4. Натуральная величина отрезка прямой. Углы наклона прямой к плоскостям проекций. Как определить угол наклона плоскости


4. Натуральная величина отрезка прямой. Углы наклона прямой к плоскостям проекций.

Ортогональная проекция отрезка [AB] прямой на плоскость проекций будет конгруэнтна оригиналу лишь в том случае, когда отрезок параллелен этой плоскости (свойство 6), т.е.

([AB]H) [A1B1][AB]

([CD]V) [C2D2][CD]

([EF]W)[E3F3][EF]

Во всех остальных случаях отрезок проецируется на плоскость проекции с искажениями. При этом ортогональные проекции отрезка всегда меньше его действительной величины:

|A1B1| < |AB|

|A2B2| < |AB|

|A3B3| < |AB|

Пусть задана система плоскостей V/H и отрезок [AB], заданный своими проекциями. Требуется на эпюре определить его натуральную величину |AB| и углы наклона к плоскости H ик плоскости V.

Угол наклона прямой к плоскости - есть угол между прямой и её проекцией на эту плоскость.

Для графического определения на эпюре Монжа действительной (натуральной) величины отрезка достаточно построить прямоугольный треугольник, взяв за один его катет горизонтальную (фронтальную, профильную) проекцию отрезка, а за другой катет - разность удаления концов отрезка от горизонтальной (фронтальной, профильной) плоскости проекций. Тогда гипотенуза треугольника будет равна натуральной величине отрезка, а угол между гипотенузой и проекцией будет равен углу наклона прямой к этой плоскости.

Рис.7

Для определения угла наклона прямой к горизонтальной плоскости (угла ), построения выполняют на базе горизонтальной проекции.

Для определения угла наклона прямой к фронтальной плоскости (угла ), построения выполняют на базе фронтальной проекции.

5. Прямые общего и частного положения.

Прямые частного положения - это прямые, параллельные одной или двум плоскостям проекций.

В первом случае прямые называются прямыми уровня.

Во втором случае - проецирующими прямыми, т.к. перпендикулярны какой-нибудь плоскости проекций.

Прямые уровня.

Рис.8

Горизонталь - h, прямая параллельная плоскости H Фронталь - f, прямая параллельная плоскости V Профильная прямая - p, прямая параллельная плоскости W

Проецирующие прямые.

Прямые, принадлежащие плоскости проекции.

Рис.15

lH

Рис.16

mV

Рис.17

nW

6. Взаимное положение двух прямых.

Прямые в пространстве могут пересекаться и скрещиваться. При этом пересечение может быть в несобственной точке. В этом случае прямые называют параллельными.

Параллельные прямые.

Из 4-го инвариантного свойства параллельного проецирования следует что:

(a,b)(ab)[(a1b1)(a2b2)(a3b3)] (1)

Для определения, параллельны ли прямые общего положения, достаточно определить параллельность из двух проекций:

[(a1b1)(a2b2)](a3b3) (2)

Если прямые параллельны какой либо плоскости проекций, то условие (2) может не выполняться. В этом случае левая часть (2) является только необходимым, но недостаточным условием. Вопрос о параллельности решается на плоскости, которой прямые параллельны.

Рис.1

Прямые параллельны.

Рис.2

Прямые не параллельны.

studfiles.net

Определение углов наклона прямых

1) Между двумя пересекающимися прямыми. Решение – преобразовать плоскость, заданную двумя пересекающимися прямыми, в плоскость уровня.

2) Между двумя скрещивающимися прямыми. Решение – скрещивающиеся прямые заменяют пересекающимися таким образом, чтобы их положение в пространстве по отношению к плоскостям проекций не изменилось. Затем плоскость, заданную двумя пересекающимися прямыми, преобразовать в плоскость уровня (рис. 6.4).

 

 

а б

Рис. 6.4

3) Между прямой и плоскостью. Решение – из точки, взятой на прямой, опускают перпендикуляр n на плоскость, тогда прямая и перпендикуляр составляют плоскость. Эту плоскость преобразуют в плоскость уровня и определяют угол при вершине А.

Искомый угол между прямой и плоскостью определяется как дополнительный в прямоугольном треугольнике: = 90°– (рис. 6.5).

 

Рис. 6.5

4) Между двумя гранями. Решение – линию пересечения двух плоскостей (общее ребро двугранного угла) преобразуют в проецирующее положение (рис. 6.6).

 

Определение угла наклона плоскости к плоскости проекции

Р е ш е н и е 1. Проводят линии наибольшего наклона плоскости и способом прямоугольного треугольника определяют угол наклона этих прямых к П1 и П2.

Линии наибольшего наклона – эта линии, лежащие в заданной плоскости и перпендикулярные линиям уровня (или следам плоскости).

П р и м е р. Дана плоскость треугольника АВС. Определить угол наклона треугольника АВС к П1 (рис. 6.7).

В плоскости проводим горизонталь h и из точки В опускаем перпендикуляр к горизонтали, т. е. линию наибольшего наклона к П1. Способом прямоугольного треугольника определяем натуральную величину отрезка ВD. Угол между натуральной величиной и горизонтальной проекцией отрезка и является углом наклона АВС к П1.

Р е ш е н и е 2. Заданную плоскость преобразуют в плоскость проецирующую, т. е. решают третью задачу на преобразование (см. рис. 5.4).

 

7. ПОВЕРХНОСТИ

 

Образование поверхностей. Классификация

В начертательной геометрии образование поверхностей рассматривают как результат движения некоторой образующей линии по направляющей. И образующая, и направляющая могут быть прямыми или кривыми линиями. В зависимости от вида образующей и закона изменения направляющей получается та или иная поверхность.

Если образующей является прямая линия, то поверхность называется линейчатой. К линейчатым поверхностям относятся следующие:

конические – образованы перемещением образующей по некоторой направляющей, причем образующая имеет одну неподвижную точку, которая называется вершиной конической поверхности;

цилиндрические – образующая, перемещаясь по направляющей, всегда остается параллельной некоторой заданной прямой;

винтовые – прямолинейная образующая перемещается по винтовой линии, причем угол между образующей и осью вращения остается постоянным;

поверхности с плоскостью параллелизма – прямая перемещается по двум скрещивающимся линиям, оставаясь всегда параллельной некоторой плоскости, называемой плоскостью параллелизма. Среди поверхностей с плоскостью параллелизма различают цилиндроиды – направляющими являются две скре-щивающиеся кривые; коноиды – направляющие – скрещивающиеся линии, но одна из них прямая; косая плоскость – направляющие – две скрещивающиеся прямые.

В качестве примера линейчатой поверхности на рис. 7.1, 7.2 приведены конус, цилиндр, прямой и наклонный геликоиды, косая плоскость. Если поверхности образованы вращением образующей вокруг некоторой прямой, то их называют поверхностями вращения.

 

а б в

Рис. 7.1

Образующая поверхности вращения, лежащая в плоскости, проходящей через ось вращения, называется меридианом. Сечение поверхности плоскостью, перпендикулярной оси, является окружностью, его называют параллелью. Параллель с наименьшим радиусом называют горлом, с наибольшим – экватором (рис. 7.3).

а б

Рис. 7.2

Задание и изображение поверхностей

На чертеже

Из всех возможных способов образования поверхности необходимо выбирать такие, которые являются наиболее простыми и более удобными для изображения или для решения данной задачи. Чтобы задать поверхность на комплексном чертеже, достаточно иметь на нем такие элементы поверхности, которые позволяют построить каждую ее точку. Совокупность этих элементов поверхности называют определителем поверхности.

Часто поверхность задается проекциями своих направляющих и указывается способ построения ее образующих. Для придания чертежу большей наглядности в большинстве случаев на нем строят еще и очерк поверхности. Очерком поверхности называют проекции контурной линии.

Приведем примеры изображения некоторых поверхностей.

1. Пусть поверхность (однополостный гиперболоид) задана на чертеже (рис. 7.4) определителем: образующая l вращается вокруг скрещивающейся с ней осью i. Требуется построить очерк этой поверхности.

Решение выполним на рис. 7.5. При вращении прямой l вокруг оси i все точки прямой опишут окружности различных радиусов. Возьмем на прямой четыре точки и построим проекции окружностей при их вращении. Точка А вращается по окружности наименьшего радиуса АО, т. е. эта окружность является горлом поверхности. Точки В и С в рассматриваемом примере вращаются по окружности одинакового радиуса. Произвольная точка М выбрана между горлом и верхним основанием этой поверхности. На горизонтальной проекции очерком поверхности будет являться окружность. На фронтальной, соединив крайние точки проекции окружностей точек, получим очерк, представляющий собой ветви гиперболы. Таким образом, построены проекции однополостного гиперболоида.

 

Рис. 7.4 Рис. 7.5

 

По классификации эта поверхность может быть отнесена и к линейчатым (образующая – прямая), и к нелинейчатым (образующая – гипербола).

2. Построить проекции цилиндра вращения. Решение – поверхность образована вращением прямой вокруг параллельной ей оси (рис. 7.6).

3. Построить проекции конуса вращения. Решение – поверхность образована вращением прямой вокруг пересекающейся с ней оси (рис. 7.7).

Рис. 7.6 Рис. 7.7 Рис. 7.8

 

4. Построить проекции тора. Решение – поверхность образована вращением окружности вокруг оси i, не проходящей через ее центр (рис. 7.8).

5. Построить проекции эллипсоида. Решение – поверхность образована вращением эллипса вокруг оси (рис. 7.9).

6. Построить проекции параболоида. Решение – поверхность образована вращением параболы вокруг оси i (рис. 7.10).

Рис. 7.9 Рис. 7.10 Рис. 7.11

7. Построить проекции двуполостного гиперболоида вращения. Реше-ние – поверхность образована вращением гиперболы вокруг ее действительной оси i (рис. 7.11).

Более подробные сведения о классификации и изображении поверхностей можно получить в работах [1 – 4].

 

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Определение угла наклона прямой к плоскости проекции. — КиберПедия

а) модель б) эпюр Рисунок 32. Определение натуральной величины отрезка и угла его к фронтальной плоскости.   12. Определение расстояния от точки до прямой. ОПРЕДЕЛЕНИЕ РАССТОЯНИЯ ОТ ТОЧКИ ДО ПРЯМОЙ ОБЩЕГО ПОЛОЖЕНИЯ Для того чтобы определить расстояние от точки до прямой, необходимо из точки опустить на прямую перпендикуляр. Прямого решения эта задача не имеет, так как прямой угол между прямыми общего положения будет проецироваться с искажением. Проведем через точку М плоскость , перпендикулярную прямой 1 (рис.10.4). Зададим эту плоскость двумя пересекающимися прямыми - горизонталью и фронталью. В этом случае горизонтальная проекция горизонтали будет перпендикулярна горизонтальной проекции прямой1. Фронтальная проекция фронтали - перпендикулярна фронтальной проекции прямой 1. Рис. 10.4. Построим точку встречи прямой 1 с плоскостью, l = К. Так как прямая 1 перпендикулярна плоскости, следовательно, она перпендикулярна любой прямой, принадлежащей плоскости, в том числе - и прямой МК, т.е. прямая МК перпендикулярна прямой 1. Отрезок МК спроецировался с искажением. Его натуральную величину найдем способом вращения вокруг фронтально проецирующей прямой, проходящей через точку М. M1K1 = MK . Решение задачи методом проецирования на дополнительнуюплокость приведено на рис.10.5 в следующем разделе. M5K5 = MK .   13.Взаимное положение прямой и плоскости.
Прямая линия, параллельная плоскости

При решении вопроса о параллельности прямой линии и плоскости необходимо опираться на известное положение стереометрии:прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскостии не принадлежит этой плоскости.

Задача. Дано: проекции плоскости общего положения ABC и прямой общего положения а.

Требуется оценить их взаимное положение (рис.5.20). Гайки навинчиваются на резьбовой конец болта, при этом соединяемые детали зажимаются между гайкой и головкой болта. Рисунок плоскостями гипсовой головы в двух поворотах Это задание отчасти напоминает предыдущее, но теперь мы пользуемся плоскостями произвольной формы и ориентации. Суть задания заключается в том чтобы выразить конкретную форму через минимальное количество плоскостей но с максимальным сходством. Пропуск или ошибка хотя бы в одном из размеров делают чертеж непригодным к использованию. Последовательность нанесения размеров

  а) модель Выполнение графических работ Проекции плоских углов   б) эпюр
Рисунок 5.20. Прямая параллельная плоскости
       

Для этого через прямую а проведем вспомогательную секущую плоскость  - в данном случае горизонтально проецирующая плоскость. Найдем линию пересечения плоскостей  и АВС- прямую п (DF). Проекция прямой п на горизонтальную плоскость проекций совпадает с проекцией а1 и со следом плоскости . Проекция прямой п2 параллельна а2, п3 параллельна а3, следовательно, прямая а параллельна плоскости AВС.

 

Прямая линия, пересекающая плоскость

Нахождение точки пересечения прямой линии и плоскости – основная задача начертательной геометрии.

Задача. Дано: плоскость AВС и прямая а.

Требуется найти точку пересечения прямой с плоскостью и определить видимость прямой по отношению к плоскости.

Для решения задачи:

Через горизонтальную проекцию прямой а1 проведем вспомогательную горизонтально проецирующую плоскость  (таким образом а).

Горизонтальный след плоскости 1 пересекает проекцию плоскости A1В1С1 в точках D1 и F1, которые определяют положение горизонтальной проекции п1- линии пересечения плоскостей  и AВС. Для нахождения фронтальной и профильной проекции пспроецируем точки D и F на фронтальную и профильную плоскости проекций.

На фронтальной и профильной проекциях линия пересечения плоскостей п пересекает проекции а в точке К, которая и является проекцией точки пересечения прямой а с плоскостью AВС, по линии связи находим горизонтальную проекцию К1.

Методом конкурирующих точек определяем видимость прямой а по отношению к плоскости AВС.

а) модель б) эпюр
Рисунок 5.21. Нахождение точки пересечения прямой и плоскости
       

Таким образом алгоритм решения задачи состоит из следующей последовательности действий (рис.5.21):

1. Построение вспомогательной секущей плоскости  ( горизонтально – проецирующая плоскость ), которую проводят через прямую аа;

2. Построение линии пересечения вспомогательной плоскости  и заданной плоскости  п;

3. Определение искомой точки К, как точки пересечения двух прямых, заданной - а и полученной в результате пересечения плоскостей – п Ка  п. В качестве вспомогательной плоскости  рекомендуется брать одну из проецирующих плоскостей.

4. Определение видимости прямой а относительно плоскости 

  Прямая линия перпендикулярная плоскости.

Докажем следующую теорему о перпендикуляре к плоскости: Если прямая перпендикулярна плоскости, то горизонтальная проекция этой прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция – фронтальной проекции фронтали плоскости.

Пусть прямая n, перпендикулярная плоскости, пересекает плоскость BCD в точке N, тогда по условию n перпендикулярна любой прямой плоскости. Проведем в плоскости BCD горизонталь h, а на основании теоремы о проецировании прямого угла можно утверждать, что на горизонтальную плоскость проекций они проецируются под прямым углом, т.е. n1 h2. Аналогично для фронтали – f  n  f2  n2.

Справедлива и обратная теорема: Если проекции прямой перпендикулярны одноименным проекциям соответствующих главных линий плоскости (горизонтали и фронтали), то такая прямая перпендикулярна плоскости.

Доказательство следует из теоремы о проецировании прямого угла.

Исходя из рассмотренных теорем, можно решить задачу о построении перпендикуляра к плоскости из точки А (рис.5.22).

Задача. Дано: плоскость ВСD и точка А.

Требуется построить прямую линию n проходящую через точку А и перпендикулярную плоскости ВСD.

В плоскости ВСD построим фронталь f и горизонталь h. В горизонтальной плоскости проекций проведем через точку А1 прямую n1перпендикулярно горизонтальной проекции горизонтали h2, а на фронтальной плоскости проекций через точку А2 прямую n2перпендикулярно фронтальной проекции фронтали f2, согласно выше сказанному полученная прямая n будет перпендикулярна плоскостиВСD.

cyberpedia.su

Определение длины отрезка и углов его наклона к плоскостям проекций

⇐ ПредыдущаяСтр 13 из 27Следующая ⇒

Рис. 4.6. Определение длины отрезка и углов наклона к плоскостям проекций

На рис. 4.6 показан пример определения длины отрезка АВ и углов наклона его к плоскостям проекций.

Длина отрезка АВ равна гипотенузе этого треугольника, катетами которого являются горизонтальная проекция отрезка А1В1 и разность координат z точек А и В (Δz = zA- zB).

Как известно, угол наклона прямой к плоскости равен углу между этой прямой АВ и ее проекцией на плоскость (А1В1).

Следовательно, угол Δ АВВ', лежащий против катета Δz, равен углу наклона отрезка АВ и горизонтальной плоскости проекций π1 (угол α°).

Аналогично рассуждая (рис. 4.6), можно показать, что длина отрезка АВ равна гипотенузе треугольника, катетами которого являются фронтальная проекция отрезка А2В2 и разность координат Y точек А и В (ΔY =YA- YB).

Угол этого треугольника, лежащий против катета ΔY, равен углу наклона отрезка АВ к фронтальной плоскости проекций π2 (угол β°).

По аналогии длина отрезка АВ может быть определена и как гипотенуза треугольника, катеты которого профильная проекция отрезка А3В3 и разность координат Х (Δ Х = ХА - ХВ) точек А и В. Угол γ° этого треугольника, лежащий против катета Δ Х, определяет угол наклона отрезка АВ к профильной плоскости проекций π3. (рис. 4.6).

Линии наибольшего наклона (ската)

Линией наибольшего наклона (ската) плоскости γ называется прямая g, принадлежащая этой плоскости и перпендикулярная ее линиям уровня: горизонтали h и фронтали f (рис. 4.7).

На комплексном чертеже горизонтальная проекция линии наибольшего наклона перпендикулярна горизонтальной проекции горизонтали этой плоскости, а фронтальная - фронтальной проекции фронтали.

Главным свойством этой линии наибольшего ската является то, что она образует с горизонтальной плоскостью проекций π1 угол α°, равный углу наклона плоскости γ к плоскости π1.

Рис. 4.7. Пример построения линии наибольшего наклона

Это свойство линии наибольшего наклона (ската) используется для определения углов наклона плоскостей к плоскостям проекций.

Вопросы для самоконтроля

· 1. Назовите условия перпендикулярности прямых линий на комплексном чертеже.

· 2. Назовите условия перпендикулярности прямой к плоскости на комплексном чертеже.

· 3. Какова сущность способа прямоугольного треугольника?

· 4. Какое свойство линии наибольшего наклона является основным?

· 5. Как можно определить действительную величину отрезка, находящегося в общем положении по отношению к плоскостям проекций?

· 6. Как определяется угол наклона плоскости к плоскостям проекций?

 

mykonspekts.ru

Определение угла наклона плоскости к плоскости проекций.

Математика Определение угла наклона плоскости к плоскости проекций.

Количество просмотров публикации Определение угла наклона плоскости к плоскости проекций. - 1943

 Наименование параметра  Значение
Тема статьи: Определение угла наклона плоскости к плоскости проекций.
Рубрика (тематическая категория) Математика

Проекции плоскостей

Лекция №3 (3-я неделя)

Конспект лекций

Лектор потока: Зелёв Александр Павлович (доцент кафедры начертательной геометрии и черчения).

Постановка задачи. Дана плоскость общего положения Г. Требуется определить углы наклона плоскости Г к плоскостям проекций (отдельно к плоскости П1, к плоскости П2, к плоскости П3).

Пусть плоскость задана треугольником Г(АВС):

Для изучения алгоритма рассмотрим известный геометрический объект – плоскость крыши дома. В этой плоскости построим горизонталь (кромка крыши). Построим еще одну прямую – линию ската, по которой скатывается материальная точка. Линия ската – прямая, принадлежащая исследуемой плоскости общего положения и принадлежащая данной плоскости.   Из школьной программы: углом между двумя плоскостями является угол между прямыми в данных плоскостях, перпендикулярными к линии пересечения.   В рассматриваемом случае проведем через горизонталь плоскость уровня, параллельную П1. Тогда углом между плоскостью крыши и горизонтальной плоскостью будет угол между линией ската и ее горизонтальной проекцией.
Возвращаемся к комплексному чертежу. По этому алгоритму через любую точку плоскости Г построим горизонталь в плоскости Г. К примеру, через точку А. Построение начинаем с фронтальной проекции (горизонталь параллельна П1)
ʼʼПривязываемʼʼ ее к плоскости Г с помощью точки на ВС.
Строим проекции линии ската. Таких линий – бесчисленное множество. Построим, к примеру, через точку В. Используем проекционные свойства прямого угла. Так как линия ската перпендикулярна горизонтали, то на П1 линия ската m1 должна быть перпендикулярна h2.
Линия ската принадлежит плоскости Г. По этой причине ее ʼʼпривязываемʼʼ к плоскости Г с помощью точек этой плоскости. Здесь применили точки В и К. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, построили две проекции линии ската m.
Далее, нужно определить угол наклона линии ската m к плоскости проекций П1. Возьмем любой отрезок на линии ската и с помощью способа прямоугольного треугольника определим данный угол. Для удобства построения используем отрезок ВК, так как в точке К уже построен прямой угол. Искомый угол – угол a.
Для построения угла наклона плоскости Г к плоскости проекций П2 используем фронталь.

Определение угла наклона плоскости к плоскости проекций. - понятие и виды. Классификация и особенности категории "Определение угла наклона плоскости к плоскости проекций." 2014, 2015.

referatwork.ru

6. Решение некоторых метрических задач

ПРЕОБРАЗОВАНИЯМИ КОМПЛЕКСНОГО ЧЕРТЕЖА

6.1. Определение расстояний

1) Между двумя точками. Решение сводится к определению натуральной величины отрезка способом прямоугольного треугольника.

2) Между прямой и точкой. Решение – прямую преобразовать в проецирующую прямую (рис. 6.1).

3) Между точкой и плоскостью. Решение – плоскость преобразовать в проецирующую (рис. 6.2).

4) Между двумя параллельными прямыми. Решение – на одной прямой взять точку, вторую преобразовать в проецирующую.

5) Между двумя скрещивающимися прямыми. Решение – одну из прямых преобразовать в проецирующую прямую (рис. 6.3).

6) Между прямой и параллельной ей плоскостью. Решение – на прямой взять точку и плоскость преобразовать в проецирующую.

7) Между двумя параллельными плоскостями. Решение – на одной из плоскостей проекций взять точку, а вторую плоскость преобразовать в проецирующую.

Рис. 6.3

6.2. Определение углов наклона прямых

1) Между двумя пересекающимися прямыми. Решение – преобразовать плоскость, заданную двумя пересекающимися прямыми, в плоскость уровня.

2) Между двумя скрещивающимися прямыми. Решение – скрещивающиеся прямые заменяют пересекающимися таким образом, чтобы их положение в пространстве по отношению к плоскостям проекций не изменилось. Затем плоскость, заданную двумя пересекающимися прямыми, преобразовать в плоскость уровня (рис. 6.4).

а б

Рис. 6.4

3) Между прямой и плоскостью. Решение – из точки, взятой на прямой, опускают перпендикулярnна плоскость, тогда прямая и перпендикуляр составляют плоскость. Эту плоскость преобразуют в плоскость уровня и определяют уголпри вершине А.

Искомый угол между прямой и плоскостью определяется как дополнительный в прямоугольном треугольнике:= 90°–(рис. 6.5).

Рис. 6.5

4) Между двумя гранями.Решение – линию пересечения двух плоскостей (общее ребро двугранного угла) преобразуют в проецирующее положение (рис. 6.6).

6.3. Определение угла наклона плоскости к плоскости проекции

Р е ш е н и е 1. Проводят линии наибольшего наклона плоскости и способом прямоугольного треугольника определяют угол наклона этих прямых к П1и П2.

Линии наибольшего наклона – эта линии, лежащие в заданной плоскости и перпендикулярные линиям уровня (или следам плоскости).

П р и м е р. Дана плоскость треугольника АВС. Определить угол наклона треугольника АВС к П1(рис. 6.7).

В плоскости проводим горизонталь h и из точки В опускаем перпендикуляр к горизонтали, т. е. линию наибольшего наклона к П1. Способом прямоугольного треугольника определяем натуральную величину отрезка ВD. Угол между натуральной величиной и горизонтальной проекцией отрезка и является углом наклона АВС к П1.

Р е ш е н и е 2. Заданную плоскость преобразуют в плоскость проецирующую, т. е. решают третью задачу на преобразование (см. рис. 5.4).

7. Поверхности

7.1. Образование поверхностей. Классификация

В начертательной геометрии образование поверхностей рассматривают как результат движения некоторой образующей линии по направляющей. И образующая, и направляющая могут быть прямыми или кривыми линиями. В зависимости от вида образующей и закона изменения направляющей получается та или иная поверхность.

Если образующей является прямая линия, то поверхность называется линейчатой. К линейчатым поверхностям относятся следующие:

конические– образованы перемещением образующей по некоторой направляющей, причем образующая имеет одну неподвижную точку, которая называется вершиной конической поверхности;

цилиндрические– образующая, перемещаясь по направляющей, всегда остается параллельной некоторой заданной прямой;

винтовые – прямолинейная образующая перемещается по винтовой линии, причем угол между образующей и осью вращения остается постоянным;

поверхности с плоскостью параллелизма – прямая перемещается по двум скрещивающимся линиям, оставаясь всегда параллельной некоторой плоскости, называемой плоскостью параллелизма. Среди поверхностей с плоскостью параллелизма различаютцилиндроиды– направляющими являются две скре-щивающиеся кривые;коноиды– направляющие – скрещивающиеся линии, но одна из них прямая;косая плоскость– направляющие – две скрещивающиеся прямые.

В качестве примера линейчатой поверхности на рис. 7.1, 7.2 приведены конус, цилиндр, прямой и наклонный геликоиды, косая плоскость. Если поверхности образованы вращением образующей вокруг некоторой прямой, то их называют поверхностями вращения.

а б в

Рис. 7.1

Образующая поверхности вращения, лежащая в плоскости, проходящей через ось вращения, называется меридианом. Сечение поверхности плоскостью, перпендикулярной оси, является окружностью, его называютпараллелью. Параллель с наименьшим радиусом называютгорлом, с наибольшим –экватором(рис. 7.3).

а б

Рис. 7.2

studfiles.net

Определение длины отрезка прямой линии и углов наклона прямой к плоскостям проекций (метод прямоугольного треугольника)

Длину отрезка АВ и a - угол наклона отрезка к плоскости П1 можно определить из прямоугольного треугольника АВС |AС|=|A1B1|, |BС|=DZ. Для этого на эпюре (рис.31) из точки B1 под углом 900 проводим отрезок |B1B1*|=DZ, полученный в результате построений отрезок A1B1* и будет натуральной величиной отрезка АВ, а угол B1A1B1*=a. Рассмотренный метод называется методом прямоугольного треугольника. Тот же результат можно получить при вращении треугольника АВС вокруг стороны AС до тех пор, пока он не станет параллелен плоскости П1, в этом случае треугольник проецируется на плоскость проекций без искажения.

5. Задание плоскости на чертеже

Через три точки А, В, С, не принадлежащие одной прямой, можно провести одну и только одну плоскость). Точки А, В и С составляют геометрическую часть определителя плоскости.

Классификация плоскостей

горизонталь

профильная

фронталь

Гориз. Проец.

проф. Проец.

фрон. Проец.

  1. Плоскость, перпендикулярная горизонтальной плоскости проекций (a^П1), называется горизонтально проецирующей плоскостью

  2. Плоскость, перпендикулярная фронтальной плоскости проекций (a^П2)- фронтально проецирующая плоскость.

  3. Плоскость, перпендикулярная профильной плоскости ( a^П3) - профильно проецирующая плоскость.

  4. Горизонтальная плоскость - плоскость, параллельная горизонтальной плоскости проекций (a//П1) - (a^П2,a^П3)

  5. Фронтальная плоскость - плоскость, параллельная фронтальной плоскости проекций (a//П2), (a^П1, a^П3)

  6. Профильная плоскость - плоскость, параллельная профильной плоскости проекций (a//П3), (a^П1, a^П2)

  1. Теорема о проецировании прямого угла

Если хотя бы одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то на эту плоскость прямой угол проецируется без искажения (Теорема о проецировании прямого угла).

Обратная

Теорема о проец пр угла

Дано: Ð АВС = 90о; [ВС] // П1; [АС] # П1.

Для доказательства теоремы продлим отрезок АС до пересечения с плоскостью П1 (рис. 39) получим горизонтальный след прямой - точку М º М1, одновременно принадлежащую прямой и ее проекции. Из условия следует, что [ВС] // [В1С1]. Если через точку М проведем прямую МD параллельную С1В1 , то она будет параллельна и СВ, а следовательно Ð СМD= 90о. Согласно теореме о трех перпендикулярах Ð С1МD=90о. Таким образом, [MD]^[А1С1] и [MD]//[В1С1], следовательно, Ð А1С1В1= 90о, что и требовалось доказать. В случае, когда [АС]^П1 проекцией угла, согласно свойствам ортогонального проецирования, будет прямая линия.

2. Если проекция угла представляет угол 900, то проецируемый угол будет прямым лишь при условии, что одна из сторон этого угла параллельна плоскости проекций (рис. 40).

3. Если обе стороны любого угла параллельны плоскости проекций, то его проекция равна по величине проецируемому углу.

4. Если стороны угла параллельны плоскости проекций или одинаково наклонены к ней, то деление проекции угла на этой плоскости пополам соответствует делению пополам и самого угла в пространстве.

5. Если стороны угла не параллельны плоскости проекций, то угол на эту плоскость проецируется с искажением.

studfiles.net