Пружины, пружины на заказ от производителя. Формула жесткости пружины через длину и массу


Формула жесткости пружины, как найти коэффициент через массу и длину

Формула жесткости пружины – едва ли не самый важный момент в теме об этих упругих элементах. Ведь именно жесткость играет очень важную роль в том, благодаря чему эти комплектующие используются так широко.

Сегодня без пружин не обходится практически ни одна отрасль промышленности, они используются в приборо- и станкостроении, сельском хозяйстве, производстве горно-шахтного и железнодорожного оборудования, энергетике, других отраслях. Они верой и правдой служат в самых ответственных и критических местах различных агрегатов, где требуются присущие им характеристики, в первую очередь жесткость пружины, формула которой в общем виде очень проста и знакома детям еще со школы.

Особенности работы

Любая пружина представляет собой упругое изделие, которое в процессе эксплуатации подвергается статическим, динамическим и циклическим нагрузкам. Основная особенность этой детали – она деформируется под приложенным извне усилием, а когда воздействие прекращается – восстанавливает свою первоначальную форму и геометрические размеры. В период деформации происходит накопление энергии, при восстановлении – ее передача.

Именно это свойство возвращаться к исходному виду и принесло широкое распространение этим деталям: они отличные амортизаторы, элементы клапанов, предупреждающие превышение давления, комплектующие для измерительных приборов. В этих и других ситуациях, благодаря умению упруго деформироваться, они выполняют важную работу, поэтому от них требуется высокое качество и надежность.

Виды пружин

Видов этих деталей существует много, самыми распространенными являются пружины растяжения и сжатия.

  • Первые из них без нагрузки имеют нулевой шаг, то есть виток соприкасается с витком. В процессе деформации они растягиваются, их длина увеличивается. Прекращение нагрузки сопровождается возвращением в первоначальную форму – опять витком к витку.
  • Вторые – наоборот, изначально навиваются с определенным шагом между витками, под нагрузкой сжимаются. Соприкосновение витков является естественным ограничителем для продолжения воздействия.

Изначально именно для пружины растяжения было найдено соотношение массы подвешенного на ней груза и изменения ее геометрического размера, которое и стало основой для формулы жесткости пружины через массу и длину.

Какие еще бывают виды пружин

Зависимость деформации от прилагаемой внешней силы справедлива и для других видов упругих деталей: кручения, изгиба, тарельчатых, других. Не важно, в какой плоскости к ним прилагаются усилия: в той, где расположена осевая линия, или перпендикулярной к ней, производимая деформация пропорциональна усилию, под воздействием которого она произошла.

Основные характеристики

Независимо от вида пружин, особенности их работы, связанные с постоянно деформацией, требуют наличия таких параметров:

  • Способности сохранять постоянное значение упругости в течение заданного срока.
  • Пластичности.
  • Релаксационной стойкости, благодаря которой деформации не становятся необратимыми.
  • Прочности, то есть способности выдерживать различные виды нагрузок: статические, динамические, ударные.

Каждая из этих характеристик важна, однако при выборе упругой комплектующей для конкретной работы в первую очередь интересуются ее жесткостью как важным показателем того, подойдет ли она для этого дела и насколько долго будет работать.

Что такое жесткость

Жесткость – это характеристика детали, которая показывает, просто или легко будет ее сжать, насколько большую силу нужно для этого приложить. Оказывается, что возникающая под нагрузкой деформация тем больше, чем больше прилагаемая сила (ведь возникающая в противовес ей сила упругости по модулю имеет то же значение). Потому определить степень деформации можно, зная силу упругости (прилагаемое усилие) и наоборот, зная необходимую деформацию, можно вычислить, какое требуется усилие.

Физические основы понятия жесткость/упругость

Сила, воздействуя на пружину, изменяет ее форму. Например, пружины растяжения/сжатия под влиянием внешнего воздействия укорачиваются или удлиняются. Согласно закону Гука (так называется позволяющая рассчитать коэффициент жесткости пружины формула), сила и деформация между собой пропорциональны в пределах упругости конкретного вещества. В противодействие приложенной извне нагрузке возникает сила, такая же по величине и противоположная по знаку, которая направлена на восстановление исходных размеров детали и ее форму.

Природа этой силы упругости – электромагнитная, возникает она как следствие особого взаимодействии между структурными элементами (молекулами и атомами) материала, из которого изготовлена данная деталь. Таким образом, чем жесткость больше, то есть чем труднее упругую деталь растянуть/сжать, тем больше коэффициент упругости. Этот показатель используется, в частности, при выборе определенного материала для изготовления пружин для использования в различных ситуациях.

Как появился первый вариант формулы

Формула для расчета жесткости пружины, которая получила название закона Гука, была установлена экспериментально. В процессе опытов с подвешенными на упругом элементе грузами разной массы замерялась величина его растяжения. Так и выяснилось, что одна и та же испытуемая деталь под разными нагрузками претерпевает различные деформации. Причем подвешивание определенного количества гирек, одинаковых по массе, показало, что каждая добавленная/снятая гирька увеличивает/уменьшает длину упругого элемента на одинаковую величину.

В итоге этих экспериментов появилась такая формула: kx=mg, где k – некий постоянный для данной пружины коэффициент, x – изменение длины пружины, m – ее масса, а g – ускорение свободного падения (примерное значение – 9,8 м/с²).

Так было открыто свойство жесткости, которое, как и формула для определения коэффициента упругости, находит самое широкое применение в любой отрасли промышленности.

Формула определения жесткости

Изучаемая современными школьниками формула, как найти коэффициент жесткости пружины, представляет собой соотношение силы и величины, показывающей изменение длины пружины в зависимости от величины данного воздействия (или 

равной ему по модулю силы упругости). Выглядит эта формула так: F = –kx. Из этой формулы коэффициент жесткости упругого элемента равен отношению силы упругости к изменению его длины. В международной системе единиц физических величин СИ он измеряется в ньютонах на метр (Н/м).

Другой вариант записи формулы: коэффициент Юнга

Деформация растяжения/сжатия в физике также может описываться несколько видоизмененным законом Гука. Формула включает значения относительной деформации (отношения изменения длины к ее начальному значению) и напряжения (отношения силы к площади поперечного сечения детали). Относительная деформация и напряжение по этой формуле пропорциональны, а коэффициент пропорциональности – величина, обратная модулю Юнга.

Модуль Юнга интересен тем, что определяется исключительно свойствами материала, и никак не зависит ни от формы детали, ни от ее размеров.

К примеру, модуль Юнга для ста

ли примерно равен единице с одиннадцатью нулями (единица измерения – Н/кв. м).

Смысл понятия коэффициент жесткости

Коэффициент жесткости – коэффициент пропорциональности из закона Гука. Еще он с полным правом называется коэффициентом упругости.

Фактически он показывает величину силы, которая должна быть приложена к упругому элементу, чтобы изменить его длину на единицу (в используемой системе измерений).

Значение этого параметра зависит от нескольких факторов, которыми характеризуется пружина:

  • Материала, используемого при ее изготовлении.
  • Формы и конструктивных особенностей.
  • Геометрических размеров.

По этому показателю можно сд

елать вывод, насколько изделие устойчиво к воздействию нагрузок, то есть каким будет его сопротивление при приложении внешнего воздействия.

Особенности расчета пружин

Показывающая, как найти жесткость пружины, формула, наверное, одна из наиболее используемых современными конструкторами. Ведь применение эти упругие детали находят практически везде, то есть требуется просчитывать их поведение и выбирать те из них, которые будут идеально справляться с возложенными обязанностями.

Закон Гука весьма упрощенно показывает зависимость деформации упругой детали от прилагаемого усилия, инженерами используются более точные формулы расчета коэффициента жесткости, учитывающие все особенности происходящего процесса.

Например:

  • Цилиндрическую витую пружину современная инженерия рассматривает как спираль из проволоки с круглым сечением, а ее деформация под воздействием существующих в системе сил представляется совокупностью элементарных сдвигов.
  • При деформации изгиба в качестве деформации рассматривается прогиб стержня, расположенного концами на опорах.

Особенности расчета жесткости соединений пружин

Важный моментом является расчет нескольких упругих элементов, соединенных последовательно или параллельно.

При параллельном расположении нескольких деталей общая жесткость этой системы определяется простой суммой коэффициентов отдельных комплектующих. Как нетрудно заметить, жесткость системы больше, чем отдельной детали.

При последовательном расположении формула более сложная: величина, обратная суммарной жесткости, равна сумме величин, обратных к жесткости каждой комплектующей. В этом варианте сумма меньше слагаемых.

Используя эти зависимости, легко определиться с правильным выбором упругих комплектующих для конкретного случая.

kurskmk.com

Жесткость пружины - коэффициент жесткости

I. Жесткость пружины

Что такое жесткость пружины?Одним из важнейших параметров, относящимся к упругим изделиям из металла разного назначения, является жесткость пружины. Она подразумевает, насколько пружина будет устойчива к воздействию других тел и насколько сильно сопротивляется им при воздействии. Силе сопротивления равен коэффициент жесткости пружины.

На что влияет этот показатель?Пружина – это достаточно упругое изделие, обеспечивающее передачу поступательных вращательных движений тем приборам и механизмам, в которых она находится. Надо сказать, что встретить пружину можно повсеместно, каждый третий механизм в доме оснащен пружиной, не говоря уже о количестве этих упругих элементов в приборах на производстве. При этом надежность функционирования этих приборов будет определяться степенью жесткости пружины. Эта величина, называемая коэффициентом жесткости пружины, зависит от усилия, которое нужно приложить, чтобы сжать или растянуть пружину. Распрямление пружины до исходного состояния определяется тем металлом, из которого она изготовлена, но не степенью жесткости.

От чего зависит данный показатель?Такой простой элемент, как пружина, обладает массой разновидностей в зависимости от степени назначения. По способу передачи деформации механизму и форме выделяют спиральные, конические, цилиндрические и другие. Поэтому жесткость конкретного изделия определяется также и способом передачи деформации. Деформационная характеристика будет разделять пружинные изделия на пружины кручения, сжатия, изгиба и растяжения.

При использовании в приборе сразу двух пружин, степень их жесткости будет зависеть от способа крепления – при параллельном соединении в приборе жесткость пружин будет увеличиваться, а при последовательном – уменьшаться.

II. Коэффициент жесткости пружины

Коэффициент жесткости пружины и пружинных изделий – один из важнейших показателей, который определяет срок службы изделия. Для расчета коэффициента жесткости в ручную — существует несложная формула (см. рис. 1), а так же есть возможность воспользоваться нашим калькулятором пружин, который достаточно легко поможет произвести Вам все необходимые расчеты. Однако на срок эксплуатации всего механизма жесткость пружины будет влиять лишь косвенно – большее значение будут иметь другие качественные особенности прибора.

Предлагаем также ознакомиться:

Поделитесь ссылкой на данную страницу:

pruzhin.ru

III. Определение коэффициента жесткости пружины методом колебаний

1. По результатам проведенных измерений построить проходящий через начало координат график зависимости квадрата периода колебаний Т2 от массы M, предварительно рассчитав Тср2 для каждого значения M. Выбрав одну из полученных в эксперименте точек, лежащую на усредненной прямой, рассчитать коэффициент жесткости пружины по формуле

kСР  42.

2. Оценить погрешность полученного результата. При условии, что ошибка в определении числа колебаний отсутствовала, эту погрешность можно рассчитать по формуле

k  k.

В качестве принимается точность, с которой задаются масса держателя и грузов.

Ошибка определения времени колебаний определяется как

t  .

Систематическую погрешность в определении времени ΔtСИСТ, связанную с конечной скоростью реакции человека, можно принять равной 0,1 с: t  tСЛ  tСИСТ.

Случайную ошибку ΔtСЛ следует рассчитать по методу Стьюдента:

ΔtСЛ  n,P.

Для числа колебаний N  4 и доверительной вероятности P  0,95 коэффициент Стьюдента n,P  3,2. Окончательный результат записать в таблицу 2. Сравнить полученное значение коэффициента жесткости пружины с результатом, полученным ранее по методу измерения удлинения пружины (часть I).

Контрольные вопросы

  1. Какие деформации называются упругими? Сформулируйте закон Гука.

  2. Какие колебания называются свободными?

  3. Получите формулу для периода колебаний пружинного маятника.

  4. Чем можно объяснить различие в значениях коэффициента жесткости, полученных разными методами?

Список литературы

  1. Детлаф А.А., Яворский Б.М. Курс физики. –М.: Высш. шк. – 2000.

  2. Савельев И.В. Курс физики. – Т. 2. – М.: Наука – 1998 и далее.

  3. Трофимова Т.И. Курс физики. – М., 2000 и далее.

  4. Селезнёв В.А., Тимофеев Ю. П. Вводное занятие в лабораториях кафедры физики. – М.: МИИТ. – 2011. – 38 с.

Работа 5

Изучение свободных колебаний физического маятника

Цель работы. Определение момента инерции физического маятника по периоду его малых колебаний и приведенной длине.

Введение

Физическим маятником называется любое твёрдое тело, совершающее колебания под действием силы тяжести вокруг горизонтальной оси, не проходящей через центр инерции тела. Всегда можно подобрать математический маятник, синхронный данному физическому, то есть такой математический маятник, период колебаний которого равен периоду колебаний физического маятника. Длина такого математического маятника называется приведённой длиной физического маятника.

Выведем формулу периода колебаний физического маятника.

На рис. 1 точкаO – след горизонтальной оси вращения, точка B – центр тяжести (следует отметить, что в однородном поле сил тяжести центр инерции и центр тяжести совпадают).

Относительно оси вращения сила тяжести создает вращающий момент , стремящийся возвратить маятник в положение равновесия. Численное значение модуля этого момента определяется соотношением

М  mgd sin, (1)

где m – масса физического маятника, d – кратчайшее расстояние от оси вращения до центра тяжести маятника,  – угловое отклонение маятника, отсчитываемое от положения равновесия. Угловое отклонение φ можно рассматривать как вектор, лежащий на оси вращения, направление которого определяется направлением поворота тела из положения равновесия в заданное положение по правилу правого винта.

Учитывая, что векторы иантипараллельны, следует величинам проекций вращающего момента и углового перемещения на ось вращения приписать противоположные знаки.

Тогда формула (1) примет вид

М  – mgd sin. (1.а)

При малых углах φ можно принять sin  , если  выражен в радианах, и записать формулу (1.а) следующим образом:

М  – mgd . (2)

Используем основной закон динамики вращательного движения тела относительно неподвижной оси, записав его в проекциях на ось вращения:

М  J, (3)

где J – момент инерции тела относительно оси вращения; а β – угловое ускорение, причем β  .

Подставляя в формулу (3) выражение M из формулы (2), получим уравнение движения маятника

 0. (4)

Решение полученного дифференциального уравнения второго порядка с постоянными коэффициентами можно записать в виде

(t)  0cos(0t + 0), (5)

где, 0  , а0 и 0 – постоянные, определяемые начальными условиями.

Величины 0 и (0t + 0) называют соответственно амплитудой и фазой колебания, 0 – начальной фазой. Уравнение (5) является уравнением гармонического колебательного движения, а величина ω0 называетсяциклической собственной частотой колебания. По истечении времени T  фаза получает приращение 2, а тело возвращается в исходное положение с сохранением направления движения. Величина T называется периодом колебания. Таким образом, период колебания физического маятника определяется формулой

TФ  2, (6)

Известно, что период колебаний математического маятника записывается в виде

TМ  2.

Сравнивая эту формулу с формулой (6), делаем вывод, что математический маятник будет иметь тот же период колебаний, что и данный физический, если длина математического маятника

l   lП. (7)

Это и есть формула приведённой длины lП физического маятника.

studfiles.net

Жесткость пружины - коэффициент жесткости пружин

Пружины это элемент упругий, посредством которого механизмам передается вращательное движение, ими комплектуются практически все механизмы. Надежность данного изделия, и ее служба зависят от такого понятия как жесткость пружины. Именно от жесткости зависит насколько надежным будет работа механизма в различных эксплуатационных условиях. «Жесткость пружины» определяется необходимым для ее сжатия усилием. Расправка пружины это несколько иной вопрос, который находится в прямой зависимости от материла, из которого пружина выполнена. Кстати, не всегда высокая жесткость пружины, обуславливает ее долгую службу. Скорее это зависит от механизма, который пружина приводит в действие.

Виды жёсткости:

Пружины, по своим разновидностям делятся на типы. Каждый тип, применяется в определенных механизмах. В целом востребованы пружины спиральные, рессоры, конические, пружины тарельчатые и цилиндрические. «Жесткость пружины» определяет и тот фактор, как она передает механизму собственную деформацию. Так, пружины имеют еще одну важнейшую характеристику, деформационную, которая делит пружины на пружины сжатия, кручения, изгиба и конечно растяжения.Производятся пружины из проволоки разнообразного сечения. Так, получают пружины, которыми затем комплектуются различные разновидности оборудования, механизмов, автомобилей.

Как высчитать коэффициент жесткости пружины?

При производстве пружин, обязательно принимается в расчеты коэффициент жесткости, который собственно и служит показателем продолжительности службы изделия. «Коэффициент жесткости пружины» вычисляется в соответствии с расчетной формулой.Так, например, если взять стандартную цилиндрическую витую пружину изготовленную из обычной цилиндрической проволоки, то коэффициент можно высчитать посредством следующей формулы:

В формуле за обозначение G следует принять модуль сдвига. Если пружина медная, то он будет равен примерно 45 ГПа, а если просто стальная, то модуль будет равняться примерно 80 ГПа. Буквой n обозначено число витков, которое имеет пружина, а dF это диаметр намотки. Остается обозначение dD, но оно только обозначает диаметр проволоки, из которой пружина и изготовлена. Собственно, арифметика довольно проста, если только выполнить соответствующие замеры, и вместо видимых букв и значений подставить цифровые эквиваленты.

«Коэффициент жесткости пружины» легко высчитать и лично, руководствуясь выше обозначенной формулой. Всегда полезно знать этот коэффициент, если пришла необходимость, например, сменить пружины в собственном авто, или в других механизмах.

Вернуться в раздел:

Статьи о пружинах

prughin.ru

Как найти коэффициент жесткости

Жесткость – это способность детали или конструкции противодействовать приложенной к нему внешней силе, по возможности сохраняя свои геометрические параметры. Основная характеристика жесткости – коэффициент жесткости.

Вам понадобится

  • - рессорная пружина;
  • - грузы с определенной массой;
  • - линейка;
  • - тетрадь для записей;
  • - калькулятор.

Инструкция

  • Представьте, что вы решили своими руками соорудить грузовую тележку для мотоцикла или автомобиля, чтобы вывозить мусор со двора, привозить с поля урожай и так далее. Желательно, чтобы тележка была на рессорах. Если у вас есть пружинные рессоры, и вы знаете их коэффициент жесткости, вы можете вычислить, какой массы груз они способны нести. Коэффициент жесткости также можно вычислить опытным путем.
  • Различные пружины предназначены для работы на сжатие, растяжение, кручение или изгиб. В школе на уроках физики детей учат определять коэффициент жесткости пружины, работающей на растяжение. Для этого на штативе вертикально подвешивается пружина в свободном состоянии. Один из учеников с помощью линейки замеряет ее длину. И результат записывается в тетрадь как L 1 = …
  • Затем к нижнему концу подвешивается груз определенной массы, например, 0.1 кг. Он воздействует на пружину, растягивая ее, с силой 1Ньютон (1Н). Напарник измеряет получившуюся длину растянутой пружины. Показание L 2, которое, естественно, будет большим, также записывается в тетрадь как L 2 = … Простым арифметическим действием L 2 – L 1 = находится величина растяжения L.
  • По закону Гука: F упр. = kL. Следовательно, чтобы найти коэффициент упругости (k), надо силу растяжения пружины (F) разделить на величину удлинения (L). k = F/L.
  • Чтобы опытным путем определить коэффициент упругости заготовленной вами для тележки пружины, ее надо будет сжимать. Эта работа значительно сложнее выполняемой в школьной лаборатории. Во-первых, замерьте длину пружины в свободном состоянии и запишите результат(L 1).
  • Установите пружину вертикально в какую-нибудь гильзу, оставив свободной небольшую верхнюю часть. Возьмите определенный груз, например, гимнастическую гирю 16, 24 или 32 кг. Установите ее на верхний торец пружины и отметьте на гильзе или непосредственно измерьте линейкой длину сжатой пружины (L 2). Осторожно снимите гирю.
  • Вычислите значение L как разницу: L 1 - L 2. Подставьте значения в уже известную формулу k = F/L. Подбирайте по формуле F = kL допустимую массу перевозимого груза, исходя из величины сжатия пружины.

completerepair.ru

КОЭФФИЦИЕНТ ЖЕСТКОСТИ ПРУЖИНЫ ФОРМУЛА - Параллельное и последовательное соединение пружин

Не зная, чему равна сила растяжения пружины, невозможно вычислить коэффициент ее жесткости, поэтому найдите силу растяжения. То есть, Fупр = kx , где k и является коэффициентом жесткости. В этом случае вес груза будет равен силе упругости, действующей на тело, коэффициент жесткости которого нужно найти, например, пружины.

При параллельном соединении жёсткость увеличивается, при последовательном — уменьшается. Физика 7 класс, тема 03. Силы вокруг нас (13+2 ч) Сила и динамометр. Виды сил. Уравновешенные силы и равнодействующая. Физика 7 класс, тема 06. Введение в термодинамику (15+2 ч) Температура и термометры.

Это соотношение выражает суть закона Гука. А значит, чтобы найти коэффициент жесткостипружины, следует силу растяжения тела разделить на удлинение данной пружины

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества.

Закон Гука может быть обобщен и на случай более сложных деформаций. В технике часто применяются спиралеобразные пружины (рис. 1.12.3). Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Закрепите вертикально один конец пружины, второй же ее конец оставьте свободным. Жесткость – это способность детали или конструкции противодействовать приложенной к нему внешней силе, по возможности сохраняя свои геометрические параметры.

Различные пружины предназначены для работы на сжатие, растяжение, кручение или изгиб. В школе на уроках физики детей учат определять коэффициентжесткости пружины, работающей на растяжение. Для этого на штативе вертикально подвешивается пружина в свободном состоянии.

Вычисление силы Архимеда. Количество теплоты и калориметр. Теплота плавления/кристаллизации и парообразования/конденсации. Теплота сгорания топлива и КПД тепловых двигателей. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Поэтому ее часто называют силой нормального давления. Деформация растяжения пружины. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала. С точки зрения классической физики пружину можно назвать устройством, которое накапливает потенциальную энергию путем изменения расстояния между атомами материала, из которого эта пружина сделана.

Основная характеристика жесткости – коэффициентжесткости

Для стали, например, E ≈ 2·1011 Н/м2, а для резины E ≈ 2·106 Н/м2, т. е. на пять порядков меньше. Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения.

Чтобы опытным путем определить коэффициент упругости заготовленной вами для тележки пружины, ее надо будет сжимать. Сначала найдите удлинение пружины в метрах. Простейший вид – деформация растяжения и сжатия. Рассчитайте коэффициент жесткости, поделив произведение массы m и ускорения свободного падения g≈9,81 м/с² на удлинение тела x, k=m•g/x. При соединении нескольких упруго деформируемых тел (далее для краткости — пружин) общая жёсткость системы будет меняться.

mariantas.ru

формула жесткости пружины

1
  • Авто и мото
    • Автоспорт
    • Автострахование
    • Автомобили
    • Сервис, Обслуживание, Тюнинг
    • Сервис, уход и ремонт
    • Выбор автомобиля, мотоцикла
    • ГИБДД, Обучение, Права
    • Оформление авто-мото сделок
    • Прочие Авто-темы
  • ДОСУГ И РАЗВЛЕЧЕНИЯ
    • Искусство и развлечения
    • Концерты, Выставки, Спектакли
    • Кино, Театр
    • Живопись, Графика
    • Прочие искусства
    • Новости и общество
    • Светская жизнь и Шоубизнес
    • Политика
    • Общество
    • Общество, Политика, СМИ
    • Комнатные растения
    • Досуг, Развлечения
    • Игры без компьютера
    • Магия
    • Мистика, Эзотерика
    • Гадания
    • Сны
    • Гороскопы
    • Прочие предсказания
    • Прочие развлечения
    • Обработка видеозаписей
    • Обрабо

woprosi.ru