Сокращение алгебраических дробей. Дроби алгебра


Как решать алгебраические дроби? Теория и практика

Когда ученик переходит в старшую школу, математика разделяется на 2 предмета: алгебру и геометрию. Понятий становится все больше, задания все сложнее. У некоторых возникают трудности с восприятием дробей. Пропустили первый урок по этой теме, и вуаля. Как решать алгебраические дроби? Вопрос, который будет мучить на протяжении всей школьной жизни.

Понятие алгебраической дроби

Начнем с определения. Под алгебраической дробью понимается выражения P/Q, где P является числителем, а Q – знаменателем. Под буквенной записью может скрываться число, числовое выражение, численно-буквенное выражение.

Прежде чем задаваться вопросом, как решать алгебраические дроби, для начала нужно понимать, что подобное выражение – часть целого.

Как правило, целое – это 1. Число в знаменателе показывает, на сколько частей разделили единицу. Числитель необходим для того, чтобы узнать, сколько элементов взято. Дробная черта соответствует знаку деления. Допускается запись дробного выражения в качестве математической операции «Деление». В таком случае числитель – делимое, знаменатель – делитель.

Основное правило обыкновенных дробей

Когда учащиеся проходят данную тему в школе, им дают примеры на закрепление. Чтобы правильно их решать и находить различные пути из сложных ситуаций, нужно применять основное свойство дробей.

Оно звучит так: Если умножить и числитель, и знаменатель на одно и то же число или выражение (отличные от нуля), то значение обыкновенной дроби не изменится. Частным случаем от данного правила является разделение обеих частей выражения на одно и то же число или многочлен. Подобные преобразования называются тождественными равенствами.

Ниже будет рассмотрено, как решать сложение и вычитание алгебраических дробей, производить умножение, деление и сокращение дробей.

Математические операции с дробями

Рассмотрим, как решать, основное свойство алгебраической дроби, как применять его на практике. Если нужно перемножить две дроби, сложить их, разделить одну на другую или произвести вычитание, нужно всегда придерживаться правил.

Так, для операции сложения и вычитания следует найти дополнительный множитель, чтобы привести выражения к общему знаменателю. Если изначально дроби даны с одинаковыми выражениями Q, то нужно опустить этот пункт. Когда общий знаменатель найден, как решать алгебраические дроби? Нужно сложить или вычесть числители. Но! Нужно помнить, что при наличии знака «–» перед дробью все знаки в числителе меняются на противоположные. Иногда не следует производить каких-либо подстановок и математических операций. Достаточно поменять знак перед дробью.

Часто используется такое понятие, как сокращение дробей. Это означает следующее: если числитель и знаменатель разделить на отличное от единицы выражение (одинаковое для обеих частей), то получается новая дробь. Делимое и делитель меньше прежних, но в силу основного правила дробей остаются равными изначальному примеру.

Целью этой операции является получение нового несократимого выражения. Решить данную задачу можно, если сократить числитель и знаменатель на наибольший общий делитель. Алгоритм операции состоит из двух пунктов:

  1. Нахождение НОД для обеих частей дроби.
  2. Деление числителя и знаменателя на найденное выражение и получение несократимой дроби, равной предшествующей.

Ниже показана таблица, в которой расписаны формулы. Для удобства ее можно распечатать и носить с собой в тетради. Однако, чтобы в будущем при решении контрольной или экзамена не возникло трудностей в вопросе, как решать алгебраические дроби, указанные формулы нужно выучить наизусть.

Несколько примеров с решениями

С теоретической точки зрения рассмотрен вопрос, как решать алгебраические дроби. Примеры, приведенные в статье, помогут лучше усвоить материал.

1. Преобразовать дроби и привести их к общему знаменателю.

2. Преобразовать дроби и привести их к общему знаменателю.

3. Сократить указанные выражения (с использованием изученного основного правила дроби и сокращения степеней)

4. Сократить многочлены. Подсказка: нужно обнаружить формулы сокращенного умножения, привести к подобающему виду, сократить одинаковые элементы.

Задание на закрепление материала

1. Какие действия нужно произвести, что найти скрытое число? Решите примеры.

2. Умножьте и поделите дроби, пользуясь основным правилом.

После изучения теоретической части и расссмотрения практической вопросов больше возникнуть не должно.

fb.ru

Что такое алгебраические дроби | Алгебра

Что такое алгебраические дроби?

Рассмотрим понятие алгебраической дроби.

Определение.

Алгебраическая дробь — это дробь, числитель и знаменатель которой — многочлены (причем знаменатель отличен от нуля).

Если ввести обозначение многочленов большими латинскими буквами: A, B, C, D, … ,  то алгебраическую дробь можно записать в виде

   

(где B≠0).

Другое название таких дробей — рациональные.

Определение.

Рациональная дробь — это дробь, числитель и знаменатель которой — многочлены (при условии, что знаменатель отличен от нуля).

Поскольку одночлен считают многочленом, состоящим из одного члена, в числителе и знаменателе алгебраических (рациональных) дробей могут стоять одночлены ( в том числе, числа).

Примеры алгебраических (рациональных) дробей:

   

   

   

   

   

   

Любой многочлен можно рассматривать как алгебраическую дробь, числитель которой равен этому многочлену, а знаменатель — единице.

Например,

   

   

   

Это и другие свойства алгебраических дробей мы рассмотрим подробнее в следующий раз.

www.algebraclass.ru

Алгебраические дроби. Сокращение алгебраических дробей

Алгебраическая дробь – это дробь, числитель и знаменатель которой являются многочленами. Другими словами, алгебраическая дробь – это деление двух многочленов, записанное с помощью дробной черты.

Любую алгебраическую дробь можно представить в виде выражения:

где a и b – это многочлены и b≠0.

Дробная черта в записи алгебраической дроби заменяет собой скобки, которые должны были бы присутствовать, если частное было бы записано не в виде дроби:

(a + 3) : (a2 + 9) = a + 3
a2 + 9

Примеры алгебраических дробей:

a + 3;     7;     1
a2 + 9x2

Обратите внимание на последний пример: обыкновенные дроби являются одновременно и алгебраическими, так как любое число можно считать многочленом, состоящим из одного члена.

Любой многочлен можно записать в виде алгебраической дроби, знаменатель которой равен единице:

a2 + 9 = a2 + 9;     15 = 15;     x2 + 2xy + y2 = x2 + 2xy + y2
111

Сокращение алгебраических дробей

Основное свойство алгебраической дроби:

Если числитель и знаменатель алгебраической дроби умножить или разделить на один и тот же многочлен, то получится дробь равная данной.

В виде буквенной формулы основное свойство алгебраической дроби можно записать так:

a = a · c      и      a = a : c
bb · cbb : c

где c≠0.

Используя основное свойство алгебраических дробей выполняют их сокращение. Сокращение алгебраических дробей – это деление числителя и знаменателя дроби на их общий множитель.

Чтобы сократить алгебраическую дробь надо числитель и знаменатель разложить на множители. Если числитель и знаменатель имеют общие множители, то дробь можно сократить. Если у числителя и знаменателя общих множителей нет, то дробь является несократимой.

Пример 1. Сократить дробь:

Решение: Разложим числитель и знаменатель на множители, выделим их общий множитель и сократим дробь на него:

ab2 + bc = b(ab + с) = ab + с
ab2b · abab

Пример 2. Упростить дробь:

Решение: Сначала мы можем сократить дробь на общий множитель x в первой степени:

3x(a + b) = 3(a + b)
x2(b - a)x(b - a)

Теперь стоит внимательно посмотреть на многочлены заключённые в скобки:

a + b    и    b - a

Чтобы многочлен из знаменателя привести к тому же виду, что и у многочлена в числителе, надо поменять у многочлена b - a знак на противоположный и переставить члены местами:

b - a = -(-b + a) = -(a - b)

Теперь и в числителе и в знаменателе у нас есть общий множитель, который можно сократить:

3(a + b) = 3(a + b) = -3
x(b - a)-x(a + b)x

Пример 3. Сократите дробь:

Решение: числитель и знаменатель дроби являются одночленами. Каждый одночлен – это произведение, состоящее из множителей, значит можно сразу переходит к сокращению:

  • Начинаем с числового множителя. Числовые множители можно сократить на их наибольший общий делитель. Для чисел 24 и 16 – это число 8. После сокращения от 24 останется 3, а от 16 – 2.
  • Буквенные множители сокращаем на степень с наименьшим встречающимся показателем:
    • a и a5 сокращаем на a. Единицу в числитель не пишем, а в знаменателе остаётся a4.
    • b3 и b3 сокращаем на b3, единицы в результат не записываем.
    • c5 и c сокращаем на c, в числитель пишем c4 в знаменатель не пишем ничего.

Следовательно:

24ab3c5 = 3c4
16a5b3c2a4

naobumium.info

Сокращение алгебраических дробей | Алгебра

Сокращение алгебраических (рациональных) дробей основано на их основном свойстве: если числитель и знаменатель дроби разделить на один и тот же ненулевой многочлен, то получится равная ей дробь.

Сокращать можно только множители!

Члены многочленов сокращать нельзя!

Чтобы сократить алгебраическую дробь, многочлены, стоящие в числителе и знаменателе,  нужно предварительно разложить на множители.

Рассмотрим примеры сокращения дробей.

   

В числителе и знаменателе дроби стоят одночлены. Они представляют собой произведение (чисел, переменных и их степеней), множители сокращать можем.

Числа сокращаем на их наибольший общий делитель, то есть на наибольшее число, на которое делится каждое из данных чисел. Для 24 и 36  это — 12. После сокращения от 24 остается 2, от 36 — 3.

Степени сокращаем на степень с наименьшим показателем. Сократить дробь —  значит, разделить числитель и знаменатель на один и тот же делитель, а  при делении степеней показатели вычитаем.

a² и a⁷ сокращаем на a². При этом в числителе от a² остается единица (1 пишем только в том случае, когда кроме нее после сокращения других множителей не осталось. От 24 осталась 2, поэтому 1, оставшуюся от a², не пишем). От a⁷ после сокращения остается a⁵.

b и b сокращаем на b, полученные в результате единицы не пишем.

c³º и с⁵ сокращаем на с⁵. От c³º остается c²⁵, от с⁵ — единица (ее не пишем). Таким образом,

   

   

Числитель и знаменатель данной алгебраической дроби — многочлены. Сокращать члены многочленов нельзя! (нельзя сократить, к примеру, 8x² и 2x!). Чтобы сократить эту дробь, надо многочлены разложить на множители. В числителе есть общий множитель 4x. Выносим его за скобки:

   

И в числителе, и в знаменателе есть одинаковый множитель (2x-3). Сокращаем дробь на этот множитель. В числителе получили 4x, в знаменателе — 1. По 1 свойству алгебраических дробей, дробь равна 4x.

   

Сокращать можно только множители (сократить данную дробь на 25x² нельзя!). Поэтому многочлены, стоящие в числителе и знаменателе дроби, нужно разложить на множители.

В числителе  — полный квадрат суммы, в знаменателе — разность квадратов. После разложения по формулам сокращенного умножения получаем:

   

Сокращаем дробь на (5x+1) (для этого в числителе зачеркнем двойку в показатель степени, от (5x+1)² при этом останется (5x+1)):

   

   

В числителе есть общий множитель 2, вынесем его за скобки. В знаменателе — формула разности кубов:

   

В результате разложения в числителе и знаменателе получили одинаковый множитель (9+3a+a²). Сокращаем дробь на него:

   

   

Многочлен в числителе состоит из 4 слагаемых. Группируем первое слагаемое со вторым, третье — с четвертым и выносим из первых скобок общий множитель x². Знаменатель раскладываем по формуле суммы кубов:

   

   

В числителе вынесем за скобки общий множитель (x+2):

   

Сокращаем дробь на (x+2):

   

   

Сокращать можем только множители! Чтобы сократить данную дробь, нужно стоящие в числителе и знаменателе многочлены разложить на множители. В числителе общий множитель a³, в знаменателе — a⁵. Вынесем их за скобки:

   

Множители — степени с одинаковым основанием a³ и a⁵ — сокращаем на a³. От a³ остается 1, мы ее не пишем, от a⁵ остается a². В числителе выражение в скобках можно разложить как разность квадратов:

   

Сокращаем дробь на общий делитель (1+a):

   

А как сокращать дроби вида

   

в которых стоящие в числителе и знаменателе выражения отличаются только знаками?

Примеры сокращения таких дробей мы рассмотрим в следующий раз.

www.algebraclass.ru

Алгебраические дроби. Методическая разработка

Дополнительные сочинения

Этот урок является одним из итоговых по знаниям алгебры 8-ого класса. Мы с вами вспомним основные определения и примеры решения задач на тему «Алгебраические дроби».

Тема: Повторение курса алгебры 8-ого класса

Урок: Алгебраические дроби

1. Определение алгебраической дроби

Для начала давайте вспомним, что же такое алгебраические дроби. Алгебраической дробью называют выражение вида , где – многочлены, – числитель, – знаменатель.

Поскольку – многочлены, то необходимо иметь в виду стандартные действия, возможные с многочленами, а именно: приведение к стандартному виду, разложение на множители, а также сокращение числителя и знаменателя.

2. Решение примеров

Пример №1

Сократите дробь

– воспользуемся формулами сокращённого умножения для квадрата суммы и разности квадратов.

Комментарии: вначале мы разложили дробь на множители с помощью формул сокращённого умножения, а дальше воспользовались одним из основных свойств дроби: и числитель, и знаменатель алгебраической дроби можно умножить или разделить на один и тот же многочлен, в том числе число, который не равен 0. Таким образом получается, что мы и числитель, и знаменатель разделили на многочлен , поэтому обязательно необходимо учесть, что этот многочлен не равен 0, т. е. .

Пример №2

Из условия нам пока не ясно, какая связь между этими двумя функциями. Для этого нам необходимо упростить первую из них методом разложения на множители.

однако необходимо не забыть про условие сокращения дроби, т. е. про то, что

После всех сокращений мы получаем, что

лишь с тем отличием, что .

Построим график двух функций.

Мы видим яркое различие этих двух графиков: по сути они одинаковы, но на первом графике нам необходимо выколоть точку с координатой (1;0), поскольку эта точна не входит в ОДЗ первой функции.

Итого, мы с вами рассмотрели, что такое дробь, решили пару примеров о том, как важно следить за областью определения (областью допустимых значений), т. е. за теми значениями, которые может принимать .

3. Действия, которые можно производить с алгебраическими дробями

Теперь перейдём к вопросу, какие действия можно производить с алгебраическими дроями, помимо тех, которые уже были упомянуты выше.

Естественно, алгебраические дроби, как и арифметические дроби, можно складывать, вычитать, умножать, делить, возводить в степень, получая при этом рациональные алгебраические выражения (такие выражения, которые составлены из чисел, переменных с помощью арифметических операций и возведения в натуральную степень). После определённых упрощений подобные выражения сводятся к дробям, для которых исходными выражениями также являются алгебраические дроби.

Список действий / условий, с которыми можно столкнуться, решая задачи на алгебраические дроби:

- Упростить рациональные выражения

- Доказать тождества

- Решать рациональное уравнение

- Упростить/вычислить дробь

4. Решение задач

Пример №3

Решить простейшее рациональное уравнение

       

Дробь равна 0 тогда и только тогда, когда числитель равен 0, а знаменатель не равен 0. В нашем случае знаменатель равен . Значит, решение дроби сводится к линейному уравнению

Ответ:

Пример №4

Решить уравнение

В первую очередь попытаемся сократить дробь

, при условии, что .

Поскольку мы уже упростили дробь в левой части исходного уравнения, то можем подставить новое значение и решить уравнение.

Теперь давайте попробуем выделить полный квадрат из полученного квадратного уравнения

Воспользуемся формулой сокращённого умножения для разности квадратов

Произведение равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0. К тому же не забываем, что в начале у нас появилось условие существования нашего выражения в виде . Запишем же систему уравнений.

=> => Мы видим, что противоречит нашему условию, что , поэтому у нас остаётся только один ответ .

Ответ: .

Итак, посмотрим на особенности, которые имеет решённый нами выше пример:

1. Числитель с разностью кубов и знаменатель желательно сократить сразу, поскольку это возможно в данном случае и сильно упростит дальнейшее решение уравнения, однако обязательно нужно помнить о том, что знаменатель дроби не может равняться, 0 и записать это условие.

2. Приведя дробь к квадратному уравнению, мы вспомнили один из методов решения квадратных уравнений – метод выделения полного квадрата.

5. Вывод

Мы с вами на данном уроке вспомнили, что такое алгебраическая дробь, какие действия необходимо производить с числителем и знаменателем при решении таких дробей, какие действия в общем можно производить с дробями такого вида и решили несколько простых задач.

Список литературы

Башмаков М. И. Алгебра 8 класс. – М.: Просвещение, 2004. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. и др. Алгебра 8. 5 издание. – М.: Просвещение, 2010. Никольский С. М., Потапов М. А., Решетников Н. Н., Шевкин А. В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Вся элементарная математика . Школьный помощник . Интернет-портал Testmath. com.

dp-adilet.kz

Свойства алгебраических дробей | Алгебра

Рассмотрим три свойства алгебраических дробей ( в том числе, основное свойство дроби).

Свойства алгебраических (рациональных) дробей

   

   

   

Свойства алгебраических дробей являются тождествами, то есть каждое из этих равенств может быть использовано как для перехода от левой части к правой, так и в обратном направлении.

Свойство 1 означает, что любой многочлен можно рассматривать как алгебраическую дробь:

   

   

И обратно: если многочлен разделить на 1, то получится тот же многочлен:

   

   

Свойство 2 — основное свойство алгебраической дроби. Формулировка основного свойства алгебраической дроби звучит так:

Если числитель и знаменатель алгебраической дроби умножить или разделить на один и тот же ненулевой многочлен, то получится равная ей алгебраическая дробь.

Переход от левой части к правой, когда мы умножаем числитель и знаменатель на один и тот же многочлен:

   

используется для приведения алгебраических дробей к новому знаменателю.

Переход  в обратном порядке

   

используется для сокращения дробей. Оба этих действия в алгебре имеют большое значения и важно своевременно научиться применять их для упрощения выражений.

Дальше мы рассмотрим, как алгебраические дроби сокращать, складывать, вычитать , умножать, делить и возводить в степень.

www.algebraclass.ru

Сложение алгебраических дробей | Алгебра

Как выполнять сложение алгебраических (рациональных) дробей?

Чтобы сложить алгебраические дроби, нужно:

1) Найти наименьший общий знаменатель этих дробей.

2) Найти дополнительный множитель к каждой дроби (для этого надо новый знаменатель разделить на старый).

3) Дополнительный множитель умножить на числитель и знаменатель.

4) Выполнить сложение дробей с одинаковыми знаменателями

(чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тем же).

Примеры сложения алгебраических дробей.

   

Наименьший общий знаменатель состоит из всех множителей, взятых в наибольшей степени. В данном случае он равен ab.

Чтобы найти дополнительный множитель к каждой дроби, новый знаменатель делим на старый. ab:a=b, ab:(ab)=1.

   

   

   

В числителе есть общий множитель a. Выносим его за скобку и сокращаем дробь на a:

   

   

Знаменатели данных дробей — многочлены, поэтому их нужно их попытаться разложить на множители. В знаменателе первой дроби есть общий множитель x, во второй — 5. Выносим их за скобки:

   

Общий знаменатель состоит из всех входящих в знаменателе множителей и равен 5x(x-5).

Чтобы найти дополнительный множитель к каждой дроби, новый знаменатель делим на старый.

(Если не нравится деление, можно поступить иначе. Рассуждаем так: на что нужно умножить старый знаменатель, чтобы получить новый? Чтобы из x(x-5) получить 5x(x-5), надо первое выражение умножить на 5. Чтобы из 5(x-5) получить 5x(x-5), надо 1-е выражение умножить на x. Таким образом, дополнительный множитель к первой дроби равен 5, ко второй — x).

   

   

   

В числителе — полный квадрат разности. Сворачиваем его по формуле и сокращаем дробь на (x-5):

   

   

Знаменатель первой дроби — многочлен. На множители он не раскладывается, поэтому общий знаменатель данных дробей равен произведению знаменателей m(m+3):

   

   

   

   

   

Многочлены, стоящие в знаменателях дробей, раскладываем на множители. В знаменателе первой дроби выносим за скобки общий множитель x, в знаменателе второй дроби — 2:

   

В знаменателе первой дроби в скобках — разность квадратов:

   

В знаменателе второй дроби из (2-x) получить (x-2), меняем знак перед дробью:

   

Наименьший общий знаменатель состоит из всех множителей и равен 2x(x+2)(x-2):

   

   

   

После упрощения можно сократить дробь на (x-2):

   

www.algebraclass.ru