Найти четвертую вершину параллелограмма. Как найти вершины координаты


Координаты вершины параболы | Алгебра

Как найти координаты вершины параболы? Для этого достаточно запомнить всего одну короткую формулу (она же — корень квадратного уравнения для случая, если дискриминант равен нулю).

I. Абсциссу координаты вершины параболы — графика квадратичной функции y=ax²+bx+c, где a, b, c — числа, причем a≠0, находят по формуле

    \[{x_o} = \frac{{ - b}}{{2a}}.\]

Для нахождения ординаты достаточно подставить в формулу функции xₒ вместо каждого x:

    \[{y_o} = a{x_o}^2 + b{x_0} + c.\]

Можно также найти ординату вершины параболы, воспользовавшись формулой

    \[{y_o} = - \frac{{{b^2} - 4ac}}{{4a}},\]

(минус дискриминант, деленный на 4a).

Примеры.

Найти координаты вершины параболы:

1) y=x²-7x+3;

2) y= -x²+8x+2;

3) y= -3x²-12x-4;

4) y= 0,2x²+x+5.

Решение:

    \[1){x_o} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 7)}}{{2 \cdot 1}} = 3,5;\]

    \[{y_o} = {3,5^2} - 7 \cdot 3,5 + 3 = -9,25\]

Вершина параболы y=x²-7x+3 — точка (3,5; -9,25).

    \[2){x_o} = \frac{{ - b}}{{2a}} = \frac{{ - 8}}{{2 \cdot ( - 1)}} = 4;\]

    \[{y_o} = - {4^2} + 8 \cdot 4 + 2 = - 16 + 32 + 2 = 18\]

Вершиной параболы y= -x²+8x+2является точка (4; 18).

    \[3){x_o} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 12)}}{{2 \cdot ( - 3)}} = - 2;\]

    \[{y_o} = - 3 \cdot {( - 2)^2} - 12 \cdot ( - 2) - 4 = \]

    \[ = - 12 + 24 - 4 = 8\]

(-2; 8) — вершина параболы y= -3x²-12x-4.

    \[4){x_o} = \frac{{ - b}}{{2a}} = \frac{{ - 1}}{{2 \cdot 0,2}} = - 2,5;\]

    \[{y_o} = 0,2 \cdot {( - 2,5)^2} + ( - 2,5) + 5 = \]

    \[ = 1,25 - 2,5 + 5 = 3,75\]

Следовательно, (-2,5; 3,75) — вершина параболы y=0,2x²+x+5.

II. Абсциссу вершины параболы можно также найти как среднее арифметическое между нулями функции (в том случае, если функция имеет нули):

    \[{x_0} = \frac{{{x_1} + {x_2}}}{2}\]

Этим способом удобно находить вершину параболы, когда квадратичная функция задана в виде y=a(x-x1)(x-x2).

Пример.

Найдём координаты вершины параболы y=5(x-1)(x+7). Ищем нули функции:

5(x-1)(x+7)=0. Это уравнение типа произведение равно нулю.

x-1=0 или x+7=0

x=1; x=-7.

    \[{x_0} = \frac{{{x_1} + {x_2}}}{2} = \frac{{1 + ( - 7)}}{2} = - 3;\]

    \[{y_o} = 5 \cdot ( - 3 - 1)( - 3 + 7) = - 80\]

Точка (-3; -80) — вершина параболы y=5(x-1)(x+7).

III. Если функция задана в виде

    \[y = a{(x - {x_o})^2} + {y_o},\]

то её вершина — точка (xₒ; yₒ). Например, вершиной параболы

    \[y = \frac{2}{9}{(x + 3)^2} - 1\]

является точка (-3; -1).

www.algebraclass.ru

Нахождение вершины параболы: найти её координаты, способы

Парабола присутствует в мире математики, физики и других наук. По траектории параболы передвигаются искусственные спутники, которые стремятся покинуть пределы Солнечной системы, мяч при игре в волейбол тоже описывает её траекторию. Нужно уметь строить параболу. А чтобы это не составляло труда, надо знать, как найти вершину параболы.

Нахождение вершины параболы: способы, примеры, советы

График функции y = ax2+ bx + c, где a — первый коэффициент, b — второй коэффициент, c — свободный член, называется параболой. Но обратите внимание на тот факт, что a ≠0.

У каждой точки параболы есть симметричная ей, кроме одной точки, и эта точка называется вершиной. Для того чтобы найти точку, которая является вершиной, нужно определиться, что такое точка на графике. Точка на графике – это определённая координата по оси абсцисс и по оси ординат. Она обозначается как (x; y). Давайте разбираться, как найти заветные числа.

Первый способ

Если вы хотите знать, как необходимо правильно вычислять координаты вершины, то нужно только выучить формулу x0 = -b/2a. Подставляя полученное число в функцию, получим y0.

Например, y =x2–8 x +15;

находим первый, второй коэффициенты и свободный член;

подставляем значения a и b в формулу;

вычисляем значения y;

Значит, вершина находится в точке (4;-1).

Ветви параболы симметричны относительно оси симметрии, которая идёт через вершину параболы. Зная корни уравнения, можно без особых трудностей посчитать абсциссу вершины параболы. Предположим, что k и n — корни квадратичного уравнения. Тогда точка x0 равноудалена от точек k и n, и её можно вычислить по формуле: x0 = (k + n)/2.

Рассмотрим на примере y =x2–6x+5

1) Приравниваем к нулю:

2) Находим дискриминант, используя формулу: D = b 2–4 ac:

3) Находим корни уравнения по формуле (-b±√ D)/2a:

  • 1 — первый корень;
  • 5 — второй корень.

4) Вычисляем:

Второй способ

Дополнение до полного квадрата – отличный способ узнать, где располагается вершина. Используя этот способ, вы сможете вычислить точки x и y одновременно, без нужды подставлять x в начальный пример. Рассмотрим этот метод на примере функции: y=x 2+8 x +10.

1. Сначала нужно приравнять выражение с переменной к 0. Потом перенести c в правую сторону с противоположным знаком, то есть у нас получается выражение x2 + 8x = -10.

2. Теперь в левой части нужно сделать полный квадрат. Для этого посчитайте (b/2)2 и увеличьте обе части уравнения результат. В этом случае нужно подставит 8 вместо b.

У нас получается 16. Теперь прибавьте это число к обеим частям уравнения:

x2 + 8x +16= 6.

3. Видно, что полученное выражение – полный квадрат. Его можно представить в форме: (x + 4)2 = 6.

4. Используйте это выражение для поиска координат вершины параболы. Чтобы посчитать x, нужно приравнять его к 0. Получаем, x =-4. Координата y равна тому, что находится в правой части, то есть y =6. Вершина параболы этого уравнения (-4, 6).

Третий способ

Если вы знаете, что такое производная, то для вас есть другая формула. Несмотря на то, куда смотрят «рога» параболы, её вершина — точка экстремума. Для этого способа надо применить следующий алгоритм:

1. Нахождение первой производной по формуле f'(x) = (ax² + bx + c)’ = 2ax + b.

2. Приравнивание производной к 0. В итоге вы получите 0 = 2ax + b, отсюда можно найти то, что нас интересует.

Рассмотрим этот способ подробнее.

Дана функция y = 4x²+16x-17;

  • Записываем производную и приравниваем к нулю.

f'(x) = (4x²+16x-17)’ = 8x+16 =0

Построение параболы

Самое трудное при построении – это верно найти точки функции. Для подробного построения нужно просчитать 5–7 точек (для школьного курса хватит этого). Для этого выбираем какое-либо значение x и подставляем его в данную функцию. Итогом подсчётов будет число точки по оси ординат. После этого ставим на координатную плоскость полученные нами точки. В итоге у нас получается парабола.

Рассмотрим подробнее вопрос о нахождении точек, которые нужно отметить. Для примера возьмём функцию y =-x 2+11 x -24 с вершиной в точке (5,5;-6,25).

1) Строим таблицу

X     5,5    
Y          

2) Заполняем таблицу

Так как парабола имеет осевую симметрию, то можно считать только значения справа или слева от вершины. Лучше считать те значения, которые ближе к 0, так удобнее. В нашем случае эти значения 4 и 5.

X 4 5 5,5 6 7
Y -4 -6 -6,25 -6 -4

Советы

Правильно находите коэффициенты.

Пишите промежуточные вычисления на бумаге. Это не только облегчит нахождение вершины, но и поможет найти свои ошибки.

Делайте всё поэтапно. Следуйте алгоритму.

Обратите ваше внимание на то, что:

  • Нужно проверять правильно ли ваше решение.
  • Необходимо успокоиться. Решение любых задач по математике требует опыта. Просто нужно отработать данную тему, и тогда непременно у вас всё получится.

Видео

Это видео поможет вам научиться находить вершину параболы

liveposts.ru

Как найти координаты вершины параболы

График квадратичной функции называют параболой. Эта линия имеет весомое физическое значение. По параболам движутся некоторые небесные тела. Антенна в форме параболы фокусирует лучи, идущие параллельно оси симметрии параболы. Тела, кинутые вверх под углом, долетают до верхней точки и падают вниз, также описывая параболу. Видимо, что неизменно пригодно знать координаты вершины этого движения.

Инструкция

1. Квадратичная функция в всеобщем виде записывается уравнением: y = ax? + bx + c. Графиком этого уравнения является парабола, ветви которой направлены вверх (при a > 0) либо вниз (при a < 0). Школьникам предлагается легко запомнить формулу вычисления координат вершины параболы. Вершина параболы лежит в точке x0 = -b/2a. Подставив это значение в квадратное уравнение, получите y0: y0 = a(-b/2a)? — b?/2a + c = — b?/4a + c.

2. Людям, приятелем с представлением производной, легко обнаружить вершину параболы. Само­стоятельно от расположения ветвей параболы ее вершина является точкой экстремума (минимума, если ветви направлены вверх, либо максимума, когда ветви направлены вниз). Дабы обнаружить точки полагаемого экстремума всякий функции, нужно вычислить ее первую производную и приравнять ее к нулю. В всеобщем виде производная квадратичной функции равна f'(x) = (ax? + bx + c)’ = 2ax + b. Приравняв к нулю, вы получите 0 = 2ax0 + b => x0 = -b/2a.

3. Парабола — симметричная линия. Ось симметрии проходит через вершину параболы. Зная точки пересечения параболы с осью координат X, дозволено легко обнаружить абсциссу вершины x0. Пускай x1 и x2 — корни параболы (так называют точки пересечения параболы с осью абсцисс, от того что эти значения обращают квадратное уравнение ax? + bx + c в нуль). При этом пускай |x2| > |x1|, тогда вершина параболы лежит посередине между ними и может быть обнаружена из дальнейшего выражения: x0 = ?(|x2| — |x1|).

Парабола – это график квадратичной функции, в всеобщем виде уравнение параболы записывается y=aх^2+bх+с, где а?0. Это универсальная кривая второго порядка, которая описывает многие явления в жизни, скажем, движение подбрасываемого и после этого падающего тела, форму радуги, следственно знание обнаружить параболу может дюже сгодиться в жизни.

Вам понадобится

  • — формула квадратичного уравнения;
  • — лист бумаги с координатной сеткой;
  • — карандаш, ластик;
  • — компьютер и программа Excel.

Инструкция

1. В первую очередь обнаружьте вершину параболы. Дабы обнаружить абсциссу этой точки, возьмите показатель перед х, поделите его на удвоенный показатель перед х^2 и умножьте на -1 (формула х=-b/2a). Ординату обнаружьте, подставив полученное значение в уравнение либо по формуле у=(b^2-4ac)/4a. Вы получили координаты точки вершины параболы.

2. Вершину параболы дозволено обнаружить и иным методом. Потому что вершина является экстремумом функции, то для ее вычисления вычислите первую производную и приравняйте ее к нулю. В всеобщем виде вы получите формулу f(x)’ = (ax? + bx + c)’ = 2ax + b. А приравняв ее к нулю, вы придете к той же самой формуле — х=-b/2a.

3. Узнайте, направлены ли ветви параболы вверх либо вниз. Для этого посмотрите на показатель перед х^2, то есть на а. Если а>0, то ветви направлены вверх, если а

4. Постройте ось симметрии параболы, она пересекает вершину параболы и параллельна оси оу. Все точки параболы будут равноудалены от нее, следственно дозволено возвести лишь одну часть, а после этого симметрично отобразить ее касательно оси параболы.

5. Постройте линию параболы. Для этого обнаружьте несколько точек, подставляя различные значения х в уравнения и решая равенство. Комфортно обнаружить пересечение с осями, для этого подставляйте в равенство х=0 и у=0. Возведя одну сторону, отразите ее симметрично касательно оси.

6. Дозволено возвести параболу при помощи программы Excel. Для этого откройте новейший документ и выделите в нем два столбика, х и у=f(х). В первом столбике запишите значения х на выбранном отрезке, а во втором столбце запишите формулу, скажем, =2В3*В3-4В3+1 либо =2В3^2-4В3+1. Дабы не писать эту формулу всякий раз, «растяните» ее на каждый столбец, нажав мышкой на небольшой крестик в нижнем правом углу и потянув вниз.

7. Получив таблицу, нажмите меню «Вставка» — «Диаграмма». Выберите точечную диаграмму, нажмите «Дальше». В появившемся окне добавьте ряд, нажав кнопку «Добавить». Дабы предпочесть необходимые ячейки, щелкните поочередно по кнопкам, обведенным красным овалом ниже, после этого выделите ваши столбики со значениями. Нажав кнопку «Готово», оцените итог – готовую параболу .

Видео по теме

При изыскании квадратичной функции, графиком которой является парабола, в одном из пунктов нужно обнаружить координаты вершины параболы. Как это сделать аналитически, применяя заданное для параболы уравнение?

Инструкция

1. Квадратичная функция — это функция вида y=ax^2+bx+c, где a — старший показатель (он неукоснительно должен быть ненулевым), b — младший показатель, с — вольный член. Данная функция дает своим графиком параболу, ветви которой направлены либо вверх (если а>0), либо вниз (если а<0). При a=0 квадратичная функция вырождается в линейную функцию.

2. Обнаружим координату x0 вершины параболы. Она находится по формулеx0=-b/a.

3. y0=y(x0).Дабы обнаружить координату y0 вершины параболы, нужно в функцию взамен x подставить обнаруженное значение x0. Сосчитайте, чему равен y0.

4. Координаты вершины параболы обнаружены. Запишите их в виде координат одной точки (x0,y0).

5. При построении параболы помните, что она симметрична касательно оси симметрии параболы, проходящей вертикально через вершину параболы, т.к. квадратичная функция является четной. Следственно довольно по точкам возвести только одну ветвь параболы, а иную достроить симметрично.

Видео по теме

Для функций (вернее их графиков) применяется представление наибольшего значения, в том числе и локального максимума. Представление же «вершина» скорее связано с геометрическими фигурами. Точки максимумов гладких функций (имеющих производную) легко определить с подмогой нулей первой производной.

Инструкция

1. Для точек, в которых функция не дифференцируема, но постоянна, наибольшее на интервале значение может иметь вид острия (на пример y=-|x|). В таких точках к графику функции дозволено провести сколь желательно много касательных и производная для нее легко не существует. Сами функции такого типа обыкновенно задаются на отрезках. Точки, в которых производная функции равна нулю либо не существует, именуются скептическими.

2. Выходит, для нахождения точек максимумов функции y=f(x) следует:- обнаружить скептические точки;- для того дабы предпочесть точку максимума, следует обнаружить знак производной в окрестности скептической точки. Если при прохождении точки происходит чередование знака с «+» на «-», то имеет место максимум.

3. Пример. Обнаружить наибольшие значения функции (см. рис.1).y=x+3 при x?-1 и y=((x^2)^(1/3)) –х при x>-1.

4. Реение. y=x+3 при x?-1 и y=((x^2)^(1/3)) –х при x>-1. Функция задана на отрезках умышленно, потому что в данном случае преследуется цель отобразить все в одном примере. Легко проверить, что при х=-1 функция остается постоянной.y’=1 при x?-1 и y’=(2/3)(x^(-1/3))-1=(2-3(x^(1/3))/(x^(1/3)) при x>-1. y’=0 при x=8/27. y’ не существует при x=-1 и x=0.При этом y’>0 если x

Видео по теме

Парабола – одна из кривых второго порядка, ее точки возведены в соответствии с квадратным уравнением. Основное в построении этой косой – обнаружить вершину параболы . Это дозволено сделать несколькими методами.

Инструкция

1. Дабы обнаружить координаты вершины параболы , воспользуйтесь дальнейшей формулой: х=-b/2а, где а – показатель перед х в квадрате, а b – показатель перед х. Подставьте ваши значения и рассчитайте его значение. После этого подставьте полученное значение взамен х в уравнение и посчитайте ординату вершины. Скажем, если вам дано уравнение у=2х^2-4х+5, то абсциссу обнаружьте дальнейшим образом: х=-(-4)/2*2=1. Подставив х=1 в уравнение, рассчитайте значение у для вершины параболы : у=2*1^2-4*1+5=3. Таким образом, вершина параболы имеет координаты (1;3).

2. Значение ординаты параболы дозволено обнаружить и без заблаговременного расчета абсциссы. Для этого воспользуйтесь формулой у=-b^2/4ас+с.

3. Если вы знакомы с представлением производной, обнаружьте вершину параболы при помощи производных, воспользовавшись дальнейшим свойством всякий функции: первая производная функции, приравненная к нулю, указывает на точки экстремума. Потому что вершина параболы , само­стоятельно от того, направлены ее ветви вверх либо вниз, является точкой экстремума, вычислите производную для вашей функции. В всеобщем виде она будет иметь вид f(х)=2ах+b. Приравняйте ее к нулю и получите координаты вершины параболы , соответствующей вашей функции.

4. Испробуйте обнаружить вершину параболы , воспользовавшись таким ее свойством, как симметричность. Для этого обнаружьте точки пересечения параболы с осью ох, приравняв функцию к нулю (подставив у=0). Решив квадратное уравнение, вы обнаружите х1 и х2. Потому что парабола симметрична касательно директрисы, проходящей через вершину , эти точки будут равноудалены от абсциссы вершины. Дабы ее обнаружить, поделим расстояние между точками напополам: х=(Iх1-х2I)/2.

5. Если какой-нибудь из показателей равен нулю (помимо а), рассчитайте координаты вершины параболы по облегченным формулам. Скажем, если b=0, то есть уравнение имеет вид у=ах^2+с, то вершина будет лежать на оси оу и ее координаты будут равны (0;с). Если же не только показатель b=0, но и с=0, то вершина параболы находится в начале координат, точке (0;0).

Видео по теме

Исходя из одной точки, прямые образуют угол, где всеобщая для них точка является вершиной. В разделе теоретической алгебры частенько встречаются задачи, когда нужно обнаружить координаты этой вершины , дабы после этого определить уравнение проходящей через вершину прямой.

Инструкция

1. Перед тем, как начать процесс нахождения координат вершины , определитесь с начальными данными. Примите, что желанная вершина принадлежит треугольнику ABC, в котором вестимы координаты 2-х остальных вершин, а также числовые значения углов , равные «e» и «k» по стороне AB.

2. Совместите новую систему координат с одной из сторон треугольника AB таким образом, дабы предисловие системы координат совпадало с точкой A, координаты которой вам знамениты. Вторая вершина B будет лежать на оси OX, и ее координаты вам также знамениты. Определите по оси ОХ значение длины стороны AB согласно координатам и примите ее равной «m».

3. Опустите перпендикуляр из незнакомой вершины C на ось ОХ и на сторону треугольника AB соответственно. Получившаяся высота «y» и определяет значение одной из координат вершины C по оси OY. Примите, что высота «y» делит сторону AB на два отрезка, равные «x» и «m – x».

4. От того что вам вестимы значения всех углов треугольника, значит, знамениты и значения их тангенсов. Примите значения тангенсов для углов , примыкающих к стороне треугольника AB, равными tan(e) и tan(k).

5. Введите уравнения для 2-х прямых, проходящих по сторонам AC и BC соответственно: y = tan(e) * x и y = tan(k) * (m – x). После этого обнаружьте пересечение этих прямых, применяя преобразованные уравнения прямых: tan(e) = y/x и tan(k) = y/(m – x).

6. Если принять, что tan(e)/tan(k) равняется (y/x) /( y/ (m – x)) либо позже сокращения «y» — (m – x) / x , в итоге вы получите желанные значения координат, равные x = m / (tan(e)/tan(k) + e) и y = x * tan(e).

7. Подставьте значения углов (e) и (k), а также обнаруженное значение стороны AB = m в уравнения x = m / (tan(e)/tan(k) + e) и y = x * tan(e).

8. Преобразуйте новую систему координат в начальную систему координат, от того что между ними установлено взаимно-однозначное соответствие, и получите желанные координаты вершины треугольника ABC.

Видео по теме

Видео по теме

jprosto.ru

координаты, симметрия, точка и смещение

Уравнение по трем точкам: как найти вершину параболы, формула

Многие технические, экономические и социальные вопросы прогнозируются при помощи кривых. Наиболее используемым типом среди них является парабола, а точнее, ее половина. Важной составляющей любой параболической кривой является ее вершина, определение точных координат которой иногда играет ключевую роль не только в самом отображении протекания процесса, но и для последующих выводов. О том, как найти ее точные координаты, и пойдет речь в данной статье.

...

Вконтакте

Facebook

Twitter

Google+

Мой мир

Начало поиска

Перед тем как перейти к поиску координат вершины параболы, ознакомимся с самим определением и его свойствами. В классическом понимании параболой называется такое расположение точек, которые удалены на одинаковом расстоянии от конкретной точки (фокус, точка F), а также от прямой, которая не проходит через точку F. Рассмотрим данное определение более предметно на рисунке 1.

Как найти вершину параболы формула

Рисунок 1. Классический вид параболы

На рисунке изображена классическая форма. Фокусом является точка F. Директрисой в данном случае будет считаться прямая параллельная оси Y (выделена красным цветом). Из определения можно удостовериться, что абсолютно любая точка кривой, не считая фокуса, имеет себе подобную с другой стороны, удаленную на таком же расстояние от оси симметрии, как и сама. Более того, расстояние от любой из точек на параболе равно расстоянию до директрисы. Забегая вперед, скажем, что центр функции не обязательно должен находиться в начале координат, а ветки могут быть направлены в разные стороны.

Парабола, как и любая другая функция, имеет свою запись в виде формулы:

Как найти вершину параболы формула(1).

В указанной формуле буква «s» обозначает параметр параболы, которая равна расстоянию от фокуса до директрисы. Также есть и другая форма записи, указано ГМТ, имеющая вид:

Как найти вершину параболы формула(2).

Такая формула используется при решении задач из области математического анализа и применяется чаще, чем традиционная (в силу удобства). В дальнейшем будем ориентироваться на вторую запись.

Расчет коэффициентов и основных точек параболы

К числу основных параметров принято относить расположение вершины на оси абсцисс, координаты вершины на оси ординат, параметр директрисы.

Численное значение координаты вершины на оси абсцисс

Если уравнение параболы задано в классическом виде (1), то значение абсциссы в искомой точке будет равняться половине значения параметра s (половине расстояния между директрисой и фокусом). В случае, если функция представлена в виде (2), то x нулевое рассчитывается по формуле:

Как найти вершину параболы формула(3).

Т.е., глядя на эту формулу, можно утверждать, что вершина будет находиться в правой половине относительно оси y в том случае, если один из параметров a или b будет меньше нуля.

Уравнение директрисы определяется следующим уравнением:

Как найти вершину параболы формула(4).

Значение вершины на оси ординат

Численное значение местонахождения вершины для формулы (2) на оси ординат можно найти по такой формуле:

Как найти вершину параболы формула.

Отсюда можно сделать вывод, что в случае если а<0, то вершина кривой будет находиться в верхней полуплоскости, в противном случае – в нижней. При этом точки параболы будут обладать теми же свойствами, что были упомянуты ранее.

Если дана классическая форма записи, то более рациональным будет вычисление значения расположения вершины на оси абсцисс, а через него и последующее значение ординаты. Отметим, что для формы записи (2), ось симметрии параболы, в классическом представлении, будет совпадать с осью ординат.

Важно! При решении заданий с использованием уравнения параболы прежде всего выделите основные значения, которые уже известны. Более того, нелишним будет, если будут определены недостающие параметры. Такой подход заранее даст большее «пространство для маневра» и более рациональное решение. На практике старайтесь использовать запись (2). Она более проста для восприятия (не придется «переворачивать координаты Декарта), к тому же подавляющее количество заданий приспособлено именно под такую форму записи.

Построение кривой параболического типа

Используя распространенную форму записи, перед тем как построить параболу, требуется найти ее вершину. Проще говоря, необходимо выполнить следующий алгоритм:

  1. Найти координату вершину на оси X.
  2. Найти координату расположения вершины на оси Y.
  3. Подставляя разные значения зависимой переменной X, найти соответствующие значения Y и построить кривую.

Т.е. алгоритм не представляет собой ничего сложного, основной акцент делается на том, как найти вершину параболы. Дальнейший процесс построения можно считать механическим.

При условии, что даны три точки, координаты которых известны, прежде всего необходимо составить уравнение самой параболы, а потом повторить порядок действий, который был описан ранее. Т.к. в уравнении (2) присутствуют 3 коэффициента, то, используя координаты точек, вычислим каждое из них:

Как найти вершину параболы формула(5.1).

Как найти вершину параболы формула(5.2).

Как найти вершину параболы формула(5.3).

В формулах (5.1), (5.2), (5.3) применяются соответственно тех точек, которые известны (к примеру А (Как найти вершину параболы формула, BКак найти вершину параболы формула (, C (Как найти вершину параболы формула. Таким путем находим уравнение параболы по 3 точкам. С практической стороны такой подход не является самым «приятным», однако он дает четкий результат, на основе которого впоследствии строится сама кривая.

При построении параболы всегда должна присутствовать ось симметрии. Формула оси симметрии для записи (2) будет иметь такой вид:

Как найти вершину параболы формула(6).

Т.е. найти ось симметрии, которой симметричны все точки кривой, не составляет труда. Точнее, она равна первой координате вершины.

Наглядные примеры

Пример 1. Допустим, имеем уравнение параболы:

Как найти вершину параболы формула

Требуется найти координаты вершины параболы, а также проверить, принадлежит ли точка D (10; 5) данной кривой.

Решение: Прежде всего проверим принадлежность упомянутой точки самой кривой

Как найти вершину параболы формула

Как найти вершину параболы формула

Как найти вершину параболы формула

Откуда делаем вывод, что указанная точка не принадлежит заданной кривой. Найдем координаты вершины параболы. Из формул (4) и (5) получаем такую последовательность:

Как найти вершину параболы формула

Как найти вершину параболы формула

Получается, что координаты на вершине, в точке О, следующие (-1,25; -7,625). Это говорит о том, что наша парабола берет свое начало в 3-й четверти декартовой системы координат.

Пример 2. Найти вершину параболы, зная три точки, которые ей принадлежат: A (2;3), B (3;5), C (6;2). Используя формулы (5.1), (5.2), (5.3), найдем коэффициенты уравнения параболы. Получим следующее:

Как найти вершину параболы формула

Как найти вершину параболы формула

Как найти вершину параболы формула

Используя полученные значения, получим следующие уравнение:

Как найти вершину параболы формула

На рисунке заданная функция будет выглядеть следующим образом (рисунок 2):

Как найти вершину параболы формула

Рисунок 2. График параболы, проходящий через 3 точки

Т.е. график параболы, который проходит по трем заданным точкам, будет иметь вершину в 1-й четверти. Однако ветки данной кривой направлены вниз, т.е. имеется смещение параболы от начала координат. Такое построение можно было предвидеть, обратив внимание на коэффициенты a, b, c.

В частности, если a<0, то ветки» будут направлены вниз. При a>1 кривая будет растянута, а если меньше 1 – сжата.

Константа c отвечает за «движение» кривой вдоль оси ординат. Если c>0, то парабола «ползет» вверх, в противном случае – вниз. Относительно коэффициента b, то определить степень влияния можно лишь изменив форму записи уравнения, приведя ее к следующему виду:

Как найти вершину параболы формула

Если коэффициент b>0, то координаты вершины параболы будут смещены вправо на b единиц, если меньше – то на b единиц влево.

Важно! Использование приемов определения смещения параболы на координатной плоскости подчас помогает экономить время при решении задач либо узнать о возможном пересечении параболы с другой кривой еще до построения. Обычно смотрят только на коэффициент a, так как именно он дает четкий ответ на поставленный вопрос.

Полезное видео: как найти вершину параболы

 

Полезное видео: как легко составить уравнение параболы из графика

Вывод

Такой как алгебраический процесс, как определение вершин параболы, не является сложным, но при этом достаточно трудоемкий. На практике стараются использовать именно вторую форму записи с целью облегчения понимания графического решения и решения в целом. Поэтому настоятельно рекомендуем использовать именно такой подход, и если не помнить формулы координаты вершины, то хотя бы иметь шпаргалку.

uchim.guru

как найти координаты вершины параболы

Как найти координаты вершины параболы?Для этого нужно запомнить лишь одну формулу, которая является формулой корня квадратного уравнения при дискриминанте, равном нулю.Поскольку парабола является графиком квадратичной функции, то первую координату х вершины параболы можно найти по следующей формуле:

    \[x_0=-\frac{b}{2a}.\]

Чтобы найти вторую координату у нужно в формулу параболы значение x.Есть также другой способ вычисления ординаты у вершины параболы с помощью формулы:

    \[y_0=-\frac{D}{4a}=-\frac{b^2-4ac}{4a}.\]

Рассмотрим нахождение координат вершины параболы на примерах.

Пример 1.Найдем вершину параболы y=x^2-17x+13.

Решение.Найдем координату х вершины параболы:

    \[x_0=-\frac{b}{2a}=-\frac{-17}{2\cdot 1}=8,5.\]

Найдем координату у вершины параболы:

    \[y=x^2-17x+13={8,5}^2-17\cdot 8,5+13=72,25-144,5+13=\]

    \[=-59,25.\]

Следовательно, вершина параболы имеет координаты (8,5; —59,25).

Ответ. (8,5; —59,25) — вершина параболы y=x^2-17x+13.

Пример 2.Найдем вершину параболы y={0,7x}^2-3,9x+27,3.

Решение.Найдем координату х вершины параболы:

    \[x_0=-\frac{b}{2a}=-\frac{-3,9}{2\cdot 0,7}\approx 2,79.\]

Координата у вершины параболы:

    \[y=0,7x^2-3,9x+27,3\approx {0,7\cdot 2,79}^2-3,9\cdot 2,79+27,3\approx \]

    \[\approx 5,45-10,88+27,3=21,87.\]

Следовательно, вершина параболы имеет координаты (2,79; 21,87).

Ответ. (2,79; 21,87) — вершина параболы y={0,7x}^2-3,9x+27,3.

ru.solverbook.com

Найти координаты вершины параллелограмма | Треугольники

Как найти координаты 4-й вершины параллелограмма, зная координаты трёх других его вершин?

В декартовых координатах эту задачу можно решить, используя свойство диагоналей параллелограмма.

Из трёх известных вершин две являются концами одной диагонали. Находим координаты середины этой диагонали. Точка пересечения диагоналей является серединой каждой из них. Для второй диагонали находим второй конец по известным одному концу и середине.

Примеры.

1)

najti-koordinaty-vershiny-parallelogramma Дано: ABCD — параллелограмм,

A(-3;11), B(12;-4), C(1;-7)

Найти: D.

Решение:

najti-4-vershinu-parallelogramma1) Найдём координаты точки O — середины диагонали AC.

По формуле координат середины отрезка

    \[x_O = \frac{{x_A + x_C }}{2} = \frac{{ - 3 + 1}}{2} = - 1;\]

    \[y_O = \frac{{y_A + y_C }}{2} = \frac{{11 + ( - 7)}}{2} = 2.\]

То есть O(-1;2).

2) По свойству диагоналей параллелограмма, точка O также является серединой BD:

    \[x_O = \frac{{x_B + x_D }}{2}; - 1 = \frac{{12 + x_D }}{2};x_D = - 14;\]

    \[y_O = \frac{{y_B + y_D }}{2};2 = \frac{{ - 4 + y_D }}{2};y_D = 8.\]

Ответ: D (-14; 8).

2)

Дано: ABCD — параллелограмм,

B(7;4), C(-5;10), D(-1;-2)

Найти: A.

Решение:

1) Ищем координаты точки O — середины отрезка BD:

    \[x_O = \frac{{x_B + x_D }}{2};x_O = \frac{{7 + ( - 1)}}{2} = 3;\]

    \[y_O = \frac{{y_B + y_D }}{2};x_O = \frac{{4 + ( - 2)}}{2} = 1.\]

Итак, O (3;1).

2) Точка O также является серединой AC:

    \[x_O = \frac{{x_A + x_C }}{2};3 = \frac{{x_A + ( - 5)}}{2};x_A = 11;\]

    \[y_O = \frac{{y_A + y_C }}{2};1 = \frac{{y_A + 10}}{2};y_A = - 8.\]

Ответ: A (11;-8).

www.treugolniki.ru

Как найти высоту в трегольнике ...если даны координаты его вершин ?

Запишите уравнение стороны, на которую нужно опустить перпендикуляр в общем виде Ах+Ву+С=0. Если координаты третьей вершины (m;n), то уравнение высоты (x-m)/A=(y-n)/B. Длина высоты определяется, как расстояние от точки до прямой по формуле d=|A•m+B•n+C|/&#8730;(A&#178;+B&#178;). P.S. Если треугольник в пространстве, то решение значительно усложняется.

Не знаю.... =)))))))))

1. Составить уравнение той стороны, высоту опущенную на которую требуется найти. 2. Составить уравнение перпендикуляра к стороне по п. 1 через оставшуюся вершину с учетом углового коэффициента полученной стороны. 3. Решить совместно уравнения по п. 1 и п. 2 и найти координаты основания высоты. 4. Найти длину высоты. Все вопросы в агент.

1. Найти длину той стороны, высоту опущенную на которую требуется найти. 2. По известной формуле найти площадь треугольника. 3. Разделить площадь на длину стороны, умножить на два. Получите длину высоты.

touch.otvet.mail.ru