Дискриминант квадратного уравнения. Дискриминант х1 формула


Дискриминант квадратного уравнения. Формулы дискриминанта

Дискриминант квадратного уравнения – это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.

Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

Дискриминант позволяет определить имеет ли уравнение корни и сколько их, не решая само уравнение:

  1. Если дискриминант больше нуля, то уравнение имеет два корня.
  2. Если дискриминант равен нулю, то уравнение имеет один корень.
  3. Если дискриминант меньше нуля, то уравнение не имеет корней.

Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

D = b2 - 4ac

так как она относится к формуле:

которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

Решение квадратных уравнений через дискриминант

Для решения квадратного уравнения по формуле, можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата либо искать корни по формуле, либо сделать вывод что корней нет.

Пример 1. Решить уравнение:

3x2 - 4x + 2 = 0

Определим чему равны коэффициенты:

a = 3, b = -4, c = 2

Найдём дискриминант:

D = b2 - 4ac = (-4)2 - 4 · 3 · 2 = 16 - 24 = -8, D < 0

Ответ: корней нет.

Пример 2.

x2 - 6x + 9 = 0

Определим чему равны коэффициенты:

a = 1, b = -6, c = 9

Найдём дискриминант:

D = b2 - 4ac = (-6)2 - 4 · 1 · 9 = 36 - 36 = 0, D = 0

Уравнение имеет всего один корень:

Ответ: 3.

Пример 3.

x2 - 4x - 5 = 0

Определим чему равны коэффициенты:

a = 1, b = -4, c = -5

Найдём дискриминант:

D = b2 - 4ac = (-4)2 - 4 · 1 · (-5) = 16 + 20 = 36, D > 0

Уравнение имеет два корня:

x1 = (4 + 6) : 2 = 5,   x2 = (4 - 6) : 2 = -1

Ответ: 5, -1.

naobumium.info

Решение квадратных уравнений. Дискриминант. Формула дискриминанта. ( Дискриминат на 4 и на 1). Теорема Виета. 3 способа.

Квадратным уравнением называется уравнение вида

                 ,

где

x - переменная,

a,b,c - постоянные (числовые) коэффициенты.

В общем случае решение квадратных уравнений сводится к нахождению дискриминанта: 

Формула дискриминанта: .

       О корнях квадратного уравнения можно судить по знаку дискриминанта (D) :

  • D>0 - уравнение имеет 2 различных вещественных корня
  • D=0 - уравнение имеет 2 совпадающих вещественных корня
  • D<0 - уравнение имеет 2 мнимых корня (для непродвинутых пользователей - корней не имеет)

В общем случае корни уравнения равны:

                 .

Очевидно, в случае с нулевым дискриминантом, оба корня равны

                 .

Если коэффициент при х четный, то имеет смысл вычислять не дискриминант, а четверть дискриминанта:

                

В таком случае корни уравнения вычисляются по формуле:

                

Теорема Виета.

Приведенным квадратным уравнением называется уравнение вида

                ,

то есть квадратное уравнение с единичным коэффициентом при старшем члене.

В этом случае целесообразно применять теорему Виета, которая позволяет получить относительно корней уравнения следующую систему уравнений:

                 .

Следует заметить, что любое квадратное уравнение может стать приведенным, если его поделить на коэффициент при старшем члене, то есть при х2.

tehtab.ru

если Дискриминант>0, то будет (x-x1)(x-x2). А если он равен нулю, какая формула?

если уравнение ах^2+bx+c=0 и D&gt;0 и корни уравнения х1, х2, то ах^2+bx+c=а (х-х1)(х-х2) а если D=0 и корень х1=х2=-b/2a, то ах^2+bx+c=а (х-х1)(x-x1)=a(x-x1)^2

Наверно, (х-х1)(х-х1), т. е в квадрате, корень-то один. ...если я правильно помню...

D= b в квадрате - 4ас из того что получается выводите квадратный корень, потом x1= (-b + корень из дискриминанта ) : 2а х2= (-b - корень из дискриминанта ) : 2а

такая же формула

touch.otvet.mail.ru

Решение квадратных уравнений

6 июля 2011

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x2 − 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:a = 1, b = −8, c = 12;D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:a = 5; b = 3; c = 7;D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:a = 1; b = −6; c = 9;D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

Задача. Решить квадратные уравнения:

  1. x2 − 2x − 3 = 0;
  2. 15 − 2x − x2 = 0;
  3. x2 + 12x + 36 = 0.

Первое уравнение:x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;D = (−2)2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:15 − 2x − x2 = 0 ⇒ a = −1; b = −2; c = 15;D = (−2)2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left( -1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left( -1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;D = 122 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

\[x=\frac{-12+\sqrt{0}}{2\cdot 1}=-6\]

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

Решение неполного квадратного уравнения

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c/a) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

Смотрите также:

  1. Теорема Виета
  2. Следствия из теоремы Виета
  3. Стандартный вид числа
  4. Комбинаторика в задаче B6: легкий тест
  5. Задача C2: уравнение плоскости через определитель
  6. Задачи на проценты считаем проценты с помощью формулы

www.berdov.com

Дискриминант. Теорема Виета

Дискриминант, как и квадратные уравнения начинают изучать в курсе алгебры в 8 классе. Решить квадратное уравнение можно через дискриминант и с помощью теоремы Виета. Методика изучения квадратных уравнений, как и формулы дискриминанта достаточно неудачно прививается школьникам, как и многое в настоящем образовании. Поэтому проходят школьные годы, обучение в 9-11 классе заменяет "высшее образование" и все снова ищут - "Как решить квадратное уравнение?", "Как найти корни уравнения?", "Как найти дискриминант?" и ...

Формула дискриминанта

Дискриминант D квадратного уравнения a*x^2+bx+c=0 равен D=b^2–4*a*c. Корни (решения) квадратного уравнения зависят от знака дискриминанта (D) : D>0 – уравнение имеет 2 различных действительных корня;D=0 - уравнение имеет 1 корень (2 совпадающих корня):D<0 – не имеет действительных корней (в школьной теории). В ВУЗах изучают комплексные числа и уже на множестве комплексных чисел уравнение с отрицательным дискриминантом имеет два комплексных корня.Формула для вычисления дискриминанта достаточно проста, поэтому множество сайтов предлагают онлайн калькулятор дискриминанта. Мы с такого рода скриптами еще не разобрались, поэтому кто знает, как это реализовать просим писать на почту Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра..

Общая формула для нахождения корней квадратного уравнения:

Корни уравнения находим по формулеЕсли коэффициент при переменной в квадрате парный то целесообразно исчислять не дискриминант, а четвертую его частьВ таких случаях корни уравнения находят по формуле

Вторая способ нахождения корней - это Теорема Виета.

Формулируется теорема не только для квадратных уравнений, но и для многочленов. Это Вы можете почитать в Википедии или других электронных ресурсах. Однако для упрощения рассмотрим ту ее часть, которая касается приведенных квадратных уравнений, то есть уравнений вида (a=1) Суть формул Виета заключается в том, что сумма корней уравнения равна коэффициенту при переменной, взятому с противоположным знаком. Произведение корней уравнения равно свободном члену. Формулами теорема Виета имеет запись.Вывод формулы Виета достаточно прост. Распишем квадратное уравнение через простые множителиКак видите все гениальное одновременно является простым. Эффективно использовать формулу Виета когда разница корней по модулю или разница модулей корней равна 1, 2. Например, следующие уравнения по теореме Виета имеют корни До 4 уравнения анализ должен выглядеть следующим образом. Произведение корней уравнения равно 6, следовательно корнями могут быть значения (1, 6) и (2, 3) или пары с противоположным знаком. Сумма корней равна 7 (коэффициент при переменной с противоположным знаком). Отсюда делаем вывод что решения квадратного уравнения равны x=2; x=3.Проще подбирать корни уравнения среди делителей свободного члена, корректируя их знак с целью выполнения формул Виета. В начале это кажется трудно сделать, но с практикой на ряде квадратных уравнений такая методика окажется эффективнее вычисления дискриминанта и нахождения корней квадратного уравнения классическим способом.Как видите школьная теория изучения дискриминанта и способов нахождения решений уравнения лишена практического смысла - "Зачем школьникам квадратное уравнение?", "Какой физический смысл дискриминанта?".

Давайте попробуем разобраться, что описывает дискриминант?

В курсе алгебры изучают функции, схемы исследования функции и построения графика функций. Из всех функций важное место занимает парабола, уравнение которой можно записать в виде Так вот физический смысл квадратного уравнения - это нули параболы, то есть точки пересечения графика функции с осью абсцисс Ox Свойства парабол которые описаны ниже попрошу Вас запомнить. Придет время сдавать экзамены, тесты, или вступительные экзамены и Вы будете благодарны за справочный материал. Знак при переменной в квадрате соответствует тому, будут ли ветки параболы на графике идти вверх (a>0),

или парабола ветвями вниз (a<0).

Вершина параболы лежит посередине между корнями

Физический смысл дискриминанта:

Если дискриминант больше нуля (D>0) парабола имеет две точки пересечения с осью Ox. Если дискриминант равен нулю (D=0) то парабола в вершине касается оси абсцисс.И последний случай, когда дискриминант меньше нуля (D<0) – график параболы принадлежит плоскости над осью абсцисс (ветки параболы вверх), или график полностью под осью абсцисс (ветки параболы опущены вниз).

Неполные квадратные уравнения

Если в квадратном уравнении коэффициент при свободном члене или переменной равны нулю то такие уравнения называют неполными. Корни уравнений находим по упрощенной формулеГрафик функций всегда симметричен относительно начала координат. Стоит отметить, что уравнение имеет действительные корни только тогда, когда в уравнении чередуются знаки при коэффициентах "+, -" или "-, +". Неполное квадратное уравнение видаодним из корней всегда имеет точку x=0. В таком контексте решения квадратных уравнений становится нужным, а при построении графиков парабол, еще и визуально интересным времяпрепровождением, особенно если речь идет о школьном занятии по анализу графика функций, или изучении темы парабол. Поэтому в 8, 9 классе рекомендуем эти две темы в алгебре сочетать.Если материал помог Вам в обучении, просьба поделиться с друзьями ссылкой на статью!

yukhym.com

Внеклассный урок - Формулы корней квадратного уравнения. Дискриминант

 Формулы корней квадратного уравнения. Дискриминант.
  

Формула №1:

         -b ± √Dx =  ————,  где D = b2 – 4ac.             2a

Латинской буквой D обозначают дискриминант.

Дискриминант - это выражение, от которого зависит число корней данного уравнения.

Если D < 0, то уравнение не имеет корней.

Если D = 0, то уравнение имеет один корень.

Если D > 0, то уравнение имеет два корня.

Пример. Решим уравнение 12x2 + 7x + 1 = 0.

Сначала вычислим дискриминант.

Мы видим, что а = 12, b = 7, c = 1.

Итак:

D = b2 – 4ac = 72 – 4 · 12 · 1 = 49 – 48 = 1.

D > 0. Значит, уравнение имеет корни (причем два корня), а значит, можно вычислять дальше.

Чтобы найти корни, применим формулу корней квадратного уравнения:

         -b ± √D      -7 ± √1         -7 ± 1x =  ———— = ———— = ————             2a                24                 24

Находим оба значения x:

        -7 + 1        -6      -1          1x1 = ——— = —— = — = – —           24           24       4          4

 

         -7 – 1       -8       -1         1x2 = ——— = —— = — = – — .           24           24       3          3

 

                        1                   1Ответ: x1 = – —,    x2 = – —                        4                   3

 

Формула №2.

Из формулы №1 можно получить другую формулу, которой удобно пользоваться в случаях, когда второй коэффициент – четное число. В этом случае раскладываем его на множители, один из которых – множитель 2. То есть второй коэффициент представляем в виде 2k, где k – это половина изначально заданного числа. Тогда удобно пользоваться формулой:

      -k ± √D1x = ————,   где D1 = k2 – ac             a

Пример. Решим уравнение 5x2 – 16x + 3 = 0.

Записываем -16x в виде 2 · (-8x). Тогда k = -8,  a = 5,  c = 3. Мы уже можем найти дискриминант D1:

D1 = k2 – ac = (-8)2 – 5 · 3 = 64 – 15 = 49.

Теперь находим оба значения x:

      -k ± √D1       - (-8) ± √49      8 ± 7x = ———— =  ————— = ———             a                     5                  5

Отсюда:

          8 + 7       15x1 = ——— =  — = 3            5            5

 

         8 – 7         1x2 = ——— =  — = 0,2             5           5 

 

Ответ: x1 = 3; x2 = 0,2.

 

При решении квадратного уравнения по данным формулам целесообразно поступать следующим образом:

1) вычислить дискриминант и сравнить его с нулем;

2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней; если дискриминант отрицателен, то записать, что корней нет.

 

raal100.narod.ru

Квадратное уравнение. Решение квадратных уравнений. Дискриминант. Формула дискриминанта. ( Дискриминат на 4 и на 1). Теорема Виета. 3 способа.

Решение квадратных уравнений. Дискриминант. Формула дискриминанта. Теорема Виета.

Квадратным уравнением называется уравнение вида:

                 ,

гдеx - переменная,a,b,c - постоянные (числовые) коэффициенты.

В общем случае решение квадратных уравнений сводится к нахождению дискриминанта

Формула дискриминанта: .
О корнях квадратного уравнения можно судить по знаку дискриминанта (D) :
  • D>0 - уравнение имеет 2 различных вещественных корня
  • D=0 - уравнение имеет 2 совпадающих вещественных корня
  • D<0 - уравнение имеет 2 мнимых корня (для непродвинутых пользователей - корней не имеет)

В общем случае корни уравнения равны:

                 .

Очевидно, в случае с нулевым дискриминантом, оба корня равны

                 .

Если коэффициент при х четный, то имеет смысл вычислять не дискриминант, а четверть дискриминанта:

                

В таком случае корни уравнения вычисляются по формуле:

                

Теорема Виета.

Приведенным квадратным уравнением называется уравнение вида

                ,

то есть квадратное уравнение с единичным коэффициентом при старшем члене.

В этом случае целесообразно применять теорему Виета, которая позволяет получить относительно корней уравнения следующую систему уравнений:

                 .

Следует заметить, что любое квадратное уравнение может стать приведенным, если его поделить на коэффициент при старшем члене, то есть при х2

www.dpva.ru