Укажите допустимые значения переменной в выражении. Как найти допустимые значения переменной


Допустимые значения переменных, входящих в дробное выражение.

Допустимые значения переменных,входящих в дробное выражение

Цели: формировать умение находить допустимые значения переменных, входящих в дробные выражения.

Ход урока

I. Организационный момент.

II. Устная работа.

– Подставьте вместо * какое-нибудь число и назовите полученную дробь:

а) ; б) ; в) ; г) ;

д) ; е) ; ж) ; з) .

III. Объяснение нового материала.

Объяснение нового материала происходит в т р и э т а п а:

1. Актуализация знаний учащихся.

2. Рассмотрение вопроса о том, всегда ли рациональная дробь имеет смысл.

3. Вывод правила нахождения допустимых значений переменных, входящих в рациональную дробь.

При актуализации знаний учащимся можно задать следующиев о п р о с ы:

– Какую дробь называют рациональной?

– Всякая ли дробь является дробным выражением?

– Как найти значение рациональной дроби при заданных значениях входящих в неё переменных?

Для выяснения вопроса о допустимых значениях переменных, входящих в рациональную дробь, можно предложить учащимся выполнить задание.

З а д а н и е. Найдите значение дроби при указанных значениях переменной:

при х = 4; 0; 1.

Выполняя данное задание, учащиеся понимают, что при х = 1 невозможно найти значение дроби. Это позволяет им сделать следующий в ы в о д: в рациональную дробь нельзя подставлять числа, которые обращают её знаменатель в нуль (этот вывод должен быть сформулирован и произнесён вслух самими учащимися).

После этого учитель сообщает учащимися, что все значения переменных, при которых рациональное выражение имеет смысл, называют допустимыми значениями переменных.

Далее ставится вопрос: как находить допустимые значения переменных? При поиске ответа на этот вопрос учащиеся должны сформулировать р я д в о п р о с о в:

1) Если выражение является целым, то все значения входящих в него переменных будут допустимыми.

2) Чтобы найти допустимые значения переменных дробного выражения, нужно проверить, при каких значениях знаменатель обращается в нуль. Найденные числа не будут являться допустимыми значениями.

IV. Формирование умений и навыков.

1. № 10, № 11.

Ответ на вопрос о допустимых значениях переменных, входящих в дробное выражение, может звучать по-разному. Например, рассматривая рациональную дробь , можно сказать, что допустимыми значениями переменной являются все числа, кроме х = 4, или что в допустимые значения переменной не входит число 4, то есть х ≠ 4.

И та и другая формулировки являются верными, главное – следить за правильностью оформления.

О б р а з е ц о ф о р м л е н и я:

№ 11.

г)

4х (х + 1) = 0

4х = 0 или

х = 0

х + 1 = 0

х = –1

О т в е т: х ≠ 0 и х ≠ 1 (или все числа, кроме 0 и –1).

2. № 13.

3. № 14 (а, в), № 15.

При выполнении этих заданий следует обратить внимание учащихся на необходимость учёта допустимых значений переменных.

№ 15.

г)

х (х + 3) = 0

х = 0 или

2х + 6 ≠ 0

х = –3 х ≠ –3

О т в е т: х = 0.

4. № 17.

Следить за обоснованием всех рассуждений.

В классе с высоким уровнем подготовки можно дополнительно выполнить № 18 и № 20.

№ 18.

Р е ш е н и е

а) .

Из всех дробей с одинаковым положительным числителем большей будет та, у которой знаменатель является наименьшим. То есть необходимо найти, при каком значении а выражение а2 + 5 принимает наименьшее значение.

Поскольку выражение а2 не может быть отрицательным ни при каких значениях а, то выражение а2 + 5 будет принимать наименьшее значение при а = 0.

О т в е т: а = 0.

б) .

Рассуждая аналогично, получим, что необходимо найти то значение а, при котором выражение (а – 3)2 + 1 принимает наименьшее значение.

О т в е т: а = 3.

№ 20.

Р е ш е н и е

.

Для ответа на вопрос предварительно нужно преобразовать выражение, стоящее в знаменателе дроби.

.

Дробь будет принимать наибольшее значение, если выражение (2х ++ у)2 + 9 принимает наименьшее значение. Поскольку (2х + у)2 не может принимать отрицательные значения, то наименьшее значение выражения (2х + у)2 + 9 равно 9.

Тогда значение исходной дроби равно = 2.

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Какие значения называются допустимыми значениями переменных, входящих в выражение?

– Каковы допустимые значения переменных целого выражения?

– Как найти допустимые значения переменных дробного выражения?

– Существуют ли рациональные дроби, для которых все значения переменных являются допустимыми? Приведите примеры таких дробей.

Домашнее задание: № 12, № 14 (б, г), № 212.

videouroki.net

Область допустимых значений

Область допустимых значений алгебраического выражения (сокращенно ОДЗ) - это множество значений переменной, при которых это выражение  определено.

В школьном курсе алгебры есть всего пять элементарных функций, которые имеют ограниченную область определения. Вот они:

1.    ОДЗ:

Выражение, стоящее под знаком корня четной кратности, должно быть больше или равно нулю.

2.          ОДЗ:

 

Выражение, стоящее в знаменателе дроби, не может быть равно нулю.

3.          ОДЗ:  

 

Выражение, стоящее под знаком логарифма, должно быть строго больше нуля; выражение, стоящее в основании логарифма  должно быть строго больше нуля и отлично от единицы.

4.  , ОДЗ:

5. Есть две функции, которые содержат "скрытую" дробь:

и

6.   ОДЗ:

Степень корня - натуральное число, отличное от 1.

Таким образом, функции  и имеют разную область определения.

 

Если выражение содержит одну или несколько функций, которые определены на ограниченном множестве значений аргумента, то для того, чтобы найти ОДЗ выражения, нужно учесть все ограничения, которые накладываются этими функциями.

Чтобы найти область допустимых значений выражения, нужно исследовать, присутствуют ли в выражении функции, которые я перечислила выше. И по мере обнаружения этих функций, записывать задаваемые ими ограничения, двигаясь "снаружи" "внутрь".

Поясню на примере:

Найти область определения функции:

 

Чтобы найти область определения функции, нужно найти область допустимых значений выражения, которое стоит в правой части уравнения функции

Я специально выбрала "страшную", на первый взгляд,  функцию, чтобы показать вам, на какие простые операции разбивается процесс нахождения области допустимых значений.

"Просканируем" выражение, стоящее в правой части равенства:

 

1. Мы видим дробь:

Знаменатель дроби не равен нулю. Записываем:

2. Мы видим в знаменателе логарифм:

Выражение, стоящее под знаком логарифма должно быть строго больше нуля; выражение, стоящее в основании логарифма  должно быть строго больше нуля и отлично от единицы.

Записываем:

 

3.Мы видим квадратный корень:

Выражение, стоящее под знаком корня четной кратности, должно быть больше или равно нулю.

Записываем:

Теперь запишем все ограничения в систему неравенств:

   

 

Решение этой системы неравенств посмотрите в ВИДЕУРОКЕ:

 

И.В. Фельдман, репетитор по математике

ege-ok.ru

как определять ОДЗ в примерах по матеше?

OДЗ - область допустимых значений Надо посмотреть на знаменатель, определить, при каких значениях переменной знаменатель обращается в нуль и написать, например х неравно (знаком) *, *

Это значения, в которых функция существует. То есть если функция корень из икс, то икс положителен, иначе функции не существует. Знаменатель дроби не должен обращаться в ноль. Тсходи из таких условий.

Область допустимых значений ( ОДЗ ). Областью допустимых значений ( ОДЗ ) алгебраического выражения называют множество всех допустимых совокупностей значений букв, вхходящих в это выражение. Решать уравнения можно по схеме: Найти ОДЗ, то есть решить соответствующие неравенства и выписать в явном виде, на каком числовом множестве имеет смысл данное уравнение. Решить уравнение с помощью тех или иных преобразований. Проверить, принадлежит ли корни данного уравнения ОДЗ . Рассмотрим примеры, в которых неоднозначно представлена ОДЗ Пример 1. Решите уравнение $$ \sqrt { - x^5 + x^2 + 1} = x + 1$$ Решение: ОДЗ определяется из условия: $$ - x^5 + x^2 + 1 \ge 0 \Leftrightarrow x^5 - x^2 - 1 \le 0$$. Такое неравенство можно решать только приближенно. Поэтому не определяя ОДЗ начнем решать иначе: $$ \sqrt { - x^5 + x^2 + 1} = x + 1 \Leftrightarrow \left\{ \begin{array}{l} - x^5 + x^2 + 1 = \left( {x + 1} \right)^2 , \\ x + 1 \ge 0 \\ \end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l} x^5 + 2x = 0, \\ x \ge - 1 \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x\left( {x^4 + 2} \right) = 0, \\ x \ge - 1 \\ \end{array} \right. $$ Ответ: 0 Замечание: Иногда найти ОДЗ труднее, чем решить уравнение, а может быть, и вовсе невозможно. Решение уравнение было возможно без нахождения ОДЗ и корень уравнения проверяется простой подстановкой. Пример 2. Решите уравнение $$ \sqrt {2x - 1} = - x $$ Решение: ОДЗ получим из $$ 2x - 1 \ge 0 \Rightarrow x \ge \frac{1}{2}$$ . Возведя обе части уравнения в квадрат получим ход решения: $$ \sqrt {2x - 1} = - x \Leftrightarrow 2x - 1 = x^2 \Leftrightarrow x^2 - 2x + 1 = 0 \Rightarrow x = 1$$. Полученный корень входитв ОДЗ уравнения, но припроверке устанавливается, что это число не является корнем данного уравнеия. Ответ: нет коней Замечание: То, что найденные корни входят в ОДЗ, вовсе не гарантирует, что они удовлетворяют исходному уравнению, даже если все преобразования выполнены верно. Нахождение ОДЗ в решении было не безполезно. Если изменить рассуждения, то получим: поскольку $$2x - 1 \ge 0 \Leftrightarrow - x \le - \frac{1}{2} < 0 \Rightarrow \sqrt {2x - 1} < 0$$ , что противоречит определению арифметического квадратного корня. Пример 3 . Решите уравнение $$ \sqrt {5 - x} = \sqrt[4]{{x - 5}} + \lg \left( {x - 3} \right)$$ Решение: ОДЗ данного уравнения определяется условиями $$ \left\{ \begin{array}{l} x \ge 5 \\ x \le 5 \\ x > 3 \\ \end{array} \right.\quad \Leftrightarrow x = 5 $$ . Проверка показывает, что x = 5 корень уравнения. Ответ: 5 Замечание: Иногда использование ОДЗ полезно, поскольку дает возможностьбыстро решать уравнение. В этом примере решение было получено толбко из определения ОДЗ .

ОДЗ - это значение неизвестного, при котором выражение имеет смысл. Например, если в выражение Vx, то ОДЗ будет следующим x >= 0, т. к. квадратный корень можно взять из положительного числа. Если в выражении фигурируют несколько функций ограничивающих ОДЗ, то ОДЗ выражения будет множество, на котором имеют смысл все функции.

Помогите пожалуйста тесты решить <img src="//otvet.imgsmail.ru/download/253239153_595c98de461aa906e25d11d0968dab47_120x120.jpg" data-hsrc="//otvet.imgsmail.ru/download/253239153_595c98de461aa906e25d11d0968dab47_800.jpg"><img src="//otvet.imgsmail.ru/download/253239153_af28b3830bf520156f07744fc4a87f69_120x120.jpg" data-hsrc="//otvet.imgsmail.ru/download/253239153_af28b3830bf520156f07744fc4a87f69_800.jpg">

touch.otvet.mail.ru

Укажите допустимые значения переменной в выражении

Правильный тетраэдр — это правильная треугольная пирамида у которой все грани являются равносторонними треугольниками. S — Площадь поверхности правильного тетраэдра. V — объем h — высота. Найдите площадь поверхности треугольной пирамиды, у которой каждое ребро равно v3. Решение.

Область допустимых значений (ОДЗ), теория, примеры, решения

Каждому выражению с переменными соответствует область допустимых значений (ОДЗ) переменных, которую ОБЯЗАТЕЛЬНО нужно учитывать при работе с этим выражением. Акцент на слове «обязательно» сделан не случайно: при решении примеров и задач халатное отношение к ОДЗ может привести к получению неверных результатов.

Чтобы у нас не возникало подобных проблем, давайте внимательно изучим все, что связано с ОДЗ. Для начала узнаем, что это такое, после этого разберем на характерных примерах, как найти ОДЗ переменных для заданного выражения, а в заключение остановимся на важности учета ОДЗ при преобразовании выражений.

Навигация по странице.

Допустимые и недопустимые значения переменных

Определение области Допустимых значений переменных для выражения дается через термин допустимые значения переменной. Введем это вспомогательное определение, для чего проследим, что нас приводит к нему.

На уроках математики в школе вплоть до 7 класса познаются азы работы преимущественно с числами и числовыми выражениями. А с 7 класса начинается изучение такой математической дисциплины как алгебра, и начинается оно с того, что вводится определение выражения с переменными, а также связанное с ним определение значения выражения при выбранных значениях переменных.

Последнее определение нуждается в уточнении следующего плана. Существуют выражения, значения которых при некоторых выбранных значениях переменных вычислить невозможно. Например, невозможно вычислить значение выражения 1:a при a=0 , так как делить на нуль нельзя. Это послужило причиной введения в обиход терминов «выражение, имеющее смысл при данных значениях переменных» и «выражение, не имеющее смысла при данных значениях переменных». Говорят, что

Выражение с переменными имеет смысл при данных значениях переменных, если при этих значениях переменных можно вычислить его значение

Выражение с переменными не имеет смысла при данных значениях переменных, если при этих значениях переменных нельзя вычислить его значение.

Вот теперь мы обладаем всеми сведениями, позволяющими дать определение допустимых и недопустимых значений переменных:

Допустимые значения переменных – это такие значения переменных, при которых выражение имеет смысл. А значения переменных, при которых выражение не имеет смысла, называют Недопустимыми значениями переменных.

Определения, озвученные в этом пункте, полностью согласуются с информацией из учебников [1, с. 6; 2, с. 11-12; 3, c. 4] .

Что такое ОДЗ?

Практически у всех, так или иначе имеющих отношение к алгебре, на слуху словосочетание «область допустимых значений», также довольно часто аббревиатуру ОДЗ можно встретить в описаниях решений, но как такового определения области допустимых значений (ОДЗ) нет в основных учебниках, используемых в школе. Поэтому интересно, откуда берет начало этот термин. Ну а с позиций практики интереснее знать, какой смысл в него вкладывают.

Под Областью допустимых значений (ОДЗ) понимают множество всех допустимых значений переменных для данного выражения.

Завершить этот пункт хочется разговором про область допустимых значений и область определения. Часто между этими терминами стирают различия. Например, говорят про область определения выражения [4, с. 87] , под которой фактически понимают ОДЗ переменных этого выражения. Также можно столкнуться с областью определения уравнения или неравенства [5, с. 204, 220; 6, с. 188, 190] , под ней подразумевают ОДЗ переменных, на которой одновременно имеют смысл обе части уравнения или неравенства. Как тут не спутать одно с другим? Давайте будем придерживаться следующего подхода: к функциям относить область определения функции, а к выражениям – ОДЗ переменных. И на загладку приведем такое утверждение: область определения функции y=f(x) совпадает с областью допустимых значений переменной x для выражения f(x) .

Как найти ОДЗ? Примеры, решения

Прежде чем обратиться к главной теме этого пункта, нужно понимать, что значит найти ОДЗ, хотя это достаточно отчетливо ясно из определения. Это значит, что надо указать множество всех допустимых значений переменных для заданного выражения. На это можно посмотреть и с другой стороны: найти ОДЗ – это значит указать условия, которые исключают те и только те значения переменных, при которых выражение не имеет смысла. Теперь можно двигаться дальше.

Заданий с формулировкой «найти ОДЗ» не так много. Однако почти постоянно приходится преобразовывать выражения, а это неявно требует нахождения области допустимых значений для ее контроля. В этом свете вопрос, как найти ОДЗ, очень злободневен.

В поисках ответа на него поразмыслим, значения каких выражений мы не можем вычислить.

    Во-первых, мы не можем вычислить значение выражения, в котором присутствует деление на нуль (или дробь со знаменателем нуль, что по сути то же самое), так как этому действию мы не придали смысла. Во-вторых, мы не можем извлечь квадратный корень из отрицательного числа, как и корень другой четной степени, о чем мы говорим когда вводили корень из числа. Здесь же заметим, что показателями корня могут быть лишь числа 2 , 3 , 4 , и так далее, значит, значения выражений с корнями, имеющими другие показатели, мы тоже не можем вычислить. В-третьих, вспомним про степень числа. Если степень числа с положительным целым показателем мы определили для любого действительного числа, то степень с целым отрицательным показателем мы определили уже с ограничением: для любого действительного числа, кроме числа нуль. Степени с положительным нецелым показателем мы придали смысл лишь для неотрицательных чисел, а с отрицательным нецелым показателем – лишь для положительных чисел. А еще мы не можем вычислить нуль в степени нуль. В-четвертых, обратим внимание на логарифм числа. Его мы определили так, что не придали смысла логарифму отрицательного числа и числа нуль по любому основанию, а также логарифму положительного числа по отрицательному основанию и по основанию 1 . В-шестых, мы не можем найти значение арксинуса и арккосинуса числа, выходящего за рамки числового промежутка [−1, 1] в силу того, что мы так определили arcsin и arccos (см. статью arcsin, arccos, arctg, arcctg: определения, примеры).

Что нам это дает? А то, что перечисленные выше моменты и нужно учитывать при поиске ОДЗ. Как это делать, станет понятно из следующих примеров.

Укажите все допустимые значения переменных для выражения x 3 +2·x·y−4 .

Возвести в куб мы можем любое число, также мы умеем умножать любые числа, как и складывать и вычитать. Поэтому, мы можем вычислить значение заданного выражения при любых значениях переменных x и y. А это значит, что выражение x 3 +2·x·y−4 имеет смысл при любых значениях входящих в него переменных. Поэтому, ОДЗ переменных x и y для этого выражения – это множество всех таких пар (x, y) , где x – любое число и y – любое число.

(x, y) , где x – любое, y — любое.

Мы видим, что данное выражение содержит дробь с нулем в знаменателе. А это значит, что ни при каком значении переменной x мы не сможем вычислить значение этого выражения, так как оно будет содержать деление на нуль. Вывод: это выражение не определено ни при каких значениях переменной x. Другими словами, ОДЗ переменной x для этого выражения есть пустое множество.

Здесь нас настораживает присутствие квадратного корня. Чтобы избежать появления под корнем отрицательного числа, надо для переменных x и y потребовать выполнение условия x+2·y+3≥0 . Оно и задает искомую область допустимых значений.

Множество всех пар (x, y) , для которых x+2·y+3≥0 .

В более сложных случаях приходится учитывать одновременно несколько условий из приведенного выше списка. Это дает системы неравенств, задающие ОДЗ.

Здесь лишь заметим, что во многих случаях на практике нет необходимости в решении составленных систем.

В заключении остается сказать, что такой подход используется и тогда, когда нужно найти область определения функции.

Почему важно учитывать ОДЗ при проведении преобразований?

Решая различные задачи, нам очень часто приходится проводить тождественные преобразования выражений. Но бывает, что какое-то преобразование в одних случаях допустимо, а в других – нет. Существенную помощь в плане контроля допустимости проводимых преобразований оказывает ОДЗ. Остановимся на этом подробнее.

Суть подхода состоит в следующем: сравниваются ОДЗ переменных для исходного выражения с ОДЗ переменных для выражения, полученного в результате выполнения тождественных преобразований, и на основании результатов сравнения делаются соответствующие выводы.

Вообще, тождественные преобразования могут

    не влиять на ОДЗ; приводить к расширению ОДЗ; приводить к сужению ОДЗ.

Давайте поясним каждый случай примером.

Рассмотрим выражение x 2 +x+3·x, ОДЗ переменной x для этого выражения есть множество R. Теперь проделаем с этим выражением следующее тождественное преобразование – приведем подобные слагаемые, в результате оно примет вид x 2 +4·x. Очевидно, ОДЗ переменной x этого выражения тоже является множество R. Таким образом, проведенное преобразование не изменило ОДЗ.

Переходим дальше. Возьмем выражение x+3/x−3/x. В этом случае ОДЗ определяется условием x≠0 , которое отвечает множеству (−∞, 0)∪(0, +∞) . Это выражение тоже содержит подобные слагаемые, после приведения которых приходим к выражению x, для которого ОДЗ есть R. Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

При преобразовании выражений Надо строго избегать преобразований, сужающих ОДЗ. Почему? Для пояснения приведем пример.

Так что Надо придерживаться таких тождественных преобразований выражения, которые не изменяют ОДЗ.

А как быть с преобразованиями выражений, при которых расширяется ОДЗ? Их можно проводить, но при этом стоит придерживаться такого взгляда: полученное в результате преобразования выражение рассматривать на ОДЗ переменных исходного выражения.

Еще пример. При замене суммы логарифмов lnx+ln(x+3) логарифмом произведения ln(x·(x+3)) (см. свойства логарифмов) происходит расширение ОДЗ с (0, +∞) до (−∞, −3)∪(0, +∞) . Поэтому с полученным выражением ln(x·(x+3)) дальше стоит работать на ОДЗ переменной x исходного выражения, то есть, на множестве (0, +∞) .

Итак, на каждом шаге преобразования выражения постоянно спрашивайте себя: «Не изменяет ли это преобразование ОДЗ»? Если не изменяет, то выполняйте его. Если сужает, то откажитесь от него. А если расширяет, то выполняйте его, но оставайтесь в рамках ОДЗ переменных для исходного выражения.

Укажите допустимые значения переменной в выражении

Область допустимых значений (ОДЗ), теория, примеры, решения

Каждому выражению с переменными соответствует область допустимых значений (ОДЗ) переменных, которую ОБЯЗАТЕЛЬНО нужно учитывать при работе с этим выражением. Акцент на слове «обязательно» сделан не случайно: при решении примеров и задач халатное отношение к ОДЗ может привести к получению неверных результатов.

Чтобы у нас не возникало подобных проблем, давайте внимательно изучим все, что связано с ОДЗ. Для начала узнаем, что это такое, после этого разберем на характерных примерах, как найти ОДЗ переменных для заданного выражения, а в заключение остановимся на важности учета ОДЗ при преобразовании выражений.

Навигация по странице.

Допустимые и недопустимые значения переменных

Определение области Допустимых значений переменных для выражения дается через термин допустимые значения переменной. Введем это вспомогательное определение, для чего проследим, что нас приводит к нему.

На уроках математики в школе вплоть до 7 класса познаются азы работы преимущественно с числами и числовыми выражениями. А с 7 класса начинается изучение такой математической дисциплины как алгебра, и начинается оно с того, что вводится определение выражения с переменными, а также связанное с ним определение значения выражения при выбранных значениях переменных.

Последнее определение нуждается в уточнении следующего плана. Существуют выражения, значения которых при некоторых выбранных значениях переменных вычислить невозможно. Например, невозможно вычислить значение выражения 1:a при a=0 , так как делить на нуль нельзя. Это послужило причиной введения в обиход терминов «выражение, имеющее смысл при данных значениях переменных» и «выражение, не имеющее смысла при данных значениях переменных». Говорят, что

Выражение с переменными имеет смысл при данных значениях переменных, если при этих значениях переменных можно вычислить его значение

Выражение с переменными не имеет смысла при данных значениях переменных, если при этих значениях переменных нельзя вычислить его значение.

Вот теперь мы обладаем всеми сведениями, позволяющими дать определение допустимых и недопустимых значений переменных:

Допустимые значения переменных – это такие значения переменных, при которых выражение имеет смысл. А значения переменных, при которых выражение не имеет смысла, называют Недопустимыми значениями переменных.

Определения, озвученные в этом пункте, полностью согласуются с информацией из учебников [1, с. 6; 2, с. 11-12; 3, c. 4] .

Что такое ОДЗ?

Практически у всех, так или иначе имеющих отношение к алгебре, на слуху словосочетание «область допустимых значений», также довольно часто аббревиатуру ОДЗ можно встретить в описаниях решений, но как такового определения области допустимых значений (ОДЗ) нет в основных учебниках, используемых в школе. Поэтому интересно, откуда берет начало этот термин. Ну а с позиций практики интереснее знать, какой смысл в него вкладывают.

Под Областью допустимых значений (ОДЗ) понимают множество всех допустимых значений переменных для данного выражения.

Завершить этот пункт хочется разговором про область допустимых значений и область определения. Часто между этими терминами стирают различия. Например, говорят про область определения выражения [4, с. 87] , под которой фактически понимают ОДЗ переменных этого выражения. Также можно столкнуться с областью определения уравнения или неравенства [5, с. 204, 220; 6, с. 188, 190] , под ней подразумевают ОДЗ переменных, на которой одновременно имеют смысл обе части уравнения или неравенства. Как тут не спутать одно с другим? Давайте будем придерживаться следующего подхода: к функциям относить область определения функции, а к выражениям – ОДЗ переменных. И на загладку приведем такое утверждение: область определения функции y=f(x) совпадает с областью допустимых значений переменной x для выражения f(x) .

Как найти ОДЗ? Примеры, решения

Прежде чем обратиться к главной теме этого пункта, нужно понимать, что значит найти ОДЗ, хотя это достаточно отчетливо ясно из определения. Это значит, что надо указать множество всех допустимых значений переменных для заданного выражения. На это можно посмотреть и с другой стороны: найти ОДЗ – это значит указать условия, которые исключают те и только те значения переменных, при которых выражение не имеет смысла. Теперь можно двигаться дальше.

Заданий с формулировкой «найти ОДЗ» не так много. Однако почти постоянно приходится преобразовывать выражения, а это неявно требует нахождения области допустимых значений для ее контроля. В этом свете вопрос, как найти ОДЗ, очень злободневен.

В поисках ответа на него поразмыслим, значения каких выражений мы не можем вычислить.

    Во-первых, мы не можем вычислить значение выражения, в котором присутствует деление на нуль (или дробь со знаменателем нуль, что по сути то же самое), так как этому действию мы не придали смысла. Во-вторых, мы не можем извлечь квадратный корень из отрицательного числа, как и корень другой четной степени, о чем мы говорим когда вводили корень из числа. Здесь же заметим, что показателями корня могут быть лишь числа 2 , 3 , 4 , и так далее, значит, значения выражений с корнями, имеющими другие показатели, мы тоже не можем вычислить. В-третьих, вспомним про степень числа. Если степень числа с положительным целым показателем мы определили для любого действительного числа, то степень с целым отрицательным показателем мы определили уже с ограничением: для любого действительного числа, кроме числа нуль. Степени с положительным нецелым показателем мы придали смысл лишь для неотрицательных чисел, а с отрицательным нецелым показателем – лишь для положительных чисел. А еще мы не можем вычислить нуль в степени нуль. В-четвертых, обратим внимание на логарифм числа. Его мы определили так, что не придали смысла логарифму отрицательного числа и числа нуль по любому основанию, а также логарифму положительного числа по отрицательному основанию и по основанию 1 . В-шестых, мы не можем найти значение арксинуса и арккосинуса числа, выходящего за рамки числового промежутка [−1, 1] в силу того, что мы так определили arcsin и arccos (см. статью arcsin, arccos, arctg, arcctg: определения, примеры).

Что нам это дает? А то, что перечисленные выше моменты и нужно учитывать при поиске ОДЗ. Как это делать, станет понятно из следующих примеров.

Укажите все допустимые значения переменных для выражения x 3 +2·x·y−4 .

Возвести в куб мы можем любое число, также мы умеем умножать любые числа, как и складывать и вычитать. Поэтому, мы можем вычислить значение заданного выражения при любых значениях переменных x и y. А это значит, что выражение x 3 +2·x·y−4 имеет смысл при любых значениях входящих в него переменных. Поэтому, ОДЗ переменных x и y для этого выражения – это множество всех таких пар (x, y) , где x – любое число и y – любое число.

(x, y) , где x – любое, y — любое.

Мы видим, что данное выражение содержит дробь с нулем в знаменателе. А это значит, что ни при каком значении переменной x мы не сможем вычислить значение этого выражения, так как оно будет содержать деление на нуль. Вывод: это выражение не определено ни при каких значениях переменной x. Другими словами, ОДЗ переменной x для этого выражения есть пустое множество.

Здесь нас настораживает присутствие квадратного корня. Чтобы избежать появления под корнем отрицательного числа, надо для переменных x и y потребовать выполнение условия x+2·y+3≥0 . Оно и задает искомую область допустимых значений.

Множество всех пар (x, y) , для которых x+2·y+3≥0 .

В более сложных случаях приходится учитывать одновременно несколько условий из приведенного выше списка. Это дает системы неравенств, задающие ОДЗ.

Здесь лишь заметим, что во многих случаях на практике нет необходимости в решении составленных систем.

В заключении остается сказать, что такой подход используется и тогда, когда нужно найти область определения функции.

Почему важно учитывать ОДЗ при проведении преобразований?

Решая различные задачи, нам очень часто приходится проводить тождественные преобразования выражений. Но бывает, что какое-то преобразование в одних случаях допустимо, а в других – нет. Существенную помощь в плане контроля допустимости проводимых преобразований оказывает ОДЗ. Остановимся на этом подробнее.

Суть подхода состоит в следующем: сравниваются ОДЗ переменных для исходного выражения с ОДЗ переменных для выражения, полученного в результате выполнения тождественных преобразований, и на основании результатов сравнения делаются соответствующие выводы.

Вообще, тождественные преобразования могут

    не влиять на ОДЗ; приводить к расширению ОДЗ; приводить к сужению ОДЗ.

Давайте поясним каждый случай примером.

Рассмотрим выражение x 2 +x+3·x, ОДЗ переменной x для этого выражения есть множество R. Теперь проделаем с этим выражением следующее тождественное преобразование – приведем подобные слагаемые, в результате оно примет вид x 2 +4·x. Очевидно, ОДЗ переменной x этого выражения тоже является множество R. Таким образом, проведенное преобразование не изменило ОДЗ.

Переходим дальше. Возьмем выражение x+3/x−3/x. В этом случае ОДЗ определяется условием x≠0 , которое отвечает множеству (−∞, 0)∪(0, +∞) . Это выражение тоже содержит подобные слагаемые, после приведения которых приходим к выражению x, для которого ОДЗ есть R. Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

При преобразовании выражений Надо строго избегать преобразований, сужающих ОДЗ. Почему? Для пояснения приведем пример.

Так что Надо придерживаться таких тождественных преобразований выражения, которые не изменяют ОДЗ.

А как быть с преобразованиями выражений, при которых расширяется ОДЗ? Их можно проводить, но при этом стоит придерживаться такого взгляда: полученное в результате преобразования выражение рассматривать на ОДЗ переменных исходного выражения.

Еще пример. При замене суммы логарифмов lnx+ln(x+3) логарифмом произведения ln(x·(x+3)) (см. свойства логарифмов) происходит расширение ОДЗ с (0, +∞) до (−∞, −3)∪(0, +∞) . Поэтому с полученным выражением ln(x·(x+3)) дальше стоит работать на ОДЗ переменной x исходного выражения, то есть, на множестве (0, +∞) .

Итак, на каждом шаге преобразования выражения постоянно спрашивайте себя: «Не изменяет ли это преобразование ОДЗ»? Если не изменяет, то выполняйте его. Если сужает, то откажитесь от него. А если расширяет, то выполняйте его, но оставайтесь в рамках ОДЗ переменных для исходного выражения.

Укажите допустимые значения переменной в выражении

Укажите допустимые значения переменной в выражении

Поставил 25 баллов

    Попроси больше объяснений Следить Отметить нарушение

Verhanov 14.02.2016

Ответы и объяснения

    Комментарии (1) Отметить нарушение

Допустимы значения, это значения при которых уравнение имеет смысл, то есть например что бы в дробном уравнение не получился знаменатель равный 0.

То есть, икс может быть любым числом, кроме 6.

Ответ: При любом значении кроме x=6 , выражение имеет смысл

Тоже самое здесь:

Ответ : При любом значении кроме х=-5, выражение имеет смысл

poiskvstavropole.ru

Ответы@Mail.Ru: Как найти область допустимых значений переменных? 1 - числитель (х+5)(х-4)

Найти нули знаменателя!!! И все числа, кроме этих нулей, являются значениями!!!!

в дробях проверяется только знаменатель, то есть приравниваешь его к 0 и решаешь уравнение: (х+5)(х-4)=0 решение: (х+5)=0 или (х-4)=0 х= -5 х=4 значит область допустимых значений переменных все числа кроме 4 и -5

одз (х+5)(х-4)не равно нулю х не равно -5 х не равно 4 одз (-бесконечность; -5)U(-5;4)U(4;+бесконечность)

одз не равен -5, и 4

Друзья заходите зарабытывайте <a rel="nofollow" href="http://otzovik.com/?r=1103607" target="_blank">http://otzovik.com/?r=1103607</a> наздоровья

touch.otvet.mail.ru