С1 ГИА по математике – сокращение дробей (работа со степенями). Дроби как решать в степени


Решение примеров со степенями

Решение Преобразуем, степени в числителе по свойству , а степени из знаменателя поднимем в числитель, при этом они изменят знак:

   

Далее воспользуемся тем фактом, что при умножении степеней с одинаковыми основаниями показатели степеней складываются

   

Используя свойства степеней: и , получим:

   

   

ru.solverbook.com

С1 ГИА по математике - сокращение дробей.

2014-07-06 | Автор: Анна

Задания этого типа – совсем несложные, если вы знаете правила работы со степенями – то есть свойства степени. Если что-то оказалось подзабыто – ничего страшного, как раз и повторим.

Свойства степени:

1.          

2.          

3.          

4.          

5.          

6.          

7.          

8.          

9.          

10.        

 

Примеры:

1. Сократите дробь:

Чтобы решить пример такого типа, надо разложить основания степеней на “кирпичики” – найти такие числа, которые присутствовали бы и в числителе, и в знаменателе, и представить все в виде степеней этих чисел. В данном случае это числа 2 и 3: , .

Тогда:

Ответ: 12

2.  Сократите дробь: 

Решение:

Ответ: 200

3.   Сократите дробь: 

Решение:

Ответ: 33

Теперь разберем задание, в котором степени представлены в буквенном виде:

4.   Сократите дробь: 

Решение:

Ответ: 0,1 (обязательно через запятую)

5.  Сократите дробь: 

В этом примере можно приводить все как к степени двойки, так и к степени четверки:

Решение:

Ответ: 0,25

6.  Сократите дробь: 

Сначала преобразуем суммы и разности в степенях:

Решение:

Ответ: 0,08

easy-physic.ru

Умножение дробей. Возведение дроби в степень

Для начала давайте вспомним правило умножения обыкновенных дробей.          

Для того чтобы умножить дробь на дробь, надо числитель умножить на числитель, а знаменатель на знаменатель и первое произведение записать в числителе новой дроби, второе – в знаменателе.

Например

Аналогичным образом происходит умножение рациональных дробей. Давайте докажем, что это правило на самом деле действует при умножении рациональных дробей.

Иначе говоря, докажем, что произведение двух рациональных дробей тождественно равно дроби, у которой числитель равен произведению числителей, а знаменатель – произведению знаменателей перемножаемых дробей при любых допустимых значениях переменных, кроме b равное нулю и d равное нулю.

Получили, что равенство верно при любых допустимых значениях переменных, т.е. является тождеством.

Правило умножения рациональных дробей:

Чтобы умножить дробь на дробь, нужно перемножить их числители и перемножить их знаменатели и первое произведение записать числителем, а второе – знаменателем дроби.

В буквенном виде это правило записывают так:  

Это правило выполняется и когда произведение трёх и более рациональных дробей.

Прежде чем выполнять умножение рациональных дробей, полезно их числители и знаменатели разложить на множители. Это облегчит сокращение той рациональной дроби, которая получится в результате умножения.

Пример 1: умножить дроби.

Решение:

Пример 2: умножить дроби.

Решение:

Пример 3: Представить произведение дробей в виде рациональной дроби.

Решение:

Пример 4: выполнить умножение.

Решение:

Теперь рассмотрим, как выполняется возведение рациональной дроби в степень.

Проверим это равенство на конкретных примерах.

   

Правило возведения рациональной дроби в степень:

Чтобы возвести дробь в степень, надо возвести в эту степень числитель и знаменатель и первый результат записать в числителе, а второй в знаменателе дроби.

Пример 5: возвести в третью степень дробь.

       

Пример 6: возвести во вторую степень дробь.  

 

Пример 7:

     

Итоги

Чтобы умножить дробь на дробь, нужно перемножить их числители и перемножить их знаменатели и первое произведение записать числителем, а второе – знаменателем дроби.

Чтобы возвести дробь в степень, надо возвести в эту степень числитель и знаменатель и первый результат записать в числителе, а второй в знаменателе дроби.

videouroki.net

Возведение в степень: правила, примеры, дробная степень

Мы разобрались, что вообще из себя представляет степень числа. Теперь нам надо понять, как правильно выполнять ее вычисление, т.е. возводить числа в степень. В этом материале мы разберем основные правила вычисления степени в случае целого, натурального, дробного, рационального и иррационального показателя. Все определения будут проиллюстрированы примерами.

Понятие возведения в степень

Начнем с формулирования базовых определений.

Определение 1

Возведение в степень - это вычисление значения степени некоторого числа.

То есть слова "вычисление значение степени" и "возведение в степень" означают одно и то же. Так, если в задаче стоит "Возведите число 0,5 в пятую степень", это следует понимать как "вычислите значение степени (0,5)5.

Теперь приведем основные правила, которым нужно придерживаться при таких вычислениях.

Как возвести число в натуральную степень

Вспомним, что такое степень числа с натуральным показателем. Для степени с основанием a и показателем n это будет произведение n-ного числа множителей, каждый из которых равен a. Это можно записать так:

Чтобы вычислить значение степени, нужно выполнить действие умножения, то есть перемножить основания степени указанное число раз. На умении быстро умножать и основано само понятие степени с натуральным показателем. Приведем примеры.

Пример 1

Условие: возведите -2 в степень 4.

Решение

Используя определение выше, запишем: (−2)4=(−2)·(−2)·(−2)·(−2). Далее нам нужно просто выполнить указанные действия и получить 16.

Возьмем пример посложнее.

Пример 2

Вычислите значение 3272

Решение

Данную запись можно переписать в виде 3

www.zaochnik.com

Дробная степень числа

Дробный показатель

Число с дробным показателем степени равно корню, с показателем равным знаменателю и подкоренным числом в степени равной числителю.

Чтобы разобраться, почему число в дробной степени равно корню, надо вспомнить правило извлечения корня из степени:

Чтобы извлечь корень из степени, надо показатель степени разделить на показатель корня:

Следовательно, если показатель степени не делится на показатель корня, то получается дробная степень:

Поэтому извлечение корня всегда может быть заменено возведением в степень.

Действия над степенями с дробными показателями

Действия над степенями с дробными показателями совершаются по тем же правилам, которые установлены для степеней с целым показателем.

При доказательстве этого положения, будем сначала предполагать, что члены дробей: и , служащих показателями степеней, положительны.

В частном случае n или q могут равняться единице.

При умножении дробный степеней с одинаковыми основаниями их показатели складываются:

При делении дробных степеней с одинаковыми основаниями из показателя делимого вычитается показатель делителя:

Чтобы возвести степень в другую степень в случае дробных показателей, достаточно перемножить показатели степеней:

Чтобы извлечь корень из дробной степени, достаточно показатель степени разделить на показатель корня:

Правила действий применимы не только к положительным дробным показателям, но и к отрицательным.

naobumium.info

Обобщение понятия степени и решение примеров со степенями

Здравствуйте. Многие ученики испытывают сложности при решении заданий, в которых встречаются выражения с корнями. В данной статье я попытаюсь обобщить материал по темам "Радикал" и "Степень". Покажу как решать некоторые задания. Если у Вас во время прочтения статьи появятся вопросы, Вы можете записаться ко мне на занятие, я с радостью помогу Вам во всем разобраться, помогу с решением именно Ваших задач! 

1. Свойства степеней и корней

Степенью числа а с натуральным показателем n называется произведение n множителей, каждый из которых равняется а. Степень числа а с показателем n обозначают an, например:

В общем случае при n > 1  имеем

Число a называется основой степени, число n — показателем степени.

Приведем основные свойства действий со степенями.

Приведенные свойства обобщаются для любых показателей степени

Часто в вычислениях используются степени с рациональным показателем. При этом удобным оказалось такое обозначение:

Корнем n- ой степени из числа а называется число b, n- я степень которого равняется a:

Корень также называется радикалом.

Корень нечетной степени n всегда существует. Корень четной степени 2n из отрицательного числа не существует. Существуют два противоположных числа, которые являются корнями четной степени из положительного числа а > 0. Положительный корень n- ой степени из положительного числа называют арифметическим корнем.

Из формул (3), (4) вытекают такие свойства радикалов

Если степень корня n = 2, то показатель корня обычно не пишется. 

Пример 1.1. Найти значение выражения

Подкоренное выражение разложим на простые множители:

Пример 1.2. Упростить выражение

Имеем: 

 

Пример 1.3. Извлечь корень 

Имеем: 

Пример 1.4. Упростить выражение 

Поскольку при

2. Действия с радикалами

1) Преобразование корня по формуле  называется внесением множителя под знак радикала.

Пример 2.1. Внести множитель под знак корня 5√2.

Исходя из формулы (7) получим 

Пример 2.2. Внести множитель под знак радикала x√y  при x< 0.

Имеем равенство 

2) Преобразование корня исходя из формулы  называется вынесением множителя из-под знака радикала.

Пример 2.3. Вынести множитель из-под знака корня в выражении  

Получим: 

Пример 2.4. Вынести множитель из-под знака корня

Имеем: 

Пример 2.5. Вынести множитель из-под знака корня:

Радикалы вида , где a, b — рациональные числа, называются подобными. Их можно прибавлять и отнимать:

Пример 2.6. Упростить:

Пример 2.7. Сложить радикалы:

Пример 2.8. Выполнить действие:

Заметим, что равенство  не выполняется. В этом можно убедиться на таком примере:

Приведем примеры умножения радикалов.

Пример 2.9.

Аналогично освобождаются от кубических иррациональностей в знаменателе:

Рассмотрим более сложные примеры рационализации знаменателей:

Чтобы перемножить радикалы с разными степенями, их сначала превращают в радикалы с одинаковыми степенями.

Пример 2.10. Перемножим радикалы:

Во время умножения радикалов можно использовать формулы сокращенного умножения. Например:

Если радикалы находятся в знаменателе дроби, то, используя свойства радикалов, можно избавиться от иррациональности. 

Пример 2.11. Рационализируем знаменатели дробей

Выражения  называются сопряженными. Произведение сопряженных выражений не содержит радикалов:

Это свойство используется для рационализации знаменателей.

Пример 2.12. Избавиться от иррациональности в знаменателе:

Избавимся от иррациональности в знаменателе дроби:

3. Вычисление иррациональных выражений

С помощью свойств корней можно упрощать и вычислять иррациональные выражения. 

Пример 3.1. Вычислить

Выполним последовательно действия:

Пример 3.2. Вычислить:

Выполним действия.

Часто используется формула двойного радикала:

Пример 3.3. Исходя из формулы (8) находим:

Пример 3.4. Вычислить

Исходя из формулы (8) находим:

Окончательно получаем:

Аналогично вычисляются кубические корни. Имеем:

Возводим обе части равенства в куб:

Сравнивая выражения при √с, получаем однородную систему уравнений:

Поделив уравнение почленно, приходим к уравнению для z = y/x:

Пример 3.5. Вычислить значение радикала

После возведения в куб уравнения приходим к системе уравнений:

Поделив почленно первое уравнение на второе, получим уравнение для z= y/x:

По схеме Горнера находим корень z = - ½

Из системы уравнений и уравнения y/x = - ½ находим x = 2,  y = -1. Итак, 

Пример 3.6. Вычислить .

Возьмем .

Возведя обе части уравнения в куб, получаем откуда вытекает система уравнений

Система уравнений имеет очевидное решение x= 1, y= 1.

Поэтому .

Вычисляем радикал

Окончательно имеем a = - 1.

Пример 3.7. Вычислить

Поскольку 

Дальше имеем:

Итак, a = - 2.

Пример 3.8. Вычислить

Возведем уравнение в куб, воспользовавшись равенством .

Получили для x кубическое уравнение

или x3 – 3x – 18 = 0,

имеет корни 

Во множестве действительных чисел имеем корень x = 3.

4. Оценки для радикалов

Если 

Это неравенство можно использовать для доведения неровностей, которые содержат радикалы.

Пример 4.1. Доказать, что .

Возведя неравенство в шестую степень, получим очевидное неравенство

Можно приводить радикалы к одной и то й же самой степени :

Пример 4.2. Оценим  .

Поскольку

 

При преобразовании неравенств можно использовать символ V, понимая под ним знаки « > », « < », или « ». 

Пример 4.3. Какое число больше 

.

Поскольку 

На этом все. Напоминаю, что Вы можете записываться ко мне на занятия в расписании, я с радостью помогу Вам с любыми вопросами по математике или высшей математике.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Онлайн калькулятор дробей с решением со степенями со скобками с буквами

Данный онлайн калькулятор дробей предназначен для сложения, вычитания, деления и умножения между собой обыкновенных дробей. А так же дробей с целой частью и  десятичных дробей. Основные возможности:

  1. Сложение, вычитание, деление и умножение дробей.
  2. Расчет дробей с подробнейшим решением.
  3. Расчет дробей со степенями, скобками и буквами.
  4. Сокращение дробей.
  5. Поддержка до трех дробей онлайн.

На данном калькуляторе можно посчитать сложение вычитание деление или умножение дробей. Калькулятор умеет:

  1. Вносить целую часть дроби в числитель для смешанных дробей.
  2. Расчет дробей со скобками- поддержка до двух уровней вложенности скобок.
  3. Расчет дробей со степенями - степенью может быть только число.
  4. Расчет дробей с буквами - любые анг. буквы или символы.
  5. Сокращение дробей - только для дробей без букв.

Основные символы:

  1. * символ звездочки интерпретируется как умножение.
  2. / слеш интерпретируется как деление.
  3. + и - интерпретируются как сложение и вычитание.
  4. ^ символ интерпретируется как степень.
  5. ( ) символы интерпретируются как открывающаяся и закрывающаяся скобки.

Подробности:

  1. Между двумя буквами необязательно ставить знак умножения (если они умножаются). Пример вместо x*x можно написать xx.
  2. После знака степени ^ должно стоять число степени. Если оно отрицательно необходимо заключить его в скобки. Пример x^2+1 или x^(-2) +1.
  3. При сложении дробей состоящих только из чисел калькулятор вычисляет НОД и НОК.
  4. При расчете сразу трех дробей сначала выполняется операция умножение(деления), затем сложения(вычитания). Для изменения этого порядка поставьте галочку в поле "Большие скобки" и выберите нужный порядок расчета. В этом случае первой будет выполняться операция в больших скобках.

calculatori.ru