени окисления составляет уравнение +1+X-6=0. Решая данное уравнение, получаем, что X должен быть +5, это и есть степень окисления азота.

Основные термины в ОВР

Для окислительного, а также восстановительного процесса существуют специальные термины, которые обязаны выучить школьники.

Степень окисления атома это его непосредственная способность присоединять к себе (отдавать иным) электроны от каких-то ионов или же атомов.

Окислителем считают нейтральные атомы или заряженные ионы, в ходе химической реакции присоединяющие себе электроны.

Восстановителем станут незаряженные атомы или заряженные ионы, что в процессе химического взаимодействия теряют собственные электроны.

Окисление представляется как процедура отдачи электронов.

Восстановление связано с принятием дополнительных электронов незаряженным атомом или ионом.

Окислительно-восстановительны процессом характеризуется реакция, в ходе которой обязательно меняется степень окисления атома. Это определение позволяет понять, как можно определить, является ли реакция ОВР.

Правила разбора ОВР

Пользуясь данным алгоритмом, можно расставить коэффициенты в любой химической реакции.

  1. Для начала нужно расставить в каждом химическом веществе степени окисления. Учтите, что в простом веществе степень окисления равна нулю, так как отсутствует отдача (присоединение) отрицательных частичек. Правила расстановки степеней окисления в бинарных и трехэлементных веществ были нами рассмотрены выше.

  2. Затем нужно определить те атомы либо ионы, у которых в ходе произошедшего превращения, изменились степени окисления.

  3. Из левой части записанного уравнения выделяют атомы либо заряженные ионы, которые поменяли свои степени окисления. Это необходимо для составления баланса. Над элементами обязательно указывают их значения.

  4. Далее записываются те атомы либо ионы, которые образовались в ходе реакции, указывается знаком + количество принятых атомом электронов, - число отданных отрицательных частиц. Если после процесса взаимодействия уменьшаются степени окисления. Это означает, что электроны были приняты атомом (ионом). При повышении степени окисления атом (ион) в ходе реакции отдают электроны.

  5. Наименьшее общее число делят сначала на принятые, потом на отданные в процессе электроны, получают коэффициенты. Найденные цифры и будут искомыми стереохимическими коэффициентами.

  6. Определяют окислитель, восстановитель, процессы, протекающие в ходе реакции.

  7. Последним этапом будет расстановка стереохимических коэффициентов в рассматриваемой реакции.

    Пример ОВР

Рассмотрим практическое применение данного алгоритма на конкретной химической реакции.

Fe+CuSO4=Cu+FeSO4

Рассчитываем показатели у всех простых и сложных веществ.

Так как Fe и Cu являются простыми веществами, их степень окисления равна 0. В CuSO4, то Cu+2, тогда у кислорода-2, а у серы +6. В FeSO4: Fe +2, следовательно, для О-2, по расчетам S +6.

Теперь ищем элементы, что смогли поменять показатели, в нашей ситуации ими окажутся Fe и Cu.

Так как после реакции значение у атома железа стала +2, в реакции было отдано 2 электрона. Медь поменяла свои показатели с +2 до 0, следовательно, медь приняла 2 электрона. Теперь определяем количество принятых и отданных электронов атомом железа и катионом двухвалентной меди. В ходе превращения взято два электрона катионом двухвалентной меди, столько же электронов отдано атомом железа.

В данном процессе нет смысла определять минимальное общее кратное, поскольку принято и отдано в ходе превращения равное количество электронов. Стереохимические коэффициенты будут также соответствовать единице. В реакции свойства восстановителя будет проявлять железо, при этом оно окисляется. Катион двухвалентной меди восстанавливается до чистой меди, в реакции у нее высшая степень окисления.

Применение процессов

Формулы степени окисления должны быть известны каждому школьнику 8-9 класса, так как данный вопрос включен в задания ОГЭ. Любые процессы, которые протекают с окислительными, восстановительными признаками, играют важное значение в нашей жизни. Без них невозможны обменные процессы в организме человека.

fb.ru

Электроотрицательность. Степень окисления и валентность.

Электроотрицательность

Электроотрицательность  — способность атома какого-либо химического элемента в соединении оттягивать на себя электроны связанных с ним атомов других химических элементов.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Степень окисления – условный заряд атома химического элемента  в соединении, рассчитанный исходя из предположения, что все связи в его молекуле ионные, т.е. все связывающие электронные пары смещены к атомам с большей электроотрицательностью.
Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

Элементы, проявляющие постоянную СО
Значение постоянной СО этого элемента
Щелочные металлы, т.е. все металлы

IA группы — Li, Na, K, Rb, Cs, Fr

+1
Все элементы II группы, кроме ртути:

Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd

+2
Алюминий Al +3
Фтор F -1

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

Элемент
Степень окисления практически во всех соединениях
Исключения
водород H +1 Гидриды щелочных и щелочно-земельных металлов, например:

кислород O -2 Пероксиды водорода и металлов:

Фторид кислорода — 

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

Химический элемент
Номер группы
Высшая степень окисления
Кислород VI +2 (в OF2)
Фтор VII 0
Медь I +2
Железо VIII  +6 (например K2FeO4)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = №группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

Степень окисления кислорода во всех сложных веществах равна  -2 (кроме пероксидов и фторида кислорода OF2). Расставим известные степени окисления:

Обозначим степень окисления серы как x:

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

Т.е. мы получили следующее уравнение:

Решим его:

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы Nh5+ (заряд данного катиона можно посмотреть в таблице растворимости). Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона Nh5+ , заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами Nh5+ и анионами Cr2O72-.

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

Т.е. мы получаем два независимых уравнения:

Решая которые, находим x и y:

Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать здесь.

Валентность

Валентность — число химических связей, которые образует атом элемента в химическом соединении.

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов 

2) неподеленных электронных пар на орбиталях валентных уровней 

3) пустых электронных орбиталей валентного уровня 

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных (  ) орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к  тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

Резюмируя информацию по валентным возможностям атома углерода:

1) Для углерода возможны валентности II, III, IV

2) Наиболее распространенная валентность углерода в соединениях IV

3) В молекуле угарного газа CO связь тройная (!), при этом одна из трех связей образована по донорно-акцепторному механизму

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (Nh4), азотистой кислоты (HNO2), треххлористого азота (NCl3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но  также и тогда, когда один атом, имеющий неподеленную пару электронов — донор(  ) предоставляет ее другому атому с вакантной (  ) орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d-подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие  могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO3 или оксида азота N2O5? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованная π-связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O3, бензола C6H6 и т.д.

Резюмируя информацию по валентным возможностям атома азота:

1) Для азота возможны валентности I, II, III и IV

2) Валентности V у азота не бывает!

3) В молекулах азотной кислоты и оксида азота N2O5 азот имеет валентность IV, а степень окисления +5 (!).

4) В соединениях, в которых атом азота четырехвалентен, одна из ковалентных связей образована по донорно-акцепторному механизму (соли аммония Nh5+, азотная кислота и д.р).

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d-подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s-орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом азота не имеет на внешнем уровне d-подуровня, распаривание электронов s и p-орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Таким образом, кислород практически всегда имеет валентность, равную II, однако в некоторых частицах он трехвалентен, в частности, в молекуле угарного газа C≡O. В случае, когда кислород имеет валентность III, одна из ковалентных связей образована по донорно-акцепторному механизму.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода  h3S.

Как мы видим, у атома серы на внешнем уровне появляется d-подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p-подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO2, SF4, SOCl2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s-подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO3, h3SO4, SO2Cl2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

scienceforyou.ru