Расчет чисел периодических циклов. Числа периодические


Периодические дроби

Существуют дроби, у которых в дробной части некоторые цифры бесконечно повторяются. Выглядят эти дроби следующим образом:

0,66666666666666…

0,33333333333333…

0,68181818181818…

Дроби такого вида называют периодическими. В данном уроке мы попробуем разобраться, что это за дроби, и как с ними работать.

Получаем периодическую дробь

Давайте попробуем разделить 1 на 3. Не будем подробно останавливаться на том, как это сделать. Этот момент подробно описан в уроке действия с десятичными дробями, в пункте деление меньшего числа на большее. Продвинутый уровень.

Итак, делим 1 на 3

Видно, что мы постоянно получаем остаток 1, далее приписываем к нему 0 и делим 10 на 3. И это повторяется снова и снова. В результате в дробной части каждый раз получается цифра 3. Деление 1 на 3 будет длиться бесконечно, поэтому разумнее будет остановиться на достигнутом.

Такие дроби называют периодическими, поскольку у них присутствует период цифр, который бесконечно повторяется. Период цифр может состоять из нескольких цифр, а может состоять и из одной, как в нашем примере.

В примере, который мы рассмотрели выше, период в дроби 0,33333 это цифра 3. Обычно такие дроби записывают сокращённо. Сначала записывают целую часть, затем ставят запятую и в скобках указывают период (цифру, которая повторяется).

В нашем примере цифра, которая повторяется это цифра 3, она является периодом в дроби 0,33333. Поэтому сокращённая запись будет выглядеть так:

0, (3)

Читается как «ноль целых и три в периоде»

Пример 2. Разделить 5 на 11

Это тоже периодическая дробь. Период данной дроби это цифры 4 и 5, эти цифры повторяются бесконечно. Сокращённая запись будет выглядеть так:

0, (45)

Читается как «ноль целых и сорок пять в периоде»

Пример 3. Разделить 15 на 13

Здесь период состоит из нескольких цифр, а именно из цифр 153846. Для наглядности период отделён синей линией. Сокращённая запись для данной периодической дроби будет выглядеть так:

1, (153846)

Читается как: «одна целая сто пятьдесят три тысячи восемьсот сорок шесть в периоде».

Пример 4. Разделить 471 на 900

В этом примере период начинается не сразу, а после цифр 5 и 2.  Сокращённая запись для данной периодической дроби будет выглядеть так:

0, 52 (3)

Читается как: «ноль целых пятьдесят две сотых и три в периоде».

Виды периодических дробей

Периодические дроби бывают двух видов: чистые и смешанные.

Если в периодической дроби период начинается сразу же после запятой, то такую периодическую дробь называют чистой. Например, следующие периодические дроби являются чистыми:

0, (3)

0, (6)

0, (5)

Видно, что в этих дробях период начинается сразу же после запятой.

Если же в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют смешанной. Например, следующие периодические дроби являются смешанными:

0,52 (3)

0,16 (5)

0,31 (6)

Видно, что в этих дробях период начинается не сразу, а после некоторого количества не повторяющихся цифр.

Избавляемся от хвоста

Подобно тому, как ящерица избавляется от хвоста, мы можем избавить периодическую дробь от повторяющегося периода. Для этого достаточно округлить эту периодическую дробь до нужного разряда.

Например округлим периодическую дробь 0, (3) до разряда сотых. Чтобы увидеть сохраняемую и отбрасываемую цифру, временно запишем дробь 0, (3) не в сокращённом виде, а в полном:

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит периодическая дробь 0, (3) при округлении до сотых обращается в дробь 0,33

0, (3) ≈ 0,33

Округлим периодическую дробь 6,31 (6) до разряда тысячных.

Запишем эту дробь в полном виде, чтобы увидеть сохраняемую и отбрасываемую цифру:

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит периодическая дробь 6,31 (6) при округлении до тысячных обращается в дробь 6,317

6,31 (6) ≈ 6,317

Перевод чистой периодической дроби в обыкновенную дробь

Перевод периодической дроби в обыкновенную это операция, которую мы будем применять довольно редко. Тем не менее, для нашего же развития желательно изучить и этот момент. А начнём мы с перевода чистой периодической дроби в обыкновенную дробь.

Мы уже говорили, что если период в периодической дроби начинается сразу после запятой, такую дробь называют чистой.

Чтобы перевести чистую периодическую дробь в обыкновенную дробь, нужно в числитель обыкновенной дроби записать период периодической дроби, а в знаменатель обыкновенной дроби записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби.

В качестве примера, рассмотрим чистую периодическую дробь 0, (3) — ноль целых и три в периоде. Попробуем перевести её в обыкновенную дробь.

Правило гласит, что в первую очередь в числитель обыкновенной дроби нужно записать период периодической дроби. Итак, записываем в числителе период дроби 0,(3) то есть тройку:

А в знаменатель нужно записать некоторое количество девяток. При этом,  количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (3).

В периодической дроби 0, (3) период состоит из одной цифры 3. Значит в знаменателе обыкновенной дроби записываем одну девятку:

Полученную дробь можно сократить на 3, тогда получим следующее:

Получили обыкновенную дробь  .

Таким образом, при переводе периодической дроби 0, (3) в обыкновенную дробь получается

 Пример 2. Перевести периодическую дробь 0, (45) в обыкновенную дробь.

Здесь период составляет две цифры 4 и 5. Записываем эти две цифры в числитель обыкновенной дроби:

А в знаменатель записываем некоторое количество девяток. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (45).

В периодической дроби 0, (45) период состоит из двух цифр 4 и 5. Значит в знаменателе обыкновенной дроби записываем две девятки:

Полученную дробь    можно сократить эту дробь на 9, тогда получим следующее:

Таким образом, при переводе периодической дроби 0, (45) в обыкновенную дробь получается 

Перевод смешанной периодической дроби в обыкновенную дробь

Чтобы перевести смешанную периодическую дробь в обыкновенную дробь, нужно в числителе записать разность в которой уменьшаемое это цифры, стоящие после запятой в периодической дроби, а вычитаемое — цифры, стоящие между запятой и первым периодом периодической дроби.

В знаменателе же нужно записать некоторое количество девяток и нулей. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби, а количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

Например, переведём смешанную периодическую дробь 0,31 (6) в обыкновенную дробь.

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

Итак, записываем в числителе разность:

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,31 (6)

В дроби 0,31 (6) период состоит из одной цифры. Значит в знаменатель дроби записываем одну девятку:

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,31 (6) между запятой и периодом располагается две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

Получили выражение, которое вычисляется легко:

Получили ответ 

Таким образом, при переводе периодической дроби 0,31 (6) в обыкновенную дробь, получается

Пример 2. Перевести смешанную периодическую дробь 0,72 (62) в обыкновенную дробь

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

Итак, записываем в числителе разность:

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,72 (62)

В дроби 0,72 (62) период состоит из двух цифр. Значит в знаменатель дроби записываем две девятки:

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,72 (62) между запятой и периодом располагаются две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

  

Получили выражение, которое вычисляется легко:

Получили ответ  

Значит при переводе периодической дроби 0,72 (62) в обыкновенную дробь, получается 

Понравился урок? Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Навигация по записям

spacemath.xyz

Рациональные числа - это периодические дроби — Науколандия

Как известно, множество рациональных чисел (Q) включает в себя множества целых чисел (Z), которое в свою очередь включает множество натуральных чисел (N). Помимо целых чисел в рациональные числа входят дроби.

Почему же тогда все множество рациональных чисел рассматривают иногда как бесконечные десятичные периодические дроби? Ведь кроме дробей, они включают и целые числа, а также непериодические дроби.

Дело в том, что все целые числа, а также любую дробь можно представить в виде бесконечной периодической десятичной дроби. То есть для всех рациональных чисел можно использовать одинаковый способ записи.

Как представляется бесконечная периодическая десятичная дробь? В ней повторяющуюся группу цифр после запятой берут в скобки. Например, 1,56(12) — это дробь, у которой повторяется группа цифр 12, т. е. дробь имеет значение 1,561212121212... и так без конца. Повторяющаяся группа цифр называется периодом.

Однако в подобном виде мы можем представить любое число, если будем считать его периодом цифру 0, которая также повторяется без конца. Например, число 2 — это то же самое, что 2,00000.... Следовательно, его можно записать в виде бесконечной периодической дроби, т. е. 2,(0).

То же самое можно сделать и с любой конечной дробью. Например:

0,125 = 0,1250000... = 0,125(0)

Однако на практике не используют преобразование конечной дроби в бесконечную периодическую. Поэтому разделяют конечные дроби и бесконечные периодические. Таким образом, правильнее говорить, что к рациональным числам принадлежат

  • все целые числа,
  • конечные дроби,
  • бесконечные периодические дроби.

При этом просто помнят, что целые числа и конечные дроби представимы в теории в виде бесконечных периодических дробей.

С другой стороны, понятия конечной и бесконечной дроби употребимы к десятичным дробям. Если говорить об обыкновенных дробях, то как конечную, так и бесконечную десятичную дробь можно однозначно представить в виде обыкновенной дроби. Значит, с точки зрения обыкновенных дробей, периодические и конечные дроби — это одно и то же. Кроме того, целые числа также могут быть представлены в виде обыкновенной дроби, если представить, что мы делим это число на 1.

Как представить десятичную бесконечную периодическую дробь в виде обыкновенной? Чаще используют примерно такой алгоритм:

  1. Приводят дробь к виду, чтобы после запятой оказался только период.
  2. Умножают бесконечную периодическую дробь на 10 или 100 или … так, чтобы запятая передвинулась вправо на один период (т. е. один период оказался в целой части).
  3. Приравнивают исходную дробь (a) переменной x, а полученную путем умножения на число N дробь (b) — к Nx.
  4. Из Nx вычитают x. Из b вычитаю a. Т. е. составляют уравнение Nx – x = b – a.
  5. При решении уравнения получается обыкновенная дробь.

Пример перевода бесконечной периодической десятичной дроби в обыкновенную дробь:x = 1,13333...10x = 11,3333...10x * 10 = 11,33333... * 10100x = 113,3333...100x – 10x = 113,3333... – 11,3333...90x = 102x =

scienceland.info

Периодические бесконечные десятичные дроби

Периодические бесконечные десятичные дроби

Винокурова Ю.-. 1

1МБОУ СОШ №9

Старкова Г.В. 1

1МБОУ СОШ №9 им М.И.Неделина

Текст работы размещён без изображений и формул.Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение.

Сначала я бы хотела объяснить, почему я взяла эту тему. Я взяла эту тему для того чтобы объяснить и самой узнать:

1.откуда появились периодические бесконечные десятичные дроби.

2.какие виды существуют.

3.для чего служат периодические бесконечные десятичные дроби.

4.как составить периодическую бесконечную дробь.

Цель: узнать, что такое периодические бесконечные десятичные дроби.

Актуальность выдвинутой мной проблемы заключается в привлечении учащихся к решению нестандартных задач, которые часто можно встретить в современных учебниках по математике.

Помогла мне выбрать эту тему мой учитель по математике Старкова Галина Владимировна.

Глава 2

Периодическая десятичная дробь — это любая десятичная дробь, у которой:

Значащая часть состоит из бесконечного количества цифр;

Через определенные интервалы цифры в значащей части повторяются.

Набор повторяющихся цифр, из которых состоит значащая часть, называется периодической частью дроби, а количество цифр в этом наборе — периодом дроби. Остальной отрезок значащей части, который не повторяется, называется непериодической частью.

Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:

Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.

Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.

Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.

Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом — в настоящем решении так делать не обязательно.

Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.

Глава 3

Существовало несколько высказываний как появились дроби и десятичные дроби.

1.Дроби появились в глубокой древности. При разделе добычи, при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести дроби. Но единой записи дробей, как и целых чисел, не было.

2.В древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины: чи, цуни, доли, порядковые, шерстинки, тончайшие, паутинки, дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзю-Чун-Чжи принял за единицу не чи, а чжан=10 чи, тогда эта дробь выглядела так: 2чжана, 1 чи, 3 цуни, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.

Полную теорию десятичных дробей дал узбекский ученый Джемшид Гиясэддин алКаши в книги «ключ к арифметике», изданной в 1424 году, в которой он показал запись дроби в одну строку с числами в десятичной системе и дал правила действия с ними. Ученый пользовался несколькими способами написания дроби: то он применял вертикальную черту, то чернила черного и красного цветов.

Дроби в Греции.

Греки, как и египтяне, первоначально имели дроби только с числителем, равным единице, и записывали их словами, а позже символами, например, дробь записывали так: ٧ א ′ Герон Александрийский (1 век до н.э.) применял дроби общего вида и записывал их без дробной черты, числитель и знаменатель ставил рядом, причем числитель записывал с одним штрихом, а знаменатель записывал дважды и отмечал двумя штрихами, например, записывал так: ß′ ε′′ε′′ . У греков был знак, заменяющий слово «получается» , назывался этот знак «гигнестай». Диофант ( III в.н.э) дроби записывал почти так же, как и мы, только над чертой писал знаменатель, а под чертой – числитель, слово частица и затем знаменатель.

Десятичные дроби в древности.

Некоторые элементы десятичной дроби встречаются в трудах многих ученых Европы в XII, XIII, XIV веках. Полную теорию десятичных дробей дал узбекский ученый Джемшид Гиясэддин ал-Каши в книге «Ключ к арифметике», изданной в 1424 году. Но этот труд до европейских ученых своевременно не дошел. Только через 150 лет после выхода этой книги (1585) фламандский ученый Симон Стевин в своей книге «О десятичной» описал правила действия с десятичными дробями. Его и считают изобретателем десятичных дробей. Стевин десятичные дроби записывал так: 0,3752= 3 7 5 2 или 5,693= 5 6 9 3 . У других авторов встречалась запись 3,7= 3 7 или 3/7, или целую часть записывали чернилами одного цвета, дробную – чернилами другого цвета.

Современные десятичные дроби.

Современную запись, т.е. отделение целой части запятой, предложил Кеплер (1571-1630гг.). В странах, где говорят по английский (Англия, США, Канада и др.), и сейчас вместо запятой пишут точку, например, 2,3 пишут 2.3 и читают: два точка три.

Глава 4

Виды периодических десятичных дробей.

Периодические дроби бывают двух видов: чистые и смешанные.

Если в периодической дроби период начинается сразу же после запятой, то такую периодическую дробь называют чистой. Например, следующие периодические дроби являются чистыми:

0, (3)

0, (6)

0, (5)

Видно, что в этих дробях период начинается сразу же после запятой.

Чтобы обратить чистую периодическую дробь в обыкновенную, достаточно записать числителем ее период, а в знаменателе записать столько девяток, сколько цифр в периоде.

Если же в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют смешанной. Например, следующие периодические дроби являются смешанными:

0,52 (3)

0,16 (5)

0,31 (6)

Видно, что в этих дробях период начинается не сразу, а после некоторого количества не повторяющихся цифр.

Чтобы записать смешанную периодическую дробь в виде обыкновенной, надо из числа, стоящего до второго периода вычесть число, стоящее до первого периода, результат записать в числителе; в знаменатель записать число, содержащее столько девяток, сколько цифр в периоде, и столько нулей в конце, сколько цифр между запятой и периодом.

Например. Запишем дробь в виде обыкновенной.

Примеры:

1. 2,71136136136…..=2,7(136)-смешанная

2. 11,33333333…….=11,(3)чистая

Глава 5

Применяются периодические бесконечные десятичные дроби к примеру в профессиях:

1.Кулинария- Повара применяют десятичные дроби для составления меню.

2.Парикмахер- Парикмахер применяет десятичные дроби для приготовления раствора для покраски волос и для завивки.

3.Продавцам и покупателям-в магазине при взвешивании товара.

4. Экономисты и бухгалтеры- Экономисты и бухгалтеры используют десятичные дроби для составления отчетов, расчетов.

5.Строители- Строители используют десятичные дроби для составления сметы.

Глава 6

Исчисление бесконечно малых — вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Исчисление бесконечно малых величин является общим понятием для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Понятие бесконечно малой величины тесно связано с понятием предела.

Бесконечно малая

Последовательность {displaystyle a_{n}} называется бесконечно малой, если {displaystyle lim limits _{nto infty }a_{n}=0}.

Например, последовательность чисел {displaystyle a_{n}={dfrac {1}{n}}} — бесконечно малая.

Функция называется бесконечно малой в окрестности точки {displaystyle x_{0}}, если {displaystyle lim limits _{xto x_{0}}f(x)=0}.

Функция называется бесконечно малой на бесконечности, если {displaystyle lim limits _{xto +infty }f(x)=0} либо {displaystyle lim limits _{xto -infty }f(x)=0}.

Также бесконечно малой является функция, представляющая собой разность

функции и её предела, то есть если {displaystyle lim limits _{xto +infty }f(x)=a}, то {displaystyle f(x)-a=alpha (x)}, {displaystyle lim limits _{xto +infty }(f(x)-a)=0}.

Подчеркнём, что бесконечно малую величину следует понимать как переменную величину (функцию), которая лишь в процессе своего изменения [при стремлении х{displaystyle x} к {displaystyle a}а (из {displaystyle lim limits _{xto a}f(x)=0})] делается меньше произвольного числа ( {displaystyle varepsilon }). Поэтому, например, утверждение типа «одна миллионная есть бесконечно малая величина» неверно: о числе [абсолютном значении] не имеет смысла говорить, что оно бесконечно малое.

Глава 7

Лейбниц и анализ бесконечно малых

Лейбниц и анализ бесконечно малых

«Почти все остальные крупные математики, — писал в XX веке Иозеф Хоффман, видный исследователь биографии Лейбница, — увлекались математикой уже в юные годы и разрабатывали радикально новые идеи. Однако этот период в жизни Лейбница не был ознаменован какими-либо заметными математическими открытиями». И в этом, и во многом другом Лейбниц очень отличается от Ньютона.

Когда Лейбниц прибыл в Париж, ему было уже 26 лет. К этому времени он был лишь поверхностно знаком с «Началами» Евклида и знал немногим больше элементарной арифметики, изученной в школе по книге Клавия. Как рассказывал много лет спустя один из его первых учеников Иоганн Бернулли, издание «Геометрии» Декарта с комментариями Ван Схотена, с которым Лейбниц бегло ознакомился в университете, показалось ему слишком сложным. В Нюрнберге, где он жил после получения степени доктора в Альдорфском университете (1666 год), он поверхностно изучил Geometria indivisibilibus Кавальери. Так что, когда он прибыл в Париж в марте 1672 года, его знания были весьма плачевными, хотя, по словам Хоффмана, математика была у Лейбница в крови.

Сохранилось множество рукописей и документов Лейбница, в частности почти все, написанное им в период обучения в Париже. Эти документы позволяют понять, как проходило его обучение и как он пришел к открытию анализа бесконечно малых.

В первый год в Париже Лейбниц был дилетантом в математике. Позднее он сам признавался, что мучился от недостатка знаний. В этом же году он впервые побывал в Лондоне, где при посредничестве Ольденбурга и Коллинза познакомился с английскими математиками. Его «святая простота», о которой он знал, его недооценка собственных возможностей вкупе с излишней открытостью и общительностью не раз приводили к недопониманию с британскими математиками и впоследствии стали одной из причин обвинений в плагиате.

Осенью 1672 года он познакомился с Христианом Гюйгенсом, самым известным ученым и математиком Европы, который в то время получал жалование во Французской академии наук. К тому времени Лейбниц уже совершил свое первое математическое открытие: он показал, как использовать разность для сложения чисел. Позднее он упоминал, что на мысль о взаимно обратной связи дифференцирования и интегрирования его навела взаимно обратная связь между сложением и вычитанием.

Рассуждения Лейбница были таковы. Допустим, что требуется найти сумму а1 +а2+ а3+ … + аn.Нам известно, что каждое из этих чисел является разностью двух других: ak= bk+1— bk.Следовательно, простое сокращение последовательных членов bkозначает, что а1 +а2+ а3+ … + аn= bn+1— b1.

Ввиду врожденного оптимизма и недостатка математических знаний Лейбниц посчитал, что открыл способ нахождения суммы произвольных рядов чисел. Его уверенность только усилилась, когда он поделился своим открытием с Гюйгенсом и тот предложил найти сумму чисел, обратных треугольным числам:

1/2 + 1/6 + 1/12 + 1/20 + …

По случайному совпадению, этот ряд — один из немногих, к которым применим способ, открытый Лейбницем, так как члены этого ряда имеют вид 1/n(n+1), то есть равны разности между 1/n и 1/(n+1). Таким образом,

1/2 + 1/6 + 1/12 + 1/20 + … = 1

Лейбниц вычислил суммы похожих рядов, образованных пирамидальными числами, и подготовил небольшую статью для публикации в Journal des Savants. Однако статья так и не увидела свет, поскольку весь 1673 год журнал не издавался. В этой статье Лейбниц цитирует Кавальери, Галилея, Валлиса, Грегори, Паскаля, Сен- Венсана и Архимеда, а также упоминает Гоббса как великого математика, что указывает на определенный прогресс в его образовании.

В январе 1673 года Лейбниц впервые посещает Лондон. Свой первый визит он нанес Генри Ольденбургу, секретарю Лондонского королевского общества и своему соотечественнику, который принял его с распростертыми объятиями.

Вывод:

1.периодическими бесконечными десятичными дробями занимались многие математики и говорили свою точку происхождения.

2.периодическая бесконечная десятичная дробь нужна в большинстве профессий.

3.периодическая бесконечная десятичная дробь:

1.Онисущественно обогащают наше представление о математике.

2.Ониоткрываютнамэстетическую сторону математики.

3.Они открывают математическую сторону окружающего мира.

4.Онимогутповысить интерес школьников к такой «сухой» и точной науке, как математика.

5.Они дают богатый материал для дополнительных исследовательских работ в школе.

4. Бесконечную периодическую десятичную дробь можно представить в виде обыкновенной дроби – это рациональное число.

Литература :

1. Серия «Мир Математики»- Истина в пределе «анализ бесконечно малых», Изд.:Де Агостини, 2014

2.Сайт «Яндекс. Картинки» https://yandex.ru/images/search?p=3&text

3. Сайт Формулы с примерами http://formula-xyz.ru/beskonechnye-desyatichnye-drobi.html

4. Учебно-методический портал http://sgt-portal.ks.ua/

5. Презентации по математике https://ppt4web.ru/matematika/desjatichnye-drobi-klass1.html

6. Сайт для подготовки к ОГЭ-ЕГЭ Раздел : Учебник https://youclever.org/book/desyatichnye-drobi-1

7. Сайт «Заочник.ру» https://www.zaochnik.com/spravochnik/matematika/dejstvitelnye-ratsionalnye-irratsionalnye-chisla/desjatichnye-drobi-opredelenija-zapis-primery-dejs/

8. Образовательный портал http://www.maam.ru/detskijsad/proekt-desjatichnye-drobi-vokrug-nas.html

9. Сайт для учителей http://uchitelya.com/matematika/21380-proekt-drobi-v-nashey-zhizni.html

10. Сайт по подготовке презентаций https://ppt4web.ru/matematika/periodicheskaja-drob-mne-ulybnulas.html

11.Портал «Википедия» https://ru.wikipedia.org/wiki/%D0%91%D0%B5%D1%81%D0%BA%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D0%BE_%D0%BC%D0%B0%D0%BB%D0%B0%D1%8F_%D0%B8_%D0%B1%D0%B5%D1%81%D0%BA%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D0%BE_%D0%B1%D0%BE%D0%BB%D1%8C%D1%88%D0%B0%D1%8F

12.https://yandex.ru/search/?text=%D0%A7%D0%B8%D1%81%D1%82%D0%BE%D0%B9%20%D0%BF%D0%B5%D1%80%D0%B8%D0%BE%D0%B4%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B9%20%D0%B4%D1%80%D0%BE%D0%B1%D1%8C%D1%8E%20%D0%BD%D0%B0%D0%B7%D1%8B%D0%B2%D0%B0%D0%B5%D1%82%D1%81%D1%8F%20&lr=10743&rnd=40175

Просмотров работы: 200

school-science.ru

Расчет чисел периодических циклов

Это очень легко и просто. Чтобы найти числа своих периодических циклов вам не нужно ничего, кроме числа, месяца и года вашего рождения.

Формула определения числа Первого периодического цикла

Число Первого периодического цикла – это преобразованное число месяца рождения.

Формула определения числа Второго периодического цикла

Число Второго периодического цикла – это преобразованное число дня рождения.

Правило: Число второго периодического цикла определяется днем вашего рождения. Преобразуйте все двузначные числа в однозначные, если они не являются управляющими

числами. Если вы родились 11-го или 22-го числа месяца, тогда не преобразуйте эти числа, так как они имеют особое значение, о чем будет сказано дальше.

Формула определения числа Третьего периодического цикла

Число Третьего периодического цикла – это преобразованное число года рождения.

Пример 19.12.1906

1. Число Первого периодического цикла -это преобразованное число месяца рождения. Определяя число Первого периодического цикла, не пропустите управляющие числа 1 + 2 = 3

Число Первого периодического цикла 3.

2.Число Второго периодического цикла -это преобразованное число дня рождения.

Определяя число Второго периодического цикла, не пропустите управляющие числа.

1 + 9 = 10 = 1 + 0 = 1

Число Второго периодического цикла 1

3.Число третьего периодического цикла – это преобразованное число года рождения.

Определяя число Третьего периодического цикла, не пропустите управляющие числа

1 + 9 + 0 + 6 = 16 = 1 + 6 = 7

Число Третьего периодического цикла 7

4. Теперь вернитесь к периодизации циклов в таблице времени, которую я представил раньше в этом мастер-классе. Выясняем, когда начинаются и заканчиваются периодические циклы для числа жизненного пути 11, а затем заполняем таблицу, помещенную ниже.

Переносим числа, которые мы записали в пунктах 1-3, и получим полную таблицу периодических циклов_для 19. 12. 1906.

Таблица периодических циклов.

  Возраст Число периодического цикла
Начало первого цикла
Конец первого цикла, начало второго цикла 25-26
Конец второго цикла, начало третьего цикла 52-53

 

Моя дата рождения:__________________________________________________

Определяя Число периодических циклов, не пропустите управляющие числа

1. Мое число Первого периодического цикла – это преобразованное число месяца вашего рождения. ______________________________________________

2 Мое число Второго периодического цикла – это преобразованное число дня вашего рождения.

_____________________________________________________________

3. Мое число Третьего периодического цикла – это преобразованное число года вашего рождения.

___________________________________________________________________

4. Теперь вернитесь к периодизации циклов в таблице времени, которую я представил раньше в этом мастер-классе. Выясните, когда начинаются и заканчиваются ваши периодические циклы, исходя из вашего числа жизненного пути _______________________, а затем заполните таблицу, помещенную ниже.

Перенесите числа, которые вы записали в пунктах 1-3, и вы получите полную таблицу своих периодических циклов.

Таблица моих периодических циклов.

  Возраст Число периодического цикла
Начало первого цикла    
Конец первого цикла, начало второго цикла    
Конец второго цикла, начало третьего цикла    

 

Числа периодических циклов рассказывают об условиях и уроках, с которыми Вам придется столкнуться и которые поведут Вас по Вашему пути (Число жизненного пути).

Характеристика чисел периодических циклов

Характеристика чисел периодических циклов приведена в Приложении

Домашнее задание.

Поразмыслите, в каком периодическом цикле вы сейчас находитесь. Насколько описание Числа периодического цикла совпадает с той деятельностью и теми задачами, которые вы сейчас выполняете. Если вы не согласны с какими-то формулировками, постарайтесь обосновать это.

Кульминационные циклы

Следующим аспектом нумерологии прогнозирования являются кульминационные циклы.

Ваши Числа Кульминационных циклов - это ваши достижения. Кульминационные циклы рассказывают о пути вперед и о названии правильной дороги. Бывает трудно понять внезапные, неожиданные перемены в своей жизни. Такие, как финансовая неустойчивость или брак, который неважно, по каким причинам просто разваливается. Каждый из таких этапов является частью истории нашей жизни, и понимание числа кульминационного цикла может раскрыть много тайн. Числа четырех кульминационных циклов – это предсказательные числа вашей карты. Благодаря им, вы узнаете, чего ждать впереди или понять что произошло в прошлом. Смена кульминационного цикла всегда происходит между 9-м и 1-м персональным годом. Поскольку мы проходим через многочисленные 9-летние циклы, каждый из которых вызывает изменения в начале и в конце, смена кульминационного цикла всегда приходится на периоды интенсивной трансформации нашей жизни. Вы можете подготовиться заранее к предстоящим переменам, зная число будущего кульминационного цикла и время, когда он начнётся. Каждое число кульминационного цикла показывает отношения и действия, необходимые в течение определенного периода жизни.



infopedia.su

Периодические десятичные дроби

⇐ ПредыдущаяСтр 5 из 6Следующая ⇒

Бесконечная десятичная дробь называется периодической, если ее последовательность цифр после запятой, начиная с некоторого места, представляет собой периодически повторяющуюся группу цифр. Другими словами периодическая дробь — десятичная дробь, имеющая вид

Такую дробь принято кратко записывать в виде

Повторяющаяся группа цифр называется периодом дроби, количество цифр в этой группе — длиной периода.

Если в периодической дроби период следует сразу после запятой, то дробь называется чистой периодической. Если же между запятой и первым периодом имеются цифры, дробь называется смешанной периодической, а группа цифр после запятой до первого знака периода — предпериодом дроби. Например, дробь является чистой периодической, а дробь — смешанной периодической.

Основной свойство периодических дробей, благодаря которому их выделяют из всей совокупности десятичных дробей, заключается в том, что периодические дроби и только они представляют рациональные числа. Точнее, имеет место следующее предложение.

Теорема. Всякая бесконечная периодическая десятичная дробь представляет рациональное число. Обратно, если рациональное число раскладывается в бесконечную десятичную дробь, то эта дробь является периодической.

Можно показать, что чисто периодические дроби соответствуют рациональным числам, в записи которых в виде несократимой дроби p / q, знаменатель q не имеет простых делителей 2 и 5, а также рациональным числам p / q, у которых знаменатель q имеет только простые делители 2 и 5. Соответственно, смешанные периодические дроби соответствуют несократимым дробям p / q, знаменатель q которых имеет как простые делители 2 или 5, так и отличные от них.

mykonspekts.ru

Равны ли 0,(9) и 1? Периодические дроби.

Отвечавшим на мою анкету и думавшим над вопросом про 0,(9) посвящается :)

Как-то сидели мы с martreya, iiryna и deadvom в пиццерии и мне почему-то пришёл в голову вопрос, который я позже задавал в анкете:

Равны ли числа 0,(9) и 1?

Вопрос этот, наверное, несколько странный и многих, особенно нематематиков, может удивить и ответа на него не будет. Мне здесь хочется немного прояснить свои и не только свои соображения по этому поводу. Начну издалека.

Как мы знаем, число - это одно из основополагающих понятий математики, мир чисел постоянно пополнялся на протяжении развития человечества. В первом классе мы изучали самые первые числа: 1, 2, 3... Эти числа называются натуральными, и их множество обозначается буквой N. В рамках этих чисел можно отлично выполнять операции сложения и умножения. Если же мы захотим применять вычитание, то из подсознания выплывает фраза вроде "Из 2 яблок нельзя вычесть 4" или что-то в этом духе. Таким образом, мы получаем какие-то ограничения, которые расширяются введением отрицательных чисел. Множество всех отрицательных и положительных чисел называется множеством целых чисел и обозначается буквой Z. В рамках этих чисел отрицание уже выполняется без всяких проблем (2 - 4 = -2).

Следующей общеизвестной арифметической операцией является деление. Если поделить 1 на 2, то получится число не из множества целых чисел. Таким образом, снова придётся расширять известные числа, чтобы вместить результаты и этой операции. Числа которые представимы в виде частного, то есть дроби m / n (m - числитель, n - знаменатель) - называются рациональными числами (множество Q). По своей сути, дроби - это как раз и есть рациональные числа, то есть обыкновенная дробь представляет собой частное, а результат деления числителя на знаменатель и есть рациональное число. Опять же, вспомнинаем школу и на ум приходят задачи типа "сложить треть яблока с половиной яблока" и некоторые проблемы, возникающие при сложении дробей. Проблема состояла в том, что их надо было приводить к общему знаменателю (то есть 1/3 + 1/2 = 3/6 + 2/6 = 5/6), поскольку складывать без проблем можно было только дроби с одинаковым знаменателем. Соответственно, для того, чтобы от этих проблем избавиться, и из-за того, что у нас принята десятичная система счисления, были введены десятичные дроби. То есть такие дроби, у которых знаменатель - какая-то степень 10, то есть 3/10, 12/100, 13/1000 и т.д. Записывают их либо с запятой как у нас - (2,34) , либо с точкой, как принято на Западе (2.34).

Возникает вопрос: "а как перевести обычные дроби в десятичные?". Вспоминая деление уголком, можно набросать нечто такое:

Если говорить формально - то задача перевода из обычной дроби в десятичную представляет собой задачу нахождения такой наименьшей степени десятки, которая будет делиться на знаменатель заданной обычной дроби. То есть например для перевода дроби 3 / 8: берём знаменатель 8 и перебираем степени 10 до тех пор, пока какая-то степень 10 не станет делиться на 8: 10 не делится, 100 не делится, а вот 1000 делится (1000 / 8 = 125), значит 3 / 8 = 375 / 1000 = 0,375. Однако, что делать, если такой степени не находится или в случае деления уголком - процесс не заканчивается? Например, попробуем поделить 1 на 3:

Как мы видим - процесс через некоторое время зацикливается - то есть повторяются те же остатки, и мы точно знаем, что следующие цифры будут повторять предыдущие.Таким образом имеем, что:

1/3 = 0.333333... Терпение, мы уже близки к ответу на вопрос :) Для того, чтобы отразить тот факт, что тройка в десятичной записи числа 1/3 повторяется и не писать троеточий - было введено специальное обозначение 0,(3). Часть в скобках называется "периодом" дроби, то есть бесконечно периодически повторяющейся частью дроби, а сама дробь - периодической. Таким образом, запись дроби с периодом является лишь иной формой записи обычного рационального числа, возникающей при переходе к конкретной системе счисления (в нашем случае десятичной) и период появляется, если в разложении на простые множители знаменателя уже сокращённой дроби присутствуют сомножители, на которые не делится основание системы счисления (например 6 = 2 * 3, 10 не делится на 3, потому у дроби 1/6 есть период в десятичной системе счисления). Кроме того, можно показать, что любая периодическая дробь является рациональным числом (то есть числом вида m / n), всего лишь представленным в альтернативном виде.

Таким образом можно смело записать что 0,(3) = 1/3, поскольку это одно и то же число, записанное различным образом. Соответственно, умножив на 3 каждую из частей уравнения, мы получаем, что 0,(9) = 1. Такое доказательство немного напоминает магию, однако всё дело в том, что по сути не существует чисел, разделив столбиком которые, мы могли бы получить число 0,(9) так, как мы получили 0,(3) разделив 1 и 3. Так что можно и усомниться в праве на существования у этого числа. Однако было бы нецелостно и математически нестрйоно отказываться от периодической формы записи в том случае, если число в периоде - 9, то есть 0,(9) или 1,(9) и т.д. Поэтому число 0,(9) в данный момент вполне признано и является лишь альтернативной, неудобной и ненужной формой записи числа 1.

Как мы видим, определение периодических дробей не имеет никакого отношения к рядам, анализу бесконечно малых величин, пределам и тому подобным вещам, преподаваемым в высшей школе. Резюмируя, можно сказать, что данная форма записи является всего лишь артефактом, вызванным применением конкретных систем счисления (в нашем случае десятичной системы). Насколько мне известно, некоторые математики (которых цитировал в одной из своих статей весьма известный Д. Кнут) ратуют за упразднение таких двузначных и спорных представлений чисел как 0,(9) и некоторых других.

Полезные ссылки по данному вопросу:Блог Ильи Бирмана, в котором он расcматривает похожий вопрос Статья из Википедии о 0,(9) и 1 (англ., рус.)Определение рационального числа на Википедии О периодических дробях и их свойствах на MathWorld.com (англ.) Описание процесса Decimal Expansion (представление дроби в десятичной форме) на MathWorld.com (англ.)

Надеюсь, что объяснения были вполне понятными и интересными. Все возникшие вопросы, замечания и исправления - буду рад видеть в комментариях!

dying-sphynx.livejournal.com

Периодические цикады и простые числа ≪ Scisne?

Периодическая цикада (Magicicada)

Периодические цикады (Magicicada) — род цикад, обитающих в восточной части Северной Америки. Эти насекомые имеют удивительно длинный жизненный цикл.

Личинки периодических цикад живут под землей на глубине от 30 см и более, питаясь соками корней растений. Они остаются неподвижными и проходят через пять стадий развития, превращаясь в нимф, прежде чем весной 13-го или 17-го года через туннель выйти на поверхность.

Взрослые периодические цикады живут только несколько недель — до середины июля, когда они полностью отмирают. Их недолговечность во взрослом состоянии объясняется одной целью их жизни — размножением. Подобно другим цикадам, самцы «поют» песни, привлекательные для самок, они издают очень громкие звуки. Самки отвечают на вызовы самцов периодическими щелчками крыльев, привлекающими самцов для спаривания. Звуки «хора» — групп самцов — могут достигают 100 децибел.

После спаривания самец быстро ослабевает и умирает. Жизнь самок несколько дольше: они делают от 6 до 20 V-образных разрезов в коре молодых прутьев, где откладывают до 600 яиц. Вскоре после этого самка также умирает. После от шести до десяти недель из яиц появляются новорожденные личинки, которые закапываются в землю, где они поселяются в норах и начинают новый цикл.

Есть гипотеза, что продолжительность циклов большинства цикад не случайна, а представляет собой интервалы из простых чисел (чисел, делимых без остатка только на себя — 3, 5, 7, 11, 13, 17 и т. д.), являясь наиболее действенной стратегией выживания и размножения.

Периодические цикады на листьях

Яйца периодических цикад в щелях (помечены красным цветом)

Исследования показали, что численность животных, которые питаются цикадами — обычно птицы, пауки, осы, богомолы, рыбы и змеи — часто демонстрируют более короткий цикл 2–6 лет между пиком и спадом популяции. Если бы цикады появлялись, например, каждые 12 лет, то каждый хищник с жизненным циклом 2, 3, 4 или 6 лет мог бы синхронизировать циклы подъёма своей численности с регулярным появлением цикад.

Такой жизненный цикл позволяет «разминуться» не только с хищниками, но и со своими сородичами, имеющими другую продолжительность жизненного цикла. Возможно, если бы разные виды цикад появлялись одновременно, это привело бы к близковидовому скрещиванию и появлению потомства с нерегулярным циклом.

scisne.net