Уроки рисования и черчения для начинающих. Фигуры черчение


Урок черчения "Геометрические тела. Комплексные чертежи многогранников"

Разделы: Технология

Цели урока:

  • закрепить знания о геометрических телах, умения и навыки по построению чертежей многогранников;
  • развивать пространственные представления и пространственное мышление;
  • формировать графическую культуру.

Тип урока: комбинированный.

Оснащение урока: интерактивная доска MIMIO, мультимедийный проектор, компьютеры, проект mimo для интерактивной доски, мультимедийная презентация, программа «Компас-3D LT».

ХОД УРОКА

I. Организационный момент

1. Приветствие;

2. Проверка явки учащихся;

3. Проверка готовности к уроку;

4. Заполнение классного журнала (и электронного)

II. Повторение раннее изученного материала

На интерактивной доске открыт проект mimo

Лист 1. На уроках математики вы изучали геометрические тела. Несколько тел вы видите на экране. Давайте вспомним их названия. Учащиеся дают названия геометрическим телам, если есть затруднения – помогаю. (Рис. 1).

Рис. 1

1 – четырехугольная призма 2 – усеченный конус 3 – треугольная призма 4 – цилиндр 5 – шестиугольная призма 6 – конус 7 – куб 8 – усеченная шестиугольная пирамида

Лист 4. Задание 2. Даны геометрические тела и названия геометрических тел. Вызываем ученика к доске и вместе с ним перетаскиваем многогранники и тела вращения под названия, а затем перетаскиваем названия геометрических тел (рис. 2).

Рис. 2

Делаем вывод, что все тела делятся на многогранники и тела вращения.

Включаем презентацию «Геометрические тела» (Приложение). Презентация содержит 17 слайдов. Можно использовать презентацию на нескольких уроках, она содержит дополнительный материал (слайды 14-17). Со слайда 8 есть гиперссылка на Презентацию 2 (развертки куба). Презентация 2 содержит 1 слайд, на котором изображены 11 разверток куба (они являются ссылками на видеоролики). На уроке использована интерактивная доска MIMIO, а также учащиеся работают на компьютерах (выполнение практической работы).

Слайд 2. Все геометрические тела делятся на многогранники и тела вращения. Многогранники: призма и пирамида. Тела вращения: цилиндр, конус, шар, тор. Схему учащиеся перечерчивают в рабочую тетрадь.

III. Объяснение нового материала

Слайд 3. Рассмотрим пирамиду. Записываем определение пирамиды. Вершина пирамиды – общая вершина всех граней, обозначается буквой S. Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды (Рис. 3).

Рис. 3

Слайд 4. Правильная пирамида. Если основание пирамиды — правильный многоугольник, а высота опускается в центр основания, то — пирамида правильная. В правильной пирамиде все боковые ребра равны, все боковые грани равные равнобедренные треугольники. Высота треугольника боковой грани правильной пирамиды называется — апофема правильной пирамиды.

Слайд 5. Анимация построения правильной шестиугольной пирамиды с обозначением ее основных элементов (Рис. 4).

Рис. 4

Слайд 6. Записываем в тетрадь определение призмы. Призма – многогранник, у которого два основания (равные, параллельно расположенные многоугольники), а боковые грани параллелограммы. Призма может быть четырехугольной, пятиугольной, шестиугольной и т.д. Призма называется по фигуре, лежащей в основании. Анимация построения правильной шестиугольной призмы с обозначением ее основных элементов (Рис. 5).

Рис.5

Слайд 7. Правильная призма – это прямая призма, в основании которой лежит правильный многоугольник. Параллелепипед – правильная четырехугольная призма (Рис. 6).

Рис. 6

Слайд 8. Куб – параллелепипед, все грани которого квадраты (Рис. 7).

Рис. 7

(Дополнительный материал: на слайде есть гиперссылка на презентацию с развертками куба, всего 11 разных разверток).Слайд 9. Записываем определение цилиндра. Тело вращения – цилиндр, образованное вращением прямоугольника вокруг оси, проходящей через одну из его сторон. Анимация получения цилиндра (Рис. 8).

Рис. 8

Слайд 10. Конус – тело вращения, образованное вращением прямоугольного треугольника вокруг оси, проходящей через один из его катетов (Рис.9).

Рис. 9

Слайд 11. Усеченный конус – тело вращения, образованное вращением прямоугольной трапеции вокруг оси, проходящей через ее высоту (Рис. 10).

Рис. 10

Слайд 12. Шар – тело вращения, образованное вращением круга вокруг оси, проходящей через его диаметр (Рис. 11).

Рис. 11

Слайд 13. Тор – тело вращения, образованное вращением круга вокруг оси, параллельной диаметру круга (Рис. 12).

Рис. 12

Учащиеся записывают определения геометрических тел в тетрадь.

IV. Практическая работа«Построение чертежа правильной призмы»

Переключаемся на проект mimio

Лист 7. Дана треугольная правильная призма. В основании лежит правильный треугольник. Высота призмы = 70 мм, а сторона основания = 40 мм. Рассматриваем призму (направление главного вида показано стрелкой), определяем плоские фигуры, который мы увидим на виде спереди, сверху и слева. Вытаскиваем изображения видов и расставляем на поле чертежа (Рис. 13).

Рис. 13

Учащиеся самостоятельно выполняют чертеж правильной шестиугольной призмы в программе «Компас – 3D». Размеры призмы: высота – 60 мм, диаметр описанной окружности вокруг основания – 50 мм. Построение чертежа с вида сверху (Рис. 14).

Рис. 14

Затем строится вид спереди (Рис. 15).

Рис. 15

Затем строится вид слева и наносятся размеры (Рис. 16).

Рис. 16

Работы проверяются и сохраняются на компьютерах учащимися.

V. Дополнительный материал по теме

Слайд 14. Правильная усеченная пирамида (Рис. 17).

Рис. 17

Слайд 15. Пирамида, усеченная наклонной плоскостью (Рис. 18).

Рис. 18

Слайд 16. Развертка правильной треугольной пирамиды (Рис. 19).

Рис. 19

Слайд 17. Развертка параллелепипеда (Рис. 20).

Рис. 20

xn--i1abbnckbmcl9fb.xn--p1ai

Сечения - Черчение

Производственные чертежи содержат различные типы изо­бражений — виды, разрезы, сечения.

Сечения и разрезы позволяют выявить внешнюю и внутрен­нюю (рис. 147, а, б) форму детали. Названные изображения по­лучают в результате мысленного рассечения детали секущей плоскостью, положение которой выбирают в зависимости от формы изображаемой детали. Сечения и разрезы дополняют и уточняют геометрическую информацию о предмете и тем самым увеличивают возможности выявления формы изображаемого объекта на чертеже. В некоторых случаях они имеют большую информационную емкость, чем виды. Разрезы и сечения являют­ся проекционными изображениями и выполняются по правилам прямоугольного проецирования.

Рис. 147. Сечение (а) и разрез (б)

 

Сечение — изображение фигуры, получающейся при мыслен­ном рассечении предмета секущей плоскостью. В сечении пока­зывается только то, что находится в секущей плоскости.

Деталь проецируют на плоскость проекций V (рис. 148, а). Затем ее мысленно рассекают секущей плоскостью в том месте, где необходимо уточнить форму изделия. В секущей плоскости получают фигуру сечения. После этого секущую плоскость (вме­сте с фигурой сечения) мысленно вынимают, поворачивают во­круг вертикальной оси, перемещают параллельно плоскости про­екций и совмещают с плоскостью V так, чтобы изображения вида спереди и фигуры сечения не заслоняли друг друга (рис. 148, б). Обратите внимание на то, что при таком перемеще­нии секущей плоскости вид спереди находится в проекционной связи с сечением. Полученное изображение фигуры сечения на­зывают сечением, выполненным в проекционной связи.

Секущую плоскость с фигурой сечения допускается переме­щать в произвольном направлении, совмещая ее с плоскостью проекций, без учета проекционной связи. Такое сечение называ­ется сечением, выполненным на свободном месте чертежа (рис. 148, в). Сечение можно располагать и на продолжении сле­да секущей плоскости (рис. 148, г). Оно называется сечением, выполненным на продолжении следа секущей плоскости.

Если сечение располагается на продолжении следа секущей плоскости, то сечение не обозначается (см. рис. 148, г). Если се­чение располагается на свободном месте чертежа, то его обозна­чают надписью типа «А — А» (см. рис. 148, б, в).

Если секущая плоскость проходит вдоль оси цилиндрической или фонической поверхности, ограничивающих отверстие или уг­лубление, то их контур на сечении показывают полностью, на­пример изображение углубления конической формы (см. рис. 148).

Для выявления формы некоторых деталей иногда требуется выполнить несколько сечений, которые на чертеже обозначают буквами русского алфавита (рис. 149).

ГОСТ 2.305—68 устанавливает правила изображения и обозначения сечений.

Контуры фигуры сечения детали изображают сплошной ос­новной линией. Внутри этих контуров дают условное графическое обозначение материала детали (табл. 12).

Рис. 148. Сечения:

а — получение сечения; б - сечение, построенное в проекционной связи с видом; в - сечение, выполненное на свободном месте чертежа; г — се­чение, выполненное на продолжении следа секущей плоскости

Рис. 149. Обозначение сечений буквами русского алфавита

 

12. Графические обозначения некоторых материалов на чертежах

cherch.ru

ЧЕРЧЕНИЕ. Школьный интернет-учебник - Чтение чертежей 3-4

Многообразие геометрических форм

На уроках математики вы уже познакомились с некоторыми геометрическими фигурами. Под фигурой понимают любую совокупность (множество) точек. Всякую сложную фигуру можно разделить на более простые.

Если все точки фигуры лежат в одной плоскости, фигуру называют плоской: треугольник, квадрат и др. Совокупность точек, расположенных в пространстве, образует пространственную фигуру: куб, цилиндр и др. Фигуры в пространстве называют  геометрическими телами.

Предметы, которые нас окружают, детали машин имеют, как правило, сложную реальную геометрическую форму. Однако, присмотревшись к ним внимательно, можно заметить, что некоторые из них состоят из одного или нескольких простых геометрических тел или их видоизмененных частей. Такими геометрическими телами, образующими форму предметов, являются  призмы, пирамиды, цилиндры, конусы, шары и др. (рис. 1)

Рис. 1.  Геометрические тела

По форме простые геометрические тела делятся на многогранники и тела вращения. Плоскость является частным случаем поверхности.

Многогранники – геометрические тела, поверхность которых состоит из плоских многоугольников. Это куб, призма, параллелепипед, пирамида и др.

Тела вращения – геометрические тела, поверхность которых описывается какой-либо прямой или кривой (образующей) при её вращении вокруг неподвижной оси (например, конус, цилиндр, шар и т. п.).

Форма каждого геометрического тела имеет свои характерные признаки. По ним мы отличаем призму от цилиндра, пирамиду от конуса и  т. п. Эти признаки используются и при построении чертежей геометрических тел или состоящих из них предметов и деталей. Однако прежде чем выполнять такие чертежи, выясним, какие правила положены в основу способов их построения.

Поскольку форма большинства предметов представляет собой сочетание различных геометрических тел или их частей, для построения чертежей этих предметов необходимо знать, как изображается каждое геометрическое тело. Поэтому рассмотрим сначала построение чертежей и аксонометрических проекций простых тел. Это тем более необходимо, так как в сложной форме любого предмета всегда можно выделить простые геометрические тела, которые помогают представить форму предмета по его чертежу.

Изображение многогранников

Рассмотрим построение прямоугольных проекций призмы. Для примера возьмем треугольную призму (рис. 2) и шестиугольную призму (рис. 3). Их основания, параллельные горизонтальной плоскости проекций, изображаются на ней в натуральную величину, а на фронтальной и профильной плоскостях - отрезками прямых. Боковые грани изображаются без искажения на тех плоскостях проекций, которым они параллельны, и в виде отрезков прямых - на тех, которым перпендикулярны. Грани, наклонные к плоскостям, изображаются на них искаженными.

Рис. 2. Треугольная призма

Рис. 3. Шестиугольная призма.

Размеры призм определяются их высотами и размерами фигур основания. Штрихпунктирными линиями на чертеже изображаются оси симметрии.

Рассмотрим, как изображают на чертеже правильную четырехугольную пирамиду (рис. 4). Основание пирамиды проецируется на горизонтальную плоскость проекций в натуральную величину. На нём диагоналями изображаются проекции боковых ребер, идущих от вершин основания к вершине пирамиды.

Рис. 4. Четырехугольная пирамида

Фронтальная и профильная проекции пирамиды - равнобедренные треугольники. Размеры пирамиды определяются длиной b двух сторон ее основания и высотой h.

Изображение тел вращения

Если круги, лежащие в основаниях цилиндра (рис. 5) и конуса 6), расположены параллельно горизонтальной плоскости проекций, их проекции на эту плоскость будут также кругами.

Рис. 5. Цилиндр

Рис. 6. Конус

Фронтальная и профильная проекции цилиндра в данном случае – прямоугольники, а конуса – равнобедренные треугольники.

На всех проекциях следует наносить оси симметрии, с проведения которых и начинают выполнение чертежей цилиндра и конуса.

Фронтальная и профильная проекции цилиндра одинаковы. То же можно сказать о проекциях конуса. Поэтому в данном случае профильные проекции на чертеже лишние. Кроме того, благодаря знаку диаметра Ø можно представить форму цилиндра и конуса даже по одной проекции (рис. 7, a и б). Отсюда следует, что в подобных случаях нет необходимости в трех проекциях. Размеры цилиндра и конуса определяются их высотой h и диаметром основания d.

Рис. 7. Чертежи цилиндра, конуса и шара

Все проекции шара – круги, диаметр которых равен диаметру шара. На каждой проекции проводят центровые линии.

Благодаря знаку Ø, шар можно изображать в одной проекции (рис. 7, в). Но если по чертежу трудно отличить сферу от других поверхностей, то на чертеже добавляют слово «сфера», например: «Сфера Ø40».

Анализ геометрической формы

Вы знаете, что форма большинства предметов представляет собой сочетание различных геометрических тел или их частей. Следовательно, для чтения и выполнения чертежей нужно знать, как они изображаются.

Форма каждого геометрического тела имеет свои характерные признаки. В основе формы деталей машин и механизмов также находятся геометрические тела. Чтобы понять по чертежу форму сложного предмета, его мысленно разделяют на части, представляющие собой геометрические тела, т. е. анализируют форму (рис. 8). Затем мысленно объединив эти части, воссоздают общую форму предмета.

Рис. 8. Кофейник и его элементы

Геометрической формой называется внешний облик предмета, характеризующийся совокупностью его геометрических свойств. К геометрическим свойствам предметов относятся: раз­меры, пропорции, взаимное расположение составляющих элементов формы.

Предметы бывают простой и сложной формы. К предметам простой формы относятся те, которые представляют собой гео­метрические тела: цилиндр, конус, шар, призма, пирамида (рис. 9, а). К предметам сложной (составной) формы относятся такие, которые образованы сочетанием различных геометриче­ских тел (рис. 9, б).

Рис. 9. Предметы простой (а) и сложной (б) формы

Основные геометрические тела можно выявить в любой детали или предмете. Так, на рисунке 10, а в прямоугольной проекции изображена деталь, называемая валиком (от слова «вал»). В ней можно выделить такие геометрические тела, как усеченный конус 1, цилиндр 2, параллелепипед 3 и еще один цилиндр, большего диаметра – 4 (рис. 10, б).

Рис. 10. Анализ геометрической формы детали

Чтобы представить по чертежу общую форму любой детали, необходимо выявить форму всех ее элементов. Для этой цели сложную по форме деталь мысленно разделяют на отдельные конструктивные части, имеющие форму различных геометрических тел. Мысленное разделение предмета на основные геометрические тела называют анализом геометрической формы предмета. Используя изображение детали, размерные числа, условные знаки и надписи, можно воссоздать образ детали, т. е. представить по чертежу ее пространственную форму.

Ещё проанализируем форму детали (рис. 11), состоящей из трех геометрических тел: конусов (прямого кругового и усеченного) и цилиндра.

Рис. 11. Анализ геометрической формы детали «Конус» на основе рас­членения ее на геометрические тела: 1 – конус; 2 – усеченный конус; 3 – цилиндр

 Все части, составляющие форму рассматриваемого изделия, расположены на одной оси (т. е. соосны). К основанию конуса примыкает равновеликое основание усеченного конуса. Другое основание усеченного конуса совмещается с основанием цилиндра, диаметр которого меньше диаметра конуса.

Попробуйте выполнить чертеж детали, представленной на рисунке 12.

Рис. 12. Геометрическая разборка формы детали

 

 

cherch-ikt.ucoz.ru

Как сделать макет геометрических фигур

Вам вполне могут пригодиться в работе геометрические фигуры- куб, конус, цилиндр, призма, шар. Очень хорошо учиться рисовать натюрморт, для начала составив его из простых геометрических фигур. Пробовать ложить штрих по форме предметов также лучше начиная с простых форм- геометрических. В идеале, они должны быть гипсовые. Но есть ли у вас гипсовые конус, циллиндр, куб, шар? Хорошо, если есть. А если нет.... будем выходить из положения вместе и я расскажу как.

Вы можете увидеть ниже примерные чертежи, по которым можно самостоятельно "выкроить" и склеить геометрические фигуры дома. А в качестве шара вы можете использовать небольшого размера детский мяч, предварительно окрашенный в белый цвет, например- гуашью или эмульсионной краской.

Для начала можете попробовать склеить макеты геометрических фигур из обычной бумаги- ксероксной либо оберточной, которые будут указаны. Можете пока просто потренироваться. Если с макетированием у вас все в порядке, можете выполнять работу сразу начисто. Но учитывая нужные размеры. Допустим: если размеры, указанные вам кажутся малы- стоит увеличить их, дабы и макеты фигур получились не маленькие. Либо даже несколько видоизменить конус или цилиндр- как вам захочется. Чем больше и разных по размеру фигур сделаете, тем больше у вас будет выбор- из чего составлять натюрморт и что рисовать.

1. Итак, для конечной работы нам понадобится плотный лист ватмана, можно взять вместо бумаги картон. Нужно перенести эти чертежи геометрических фигур на бумагу. Вооружитесь карандашом, ластиком, линейкой, транспортиром и циркулем и начинайте неспешно работать над заготовками макетов цилиндра, конуса и куба.

2. После того, как чертежи фигур будут выполнены, делаем следующее: возьмите канцелярский нож и на линиях изгибов сделайте неглубокие надрезы (не прорезая бумагу насквозь!).

3. После этого тем- же канцелярским ножом можно вырезать заготовки с плоскости листа. Все надрезы ножом делаются под линейку! Кривые линии прорезаем старательно вручную или под лекала.

4. Те надрезы, которые вы делали на местах изгибов, позволят вам хорошо согнуть бумагу по краю изгиба, не сминая ее.

5. После всего этого останется только склеить заготовки и у вас получатся свои, собственные геометрические фигуры.

Замечание: если работа получилась грязной, то есть возможность прокрыть фигуры белой краской. Но в этом случае бумагу может "повести" от влаги, если ваша бумага очень рыхлая или тонковата. Для этого, изначально, нужно натягивать бумагу на планшет.

Кстати, такие навыки макетирования вам очень даже пригодятся, если вы захотите учиться, например, на факультете промышленный дизайн. Там умению делать макеты да и самим макетам приделяется очень большое значение, так- что, тренируйтесь, и вырабатывайте аккуратность и усидчивость.

Чертеж макета куба

Для пробного макета куба можно взять в размерах длину грани 10 сантиметров. Для основательной работы, для куба, который вы уже сможете использовать в рисунке можно взять длину грани- 20 см. Естественно, учитывайте, что все углы куба равны 90 градусам, значит удобно при черчении использовать и линейку, и уголок. Чертеж макета куба не сложный, вполне быстро у вас получится и сам его макет. Главное делать все предельно точно: параллельно и перпендикулярно.

Напоминаю: синим показана та часть макета, на которую будет наноситься клей. Эта часть будет загибаться и для чистого, ровного загиба, в последствии- угла макета используйте неглубокие надрезы канцелярским ножом по линии загиба. Кстати, такие кубики, выполненные из цветной бумаги или окрашенные в различные цвета могут использоваться в наблюдениях за поведением цвета в пространстве в цветоведении. Для этого возьмите выполненные вами цветные кубики и подвесьте по середине вашей комнаты или поближе к окну. В течении для иногда поглядывайте на кубики- можно наблюдать, как цвет меняется в течение дня- с утра до ночи, когда освещение меняется или пропадает вовсе. Цвет меняется не только от силы освещения, но и от его качества- утром один оттенок, к обеду кубик приобретает уже другие оттенки; в жаркий день один цвет, в пасмурный- другой; при дневном освещении- один цвет, при искусственном- другой. И все эти градации могут происходить только с одним из ваших кубиков, но ведь их у вас разноцветных может быть несколько!

Чертеж макета конуса

Чертеж макета конуса- радиус круга возьмите пока 5 см. Угол верхушки- 135 градусов. Длина высоты куба- 13,5см. Выполните сначала пробный макет. Если он вас устраивает, то окончательный чистовой макет можно выполнить в два раза больше. Для этого просто увеличьте все размеры в два раза. Если хотите другую форму, то достаточно увеличить высоту самого конуса- увеличьте длину высоты конуса. Этого достаточно.

Чертеж макета пирамиды

Пирамида. Тут все просто. Пирамида у нас равнобедренная, все стороны у нас одинаковы. Размеры можете брать любые, но достаточно и 20см.

Чертеж макета цилиндра

Размеры для черновой работы- радиус окружности равен 3,5см., длина развертки 23,5 см. Что- бы увеличить размеры цилиндра, нужно умножить величины в желаемое количество раз. Достаточно в 2 раза. Можно поэкспериментировать- сделать цилиндр высоким или приземленным, как вам понравится. Для рисунка все пригодится, экспериментируйте, пробуйте.

paintmaster.ru

Что такое проекция фигуры на плоскость?

В этом уроке пояснения терминов «проекция» и «проецирование» начнем с простых примеров получения забавных теневых изображений на плоскости.

Рис. 1. Забавные тени от рук

На рисунке 1 показано, как можно с помощью пальцев рук получить тени, похожие на голову лебедя, голову собаки или на зайца. При некотором навыке и сообразительности вы сможете получить тени, похожие на других животных и птиц.

В сложенном положении пальцы рук должны располагаться так, чтобы общий внешний контур их в плоскостях, перпендикулярных световым лучам, соответствовал контуру фигуры, которую вы хотели бы получить. Забавную тень можно получить и не складывая руки, а располагая их определенным образом на некотором расстоянии друг от друга.

С помощью тени можно получить не только забавные фигурки, но и настоящие портреты и картины. Попросите своего товарища посидеть спокойно между горящей лампой и экраном из тонкой бумаги, обведите карандашом контур тени, и силуэтный портрет вашего товарища готов (рис. 2). Хорошо сделанный силуэт очень точно передает черты изображаемого лица.

Рис. 2. Силуэтный портрет человека

Рис. 3. Теневой профиль Н.В. Гоголя

Так, на рисунке 3 вы легко узнаете профиль великого русского писателя Н. В. Гоголя. На рисунке 4 с помощью силуэтов изображены школьники.

Рис. 4. Силуэты школьников

Таким образом, мы установили одну важную особенность теневого изображения: при определенных условиях оно может иметь полное сходство с оригиналом.

А если это так, то, очевидно, такое теневое изображение можно использовать не только для выполнения портретов или картин, но и для изображения различных пространственных тел. Возьмем, например, пресс-папье. Этот инструмент обязательно входил в набор принадлежностей для письма перьевыми ручками. На нижней поверхности его размещался лист промокательной бумаги.

О форме и размерах обыкновенного пресс-папье вы можете судить по его теням, изображающим предмет с различных сторон без искажения, как это показано на рисунке 5.

Теперь становится ясно, что такое проекция фигуры. Сформулируем определение: изображение пространственной фигуры на плоскости (например, на листе бумаги) называется проекцией этой фигуры на плоскость. Процесс получения проекции называется проецированием.

Рис. 5. Тени от предмета (пресс-папье) Рис. 6. Проекции предмета (пресс-папье)

Художественный рисунок, фотография, технический чертеж, тени — все это проекции предметов на различные поверхности.

Для того чтобы более детально изобразить предмет, проекции обычно выполняют не в виде сплошных теней или силуэтов, а как показано на рисунке 6.

Рассматривая этот рисунок, можно сделать вывод, что проекция есть не что иное, как вид предмета с какой-либо стороны. Действительно, глядя на пресс-папье спереди из бесконечно удаленной точки, мы должны были бы увидеть его именно так, как оно изображается на верхней проекции. Глядя на него сверху, мы увидели бы его так, как оно получается на нижней проекции, и т. д. (рис. 6).

Как же получить проекцию (вид) нужного нам предмета на бумаге? Самый простой способ — положить предмет на лист бумаги и обвести его карандашом, как это показано на рисунке 7.

Рис. 7. Получение проекции предмета (обвести предмет)

Но не всякий предмет можно спроецировать таким образом. Одни предметы не поместятся на листе бумаги, другие слишком малы, а третьи невозможно обвести из-за сложности их формы. Попробуйте, например, обвести карандашом контур электрической лампочки.

Вряд ли у вас получится точное изображение.

Вот тут-то и приходит на помощь «страшная» наука — начертательная геометрия. Она дает возможность обходиться без каких-либо приспособлений и правильно строить изображения на основании геометрических законов, не производя проецирования на самом деле.

risovatlegko.ru

Построение эллипса по двум осям. Поэтапное черчение.

Построение эллипса по двум осям в этой статье осуществляется по точкам.

Рассмотри поэтапное черчение:

1.) строятся окружности с разными диаметрами;

2.) окружности делятся на 12 частей;

3.) проводятся вспомогательные вертикальные линии (сиреневый цвет) от краев большего диаметра;

4.) чертятся горизонтальные вспомогательные линии (зеленый цвет) от края окружности меньшего диаметра до вертикальных линий;

5.) в пересечении вспомогательных линий обозначаются точки;

6.) точки между собой соединяются плавной линией.

Навигация по записям

chertegik.ru

Развертки фигур чертежи

Чертеж пересечения конуса и призмы с последующей разверткой.  

Подробнее

Усеченная четырехугольная пирамида представлена в виде развертки и аксонометрии. Также на чертеже присутствуют элементы определения сечения в натуральную величину.

Подробнее

Чертеж развертки цилиндра по заданию чертился в САПР. На представленном чертеже присутствует фигура в трех проекциях, развертка с сечением в натуральную величину и аксонометрия с усеченной пирамидой.

Подробнее

Чертеж развертка усеченной пирамиды представляет собой комплексную задачу, состоящую из 4 задач: Определение сечения на трех видовых проекциях; Построение сечения в натуральную величину; Вычерчивание развертки усеченной пирамиды; Черчение изометрии данной […]

Подробнее

Чертеж развертки конуса был начерчен в результате пересечения с призмой. Точки линии пересечения определялись методом секущих плоскостей с соответствующим обозначением.

Подробнее

Необходимо было выполнить сечение призмы плоскостью. Для этого воспользуемся дополнительной линией. По заданию дана геометрическая фигура, необходимо было начертить секущую плоскость, проходящую по виду спереди и перенести полученный результат на […]

Подробнее

chertegik.ru