Как найти длину отрезка по координатам. Длина отрезка координаты


Длина отрезка по координатам

Каждый отрезок определяется двумя точками, между которыми он заключен, и которые называются его концами. Если координаты точек известны, то можно вычислить длину заданного отрезка.Рассмотрим отрезок КР. Его концы заданы координатами (x1; y1) и (x2; y2) соответственно. В таком случае, воспользовавшись теоремой Пифагора, можно рассчитать его длину. Рассмотрим, как это делается.На координатной плоскости проведем отрезок КР, концы которого имеют координаты (x1; y1) и (x2; y2). Из концов отрезка проведем к координатным осям перпендикуляры. Полученные отрезки на координатных осях будут являться проекциями заданного отрезка на эти оси.Полученные проекции переместим, двигаясь параллельно относительно каждой оси, к концам заданного отрезка. Таким образом, получим прямоугольный треугольник, гипотенузу которого нужно найти, так как она же является исходным отрезком. Соответственно перенесенные проекции — это катеты треугольника.Можно найти длину проекций. Из рисунка хорошо видно, что длина проекции на ось Оу равна разнице ординат точек К и Р, то есть у2 — у1. Соответственно, проекция на ось Ох также будет равна разнице, только абсцисс концов отрезка: х2 — х1.К треугольнику применим теорему Пифагора, согласно которой запишем:

   

Обозначение модуля отрезка КР указывает на то, что рассчитывается длина этого отрезка.Чтобы вычислить не квадрат длины, а саму длину, достаточно извлечь квадратный корень из обеих частей уравнения:

   

ru.solverbook.com

Как найти длину отрезка?

Определить длину отрезка возможно разными способами. Для того чтобы узнать, как найти длину отрезка, достаточно иметь в наличии линейку или знать специальные формулы для расчета.

Длина отрезка с помощью линейки

Для этого прикладываем к построенному на плоскости отрезку линейку с миллиметровыми делениями, причем начальную точку необходимо совместить с нулем шкалы линейки. Затем следует отметить на данной шкале расположение конечной точки данного отрезка. Полученное количество целых делений шкалы и будет являться длиной отрезка, выраженной в см. и мм.

Метод координат на плоскости

Если известны координаты отрезка (х1;у1) и (х2;у2), то следует рассчитать его длину следующим образом. Из координат на плоскости второй точки следует вычесть координаты первой точки. В итоге должно получиться два числа. Каждое из таких чисел необходимо возвести в квадрат, а потом найти сумму этих квадратов. Из полученного числа следует извлечь квадратный корень, который будет являться расстоянием между точками. Поскольку данные точки являются концами отрезка, то данное значение и будет его длиной.

Рассмотрим пример, как найти длину отрезка по координатам. Есть координаты двух точек (-1;2) и (4;7). При нахождении разности координат точек получаем следующие значения: х = 5, у =5. Полученные числа и будут являться координатами отрезка. Затем каждое число возводим в квадрат и находим сумму результатов, она равна 50. Из этого числа извлекаем квадратный корень. Результат таков: 5 корней из 2. Это длина отрезка.

Метод координат в пространстве

Для этого необходимо рассмотреть, как найти длину вектора. Именно он и будет являться отрезком в евклидовом пространстве. Находится он почти таким же образом, как длина отрезка на плоскости. Построение вектора происходит в разных плоскостях. Как найти длину вектора?

  1. Найдите координаты вектора, для этого из координат его конечной точки нужно вычесть координаты его начальной точки.
  2. После этого нужно возвести каждую координату вектора в квадрат.
  3. Затем складываем квадраты координат.
  4. Чтобы найти длину вектора, нужно извлечь квадратный корень из суммы квадратов координат.

Рассмотрим алгоритм вычисления на примере. Необходимо найти координаты вектора АВ. Точки А и В имеют следующие координаты: А (1;6;3) и В (3;-1;7). Начало векто

elhow.ru

Как найти длину отрезка по координатам

Как найти длину отрезка по координатамРассмотрим две формулы вычисления длины отрезка для случаев, когда отрезок задан на плоскости и в пространстве.Если отрезок задан на плоскости, то координаты его концов будут описываться двумя значениями — координатой точки по оси Ох и координатой по оси Оу. Таким образом, если отрезок имеет концы в точках Р и Н, которые заданы координатами и , то длина такого отрезка будет вычисляться по формуле:

   

Если отрезок задан в пространстве, то координаты его концов будут описываться тремя значениями — координатой точки по оси Ох, по оси Оу и по оси Oz. Таким образом, если отрезок имеет концы в точках Р и Н, которые заданы координатами и , то длина такого отрезка будет вычисляться по формуле:

   

Рассмотрим использование формул на примерах.

Пример 1.Вычислить расстояние между двумя точками плоскости О (—2; 7) и С (9; 11).

Решение.Поскольку точки заданы на плоскости, то используем первую формулу:

   

Подставим в нее известные координаты точек:

   

   

Ответ. .

Аналогично рассчитывается расстояние между двумя точками в пространстве, только для этого нужно использовать вторую формулу.

ru.solverbook.com

Как найти длину отрезка по координатам

Существуют три основных системы координат, используемых в геометрии, теоретической механике, других разделах физики: декартова, полярная и сферическая. В этих системах координат каждая точка имеет три координаты. Зная координаты двух точек, можно определить расстояние между этими двумя точками.

Вам понадобится

Декартовы, полярные и сферические координаты концов отрезка

Спонсор размещения P&G Статьи по теме "Как найти длину отрезка по координатам" Как найти длину отрезка по точкам Как найти длину стороны треугольника по координатам Как найти длинну вектора

Инструкция

1

Рассмотрите для начала прямоугольную декартову систему координат. Положение точки в пространстве в этой системе координат определяется координатами x,y и z. Из начала координат к точке проводится радиус-вектор. Проекции этого радиус-вектора на координатные оси и будут координатами этой точки.Пусть у вас теперь есть две точки с координатами x1,y1,z1 и x2,y2 и z2 соответственно. Обозначьте за r1 и r2, соответственно, радиус-векторы первой и второй точки. Очевидно, что расстояние между этими двумя точками будет равно модулю вектора r = r1-r2, где (r1-r2) - векторная разность.Координаты вектора r, очевидно, будут следующими: x1-x2, y1-y2, z1-z2. Тогда модуль вектора r или расстояние между двумя точками будет равно: r = sqrt(((x1-x2)^2)+((y1-y2)^2)+((z1-z2)^2)).

2

Рассмотрите теперь полярную систему координат, в которой координата точки будет задаваться радиальной координатой r (радиус-вектор в плоскости XY), угловой координатой ? (углом между вектором r и осью X) и координатой z, аналогичной координате z в декартовой системе.

Полярные координаты точки можно перевести в декартовы следующим образом: x = r*cos?, y = r*sin?, z = z. Тогда расстояние между двумя точками с координатами r1, ?1 ,z1 и r2, ?2, z2 будет равно R = sqrt(((r1*cos?1-r2*cos?2)^2)+((r1*sin?1-r2*sin?2)^2)+((z1-z2)^2)) = sqrt((r1^2)+(r2^2)-2r1*r2(cos?1*cos?2+sin?1*sin?2)+((z1-z2)^2))

3

Теперь рассмотрите сферическую систему координат. В ней положение точки задается тремя координатами r, ? и ?. r - расстояние от начала координат до точки, ? и ? - азимутальные и зенитный угол соответственно. Угол ? аналогичен углу с таким же обозначением в полярной системе координат, а ? - угол между радиус-вектором r и осью Z, причем 0

Переведем сферические координаты в декартовы: x = r*sin?*cos?, y = r*sin?*sin?*sin?, z = r*cos?. Расстояние между точками с координатами r1, ?1, ?1 и r2, ?2 и ?2 будет равно R = sqrt(((r1*sin?1*cos?1-r2*sin?2*cos?2)^2)+((r1*sin?1*sin?1-r2*sin?2*sin?2)^2)+((r1*cos?1-r2*cos?2)^2)) = (((r1*sin?1)^2)+((r2*sin?2)^2)-2r1*r2*sin?1*sin?2*(cos?1*cos?2+sin?1*sin?2)+((r1*cos?1-r2*cos?2)^2))

Как просто

masterotvetov.com

Длина отрезка по координатам онлайн · Как пользоваться Контрольная Работа РУ

Приведу подробный пример, как можно определить длину отрезка по заданным координатам, воспользовавшись сервисом онлайн на сайте Контрольная работа Ру.

Допустим, вам надо найти длину отрезка на плоскости

(в пространстве вы можете по-аналогии расчитывать, только надо изменить точку на размерность трёх)

Отрезок AB имеет концы с координатами A (1, 2) и B (3, 4).

Для того, чтобы вычислить длину отрезка AB воспользуйтесь следующими шагами:

1. Перейдите на страницу сервиса по нахождению расстояния между двумя точками онлайн:

https://www.kontrolnaya-rabota.ru/s/vector/rasstoyanie-mezhdu-tochkami/

Мы можем этим пользоваться, т.к. длина отрезка по коорд. как раз и равна расстоянию между точками A и B.

2. По указанной ссылке введите координаты первой точки также, как изображено на рис. ниже.

Чтобы задать правильную размерность точки A, то потяните за нижний правый край влево, как показано на рис.

После того, как ввели координаты первой точки A(1, 2), то нажмите на кнопку

"Ввёл координаты первой точки, далее!"

3. На втором шаге вы увидите форму для ввода второй точки B, введите её координаты, как рис. ниже:

4. После того, как вы нажмёте "Далее", то вы получите подробное решение по нахождениею длины отрезка:

Точки a и b введены! Решение:

Даны точки a = [1 2] и b= [3 4]

Найдем расстояние между точками (s)

Находим: Расстояние между точками находится по правилу двух катетов и гипотенузы:s = ((1 - (3))^2 + (2 - (4))^2)^(0.5) = 2.82842712475Решением будет s = 2.82842712475

Т.е. длина отрезка равна ~ 2.83

www.kontrolnaya-rabota.ru

2. Отрезок. Длина отрезка. Деление отрезка в данном отношении

Отрезок прямойопределяется двумя точками – его концами А и В, и обозначается [АВ] или [ВА], или АВ. Если А и В – различные точки, то отрезок [AB] единственным образом определяет прямую (АВ). В этом случае, говоря об отрезке, как о множестве точек, считают, что это множество состоит из точек А и В, а также точек, которые лежат на прямой (АВ) между точками А и В. Если выбрана единица измерения, то каждому отрезку [AB] можно сопоставить неотрицательное число, которое называется егодлинойилирасстоянием между точкамиА и В. Длину отрезкатакже обозначают буквамиили. Если точки А и В заданы своими координатами, то длину отрезка можно вычислить по теореме Пифагора.

Пусть даны точки и(рис. 3). Длина проекции отрезка [AB] на ось ОХ составляет, а длина проекции на ось ОУ составляет. Таким образом, в прямоугольном треугольнике АВС известны длины двух катетов:,. Тогда длина гипотенузы определяется формулойили

. (2.1)

Если точка А совпадает с началом координат О, то длина отрезка [OB]

. (2.2)

Пример 1.Даны точки А(2;6) и В(-1;2). Найти расстояние между ними.

Решение. По условию, поэтому согласно формуле (2.1).

Пусть теперь на отрезке [AB] зафиксирована точка М (рис.3) таким образом, что. Попробуем найти координаты этой точки. Поскольку проекции отрезка делятся точкамиив том же отношении, в котором точка М делит отрезок [AB], то можно записать,.

Из полученных соотношений найдем и:

, (2.3)

. (2.4)

В частности, если точка М ─ середина отрезка, то , и

,. (2.5)

Пример 2.Даны вершины треугольника А(-22;12), В(34;45), С(-2;-3). Вычислить периметр треугольника АВС. Найти координаты точки пресечения медиан треугольника.

Решение. Периметром Р называется сумма длин всех сторон многоугольника, поэтому. Проведем нужные вычисления:

;

;

;.

Пусть − медиана треугольника АВС. Следовательно, точка− середина отрезка [BC] и ее координаты могут быть найдены по формулам (2.5):,. Подставим численные значения.; координаты точки.

Известно, что все три медианы треугольника пересекаются в одной точке М, которая делит каждую медиану в отношении 2:1, считая от вершины. Поэтому для медианы можно записать соотношение:. Теперь, используя формулы (2.3) и (2.4) деления отрезка в данном отношении при, можно записать,. Подставив числовые значения, получим,. Координаты точки пересечения медиан.

Ответ: ,.

Пример 3. Найти две точки А и В, если известно, что точка С(-5;4) делит отрезок [AB] в отношении 3:4, а точкаD(6;-5) − в отношении 2:3.

Решение. Пусть точки А и В имеют координатыи. Тогда, согласно формулам (2.3) и (2.4),;.

Подставим числовые значения и получим две линейные системы с двумя неизвестными

,.

Решая данные системы, получим ,,,.

Ответ: А(160;-131), В(-225;184).

Замечание.Рассматривать задачу деления отрезка в данном отношении можно и в том случае, когда точка М располагается не между точками А и В, а лежит на прямой (АВ) вне отрезка [AB]. В этом случае числоотрицательное.

studfiles.net

Как найти длину отрезка по координатам

Существуют три основных системы координат, используемых в геометрии, теоретической механике, других разделах физики: декартова, полярная и сферическая. В этих системах координат вся точка имеет три координаты. Зная координаты 2-х точек, дозволено определить расстояние между этими двумя точками.

Вам понадобится

  • Декартовы, полярные и сферические координаты концов отрезка

Инструкция

1. Разглядите для начала прямоугольную декартову систему координат. Расположение точки в пространстве в этой системе координат определяется координатами x,y и z. Из начала координат к точке проводится радиус-вектор. Проекции этого радиус-вектора на координатные оси и будут координатами этой точки.Пускай у вас сейчас есть две точки с координатами x1,y1,z1 и x2,y2 и z2 соответственно. Обозначьте за r1 и r2, соответственно, радиус-векторы первой и 2-й точки. Видимо, что расстояние между этими двумя точками будет равно модулю вектора r = r1-r2, где (r1-r2) — векторная разность.Координаты вектора r, видимо, будут следующими: x1-x2, y1-y2, z1-z2. Тогда модуль вектора r либо расстояние между двумя точками будет равно: r = sqrt(((x1-x2)^2)+((y1-y2)^2)+((z1-z2)^2)).

2. Разглядите сейчас полярную систему координат, в которой координата точки будет задаваться радиальной координатой r (радиус-вектор в плоскости XY), угловой координатой ? (углом между вектором r и осью X) и координатой z, аналогичной координате z в декартовой системе.Полярные координаты точки дозволено перевести в декартовы дальнейшим образом: x = r*cos?, y = r*sin?, z = z. Тогда расстояние между двумя точками с координатами r1, ?1 ,z1 и r2, ?2, z2 будет равно R = sqrt(((r1*cos?1-r2*cos?2)^2)+((r1*sin?1-r2*sin?2)^2)+((z1-z2)^2)) = sqrt((r1^2)+(r2^2)-2r1*r2(cos?1*cos?2+sin?1*sin?2)+((z1-z2)^2))

3. Сейчас разглядите сферическую систему координат. В ней расположение точки задается тремя координатами r, ? и ?. r — расстояние от начала координат до точки, ? и ? — азимутальные и зенитный угол соответственно. Угол ? аналогичен углу с таким же обозначением в полярной системе координат, а ? — угол между радиус-вектором r и осью Z, причем 0<= ? <= pi.Переведем сферические координаты в декартовы: x = r*sin?*cos?, y = r*sin?*sin?*sin?, z = r*cos?. Расстояние между точками с координатами r1, ?1, ?1 и r2, ?2 и ?2 будет равно R = sqrt(((r1*sin?1*cos?1-r2*sin?2*cos?2)^2)+((r1*sin?1*sin?1-r2*sin?2*sin?2)^2)+((r1*cos?1-r2*cos?2)^2)) = (((r1*sin?1)^2)+((r2*sin?2)^2)-2r1*r2*sin?1*sin?2*(cos?1*cos?2+sin?1*sin?2)+((r1*cos?1-r2*cos?2)^2))

Видео по теме

jprosto.ru