Атмосфера, ее состав и структура. Функции атмосферы. Атмосфера где находится


Вертикальное строение атмосферы

Тропосфера

Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25—0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около —90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. Линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Принято считать, что граница атмосферы Земли и ионосферы находится на высоте 118 километров. Это показывает анализ параметров движения высокоэнергетических частиц, перемещающихся в атмосфере и ионосфере.

Термосфера

Верхний предел — около 800 км. Температура растёт до высот 200—300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») — основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности происходит заметное уменьшение размеров этого слоя.

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

 

Экзосфера (сфера рассеяния)

 

Атмосферные слои до высоты 120 км

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200—250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000—3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

meteoinfo.ru

Что такое воздух и атмосфера Земли

Атмосфера — это часть газовой оболочки вокруг планеты. С внутренней стороны она покрывает водяную и земную часть планеты, а с внешней граничит с околоземным космическим пространством. Одной из основных её функций является создание климатических условий, которые изучаются такими науками, как метеорология и климатология.

Согласно официальным научным исследованиям атмосферный воздух сформировался из выделенных газов в следствие вулканических извержений. При появлении океанов и биосферы дальнейшее её образование происходило при газообмене с водой, растительным и животным миром и продуктами их жизнедеятельности и разложения.

На сегодняшний момент в атмосфере содержатся газообразные и твёрдые вещества (пыль, морские минералы, продукты горения и другие).

Процентное содержание воды и углекислого газа практически неизменно в отличие от других веществ. Самый большой процент из химических элементов приходится на азот, его в атмосфере около 76–78%. Затем, по убыванию идут кислород (около 22%), аргон (около 1%), углерод в виде углекислого газа (менее 1%) и множество других элементов, чьё содержание в воздухе составляет также менее 1%. Благодаря этим веществам люди, животные, растения и другие организмы могут нормально существовать на планете.

Польза атмосферы неоценима, так как именно благодаря ей существует всё живое на планете. Люди и животные живут, вдыхая кислород, а растения – поглощая углекислый газ, которые содержатся в воздухе. Но чтобы понять, насколько важна атмосфера, необходимо изучить все её слои и их влияние на планету. Таких оболочек современная наука насчитывает 5: тропосфера, стратосфера, мезосфера, термосфера и экзосфера.

Слои атмосферы

  • Тропосферой называется самый первый слой атмосферы, над поверхностью планеты. Именно в ней и содержится необходимое соотношение веществ, позволяющих дышать существам, населяющим планету. В этой части атмосферы происходит движение циклонов и антициклонов в виде облаков и круговорот воды в природе.
  • Стратосфера и мезосфера содержат в себе накопление озона, которое называется озоновым слоем. Известно, что он защищает от вредного воздействия ультрафиолетовых и инфракрасных излучений, которые являются частью солнечного света. Также эти слои защищают всё живое на планете от радиации космических лучей.
  • Термосфера и Экзосфера являются верхними пределами атмосферы планеты Земли и состоят из ионизированного воздуха. Именно в этих слоях под действием радиоактивного солнечного и космического излучения образуется «полярное сияние».

Благодаря тому, что были изучены химический состав и физические свойства всех слоёв атмосферы, человеку открылись новые возможности, такие, как полёт в небо и космос. Люди научились прогнозировать климатические изменения и узнали о тех местностях, где воздух является полезным и даже целебным для здоровья. Но самое главное, это всё-таки то, что все живые существа могут дышать и находится под защитой от вредоносных космических излучений благодаря атмосфере. Без неё наша планета не сильно бы отличалась от безжизненной Луны, Марса и других планет солнечной системы.

Значение атмосферы

Значимость атмосферы воздуха неоценима, но не стоит забывать о том, что современная техника и производство наносят колоссальный вред и разрушают защитные атмосферные оболочки. Эти процессы могут привести к катастрофе планетарного масштаба. Например, химические вещества, широко применяемые в производстве аэрозолей, устройств кондиционирования и подачи тёплого воздуха, противопожарные системы и т. д. являются разрушающими озоновый слой . В результате чего появляются озоновые дыры, через которые проходят на землю ультрафиолетовые и инфракрасные солнечные лучи в небезопасном количестве, что приводит к повреждению кожных покровов и сетчатки глаза.

Также нельзя оставить без внимания и «парниковый эффект». Это процесс накопления в нижних слоях атмосферы различных газов, которые появляются в результате промышленной деятельности человека. Газовые выбросы поднимают температуру воздуха, что приводит к таянию льдов и повышению уровня мирового океана. В недалёком будущем может настать момент, когда вся суша планеты покроется водой и наступить всемирное затопление.

Зная о пользе атмосферы воздуха и о способах её разрушения, каждый человек должен задуматься над тем, не является ли его жизнедеятельность губительной для окружающей среды. Да, возможно, ещё не одна сотня или тысяча поколений потомков сможет прожить на планете в безопасности и, одновременно, губя её техническими достижениями. Но всё-таки стоит не забывать о пользе атмосферы и её значении для всего живого и быть более гуманными по отношению к ней.

www.alto-lab.ru

Атмосфера Земли - «Энциклопедия»

АТМОСФЕРА Земли (от греческого ?τμ?ς - пар, испарение и σφα?ρα - шар), воздушная оболочка, состоящая из ряда газов и взвешенных в ней частиц примесей - аэрозолей. Масса атмосфера 5,157?1015 т. Столб воздуха оказывает давление на поверхность Земли: среднее атмосферное давление на уровне моря 1013,25 гПа (около 760 мм ртутного столба). Средняя по глобусу температура воздуха у поверхности Земли 15°С, при этом температура изменяется примерно от 57°С в субтропических пустынях до -89°С в Антарктиде. Плотность воздуха и давление убывают с высотой по закону, близкому к экспоненциальному.

Строение атмосферы. По вертикали атмосфера имеет слоистую структуру, определяемую главным образом особенностями вертикального распределения температуры (рисунок), которое зависит от географического положения, сезона, времени суток и так далее. Нижний слой атмосферы - тропосфера - характеризуется падением температуры с высотой (примерно на 6°С на 1 км), его высота от 8-10 км в полярных широтах до 16-18 км в тропиках. Благодаря быстрому убыванию плотности воздуха с высотой в тропосфере находится около 80% всей массы атмосферы. Над тропосферой располагается стратосфера - слой, который характеризуется в общем повышением температуры с высотой. Переходный слой между тропосферой и стратосферой называется тропопаузой. В нижней стратосфере до уровня около 20 км температура мало меняется с высотой (так называемая изотермическая область) и нередко даже незначительно уменьшается. Выше температура возрастает из-за поглощения УФ-радиации Солнца озоном, вначале медленно, а с уровня 34-36 км - быстрее. Верхняя граница стратосферы - стратопауза - расположена на высоте 50-55 км, соответствующей максимуму температуры (260-270 К). Слой атмосферы, расположенный на высоте 55-85 км, где температура снова падает с высотой, называется мезосферой, на его верхней границе - мезопаузе - температура достигает летом 150-160 К, а зимой 200-230 К. Над мезопаузой начинается термосфера - слой, характеризующийся быстрым повышением температуры, достигающей на высоте 250 км значений 800-1200 К. В термосфере поглощается корпускулярная и рентгеновская радиация Солнца, тормозятся и сгорают метеоры, поэтому она выполняет функцию защитного слоя Земли. Ещё выше находится экзосфера, откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от атмосферы к межпланетному пространству.

Реклама

Состав атмосферы. До высоты около 100 км атмосфера практически однородна по химическому составу и средняя молекулярная масса воздуха (около 29) в ней постоянна. Вблизи поверхности Земли атмосфера состоит из азота (около 78,1% по объёму) и кислорода (около 20,9%), а также содержит малые количества аргона, диоксида углерода (углекислого газа), неона и других постоянных и переменных компонентов (смотри Воздух).

Кроме того, атмосфера содержит небольшие количества озона, оксидов азота, аммиака, радона и др. Относительное содержание основных составляющих воздуха постоянно во времени и однородно в разных географических районах. Содержание водяного пара и озона переменно в пространстве и времени; несмотря на малое содержание, их роль в атмосферных процессах весьма существенна.

Выше 100-110 км происходит диссоциация молекул кислорода, углекислого газа и водяного пара, поэтому молекулярная масса воздуха уменьшается. На высоте около 1000 км начинают преобладать лёгкие газы - гелий и водород, а ещё выше атмосфера Земли постепенно переходит в межпланетный газ.

Наиболее важная переменная компонента атмосферы - водяной пар, который поступает в атмосферу при испарении с поверхности воды и влажной почвы, а также путём транспирации растениями. Относительное содержание водяного пара меняется у земной поверхности от 2,6% в тропиках до 0,2% в полярных широтах. С высотой оно быстро падает, убывая наполовину уже на высоте 1,5-2 км. В вертикальном столбе атмосферы в умеренных широтах содержится около 1,7 см «слоя осаждённой воды». При конденсации водяного пара образуются облака, из которых выпадают осадки атмосферные в виде дождя, града, снега.

Важной составляющей атмосферного воздуха является озон, сосредоточенный на 90% в стратосфере (между 10 и 50 км), около 10% его находится в тропосфере. Озон обеспечивает поглощение жёсткой УФ-радиации (с длиной волны менее 290 нм), и в этом - его защитная роль для биосферы. Значения общего содержания озона меняются в зависимости от широты и сезона в пределах от 0,22 до 0,45 см (толщина слоя озона при давлении р= 1 атм и температуре Т = 0°С). В озоновых дырах, наблюдаемых весной в Антарктике с начала 1980-х годов, содержание озона может падать до 0,07 см. Оно увеличивается от экватора к полюсам и имеет годовой ход с максимумом весной и минимумом осенью, причём амплитуда годового хода мала в тропиках и растёт к высоким широтам. Существенной переменной компонентой атмосферы является углекислый газ, содержание которого в атмосфере за последние 200 лет выросло на 35%, что объясняется в основном антропогенным фактором. Наблюдается его широтная и сезонная изменчивость, связанная с фотосинтезом растений и растворимостью в морской воде (согласно закону Генри, растворимость газа в воде уменьшается с ростом её температуры).

Важную роль в формировании климата планеты играет атмосферный аэрозоль - взвешенные в воздухе твёрдые и жидкие частицы размером от нескольких нм до десятков мкм. Различаются аэрозоли естественного и антропогенного происхождения. Аэрозоль образуется в процессе газофазных реакций из продуктов жизнедеятельности растений и хозяйственной деятельности человека, вулканических извержений, в результате подъёма пыли ветром с поверхности планеты, особенно с её пустынных регионов, а также образуется из космической пыли, попадающей в верхние слои атмосферы. Большая часть аэрозоля сосредоточена в тропосфере, аэрозоль от вулканических извержений образует так называемый слой Юнге на высоте около 20 км. Наибольшее количество антропогенного аэрозоля попадает в атмосферу в результате работы автотранспорта и ТЭЦ, химических производств, сжигания топлива и др. Поэтому в некоторых районах состав атмосферы заметно отличается от обычного воздуха, что потребовало создания специальной службы наблюдений и контроля за уровнем загрязнения атмосферного воздуха.

Эволюция атмосферы. Современная атмосфера имеет, по-видимому, вторичное происхождение: она образовалась из газов, выделенных твёрдой оболочкой Земли после завершения формирования планеты около 4,5 млрд. лет назад. В течение геологической истории Земли атмосфера претерпевала значительные изменения своего состава под влиянием ряда факторов: диссипации (улетучивания) газов, преимущественно более лёгких, в космическое пространство; выделения газов из литосферы в результате вулканической деятельности; химических реакций между компонентами атмосферы и породами, слагающими земную кору; фотохимических реакций в самой атмосфере под влиянием солнечного УФ-излучения; аккреции (захвата) материи межпланетной среды (например, метеорного вещества). Развитие атмосферы тесно связано с геологическими и геохимическими процессами, а последние 3-4 миллиарда лет также с деятельностью биосферы. Значительная часть газов, составляющих современной атмосферы (азот, углекислый газ, водяной пар), возникла в ходе вулканической деятельности и интрузии, выносившей их из глубин Земли. Кислород появился в заметных количествах около 2 миллиардов лет тому назад как результат деятельности фотосинтезирующих организмов, первоначально зародившихся в поверхностных водах океана.

По данным о химическом составе карбонатных отложений получены оценки количества углекислого газа и кислорода в атмосфере геологического прошлого. На протяжении фанерозоя (последние 570 миллионов лет истории Земли) количество углекислого газа в атмосфере изменялось в широких пределах в соответствии с уровнем вулканической активности, температурой океана и уровнем фотосинтеза. Большую часть этого времени концентрация углекислого газа в атмосфере была значительно выше современной (до 10 раз). Количество кислорода в атмосфере фанерозоя существенно изменялось, причём преобладала тенденция к его увеличению. В атмосфере докембрия масса углекислого газа была, как правило, больше, а масса кислорода - меньше по сравнению с атмосферой фанерозоя. Колебания количества углекислого газа оказывали в прошлом существенное влияние на климат, усиливая парниковый эффект при росте концентрации углекислого газа, благодаря чему климат на протяжении основной части фанерозоя был гораздо теплее по сравнению с современной эпохой.

Атмосфера и жизнь. Без атмосферы Земля была бы мёртвой планетой. Органическая жизнь протекает в тесном взаимодействии с атмосферой и связанными с ней климатом и погодой. Незначительная по массе по сравнению с планетой в целом (примерно миллионная часть), атмосфера является непременным условием для всех форм жизни. Наибольшее значение из атмосферных газов для жизнедеятельности организмов имеют кислород, азот, водяной пар, углекислый газ, озон. При поглощении углекислого газа фотосинтезирующими растениями создаётся органическое вещество, используемое как источник энергии подавляющим большинством живых существ, включая человека. Кислород необходим для существования аэробных организмов, для которых приток энергии обеспечивается реакциями окисления органического вещества. Азот, усваиваемый некоторыми микроорганизмами (азотофиксаторами), необходим для минерального питания растений. Озон, поглощающий жёсткое УФ-излучение Солнца, значительно ослабляет эту вредную для жизни часть солнечной радиации. Конденсация водяного пара в атмосфере, образование облаков и последующее выпадение атмосферных осадков поставляют на сушу воду, без которой невозможны никакие формы жизни. Жизнедеятельность организмов в гидросфере во многом определяется количеством и химическим составом атмосферных газов, растворённых в воде. Поскольку химический состав атмосферы существенно зависит от деятельности организмов, биосферу и атмосферу можно рассматривать как часть единой системы, поддержание и эволюция которой (смотри Биогеохимические циклы) имела большое значение для изменения состава атмосферы на протяжении истории Земли как планеты.

Радиационный, тепловой и водный балансы атмосферы. Солнечная радиация является практически единственным источником энергии для всех физических процессов в атмосфере. Главная особенность радиационного режима атмосферы - так называемый парниковый эффект: атмосфера достаточно хорошо пропускает к земной поверхности солнечную радиацию, но активно поглощает тепловое длинноволновое излучение земной поверхности, часть которого возвращается к поверхности в форме встречного излучения, компенсирующего радиационную потерю тепла земной поверхностью (смотри Атмосферное излучение). В отсутствие атмосферы средняя температура земной поверхности была бы -18°С, в действительности она 15°С. Приходящая солнечная радиация частично (около 20%) поглощается в атмосферу (главным образом водяным паром, каплями воды, углекислым газом, озоном и аэрозолями), а также рассеивается (около 7%) на частицах аэрозоля и флуктуациях плотности (рэлеевское рассеяние). Суммарная радиация, достигая земной поверхности, частично (около 23%) отражается от неё. Коэффициент отражения определяется отражательной способностью подстилающей поверхности, так называемое альбедо. В среднем альбедо Земли для интегрального потока солнечной радиации близко к 30%. Оно меняется от нескольких процентов (сухая почва и чернозём) до 70-90% для свежевыпавшего снега. Радиационный теплообмен между земной поверхностью и атмосферой существенно зависит от альбедо и определяется эффективным излучением поверхности Земли и поглощённым ею противоизлучением атмосферы. Алгебраическая сумма потоков радиации, входящих в земную атмосферу из космического пространства и уходящих из неё обратно, называется радиационным балансом.

Преобразования солнечной радиации после её поглощения атмосферой и земной поверхностью определяют тепловой баланс Земли как планеты. Главный источник тепла для атмосферы - земная поверхность; теплота от неё передаётся не только в виде длинноволнового излучения, но и путём конвекции, а также выделяется при конденсации водяного пара. Доли этих притоков теплоты равны в среднем 20%, 7% и 23% соответственно. Сюда же добавляется около 20% теплоты за счёт поглощения прямой солнечной радиации. Поток солнечной радиации за единицу времени через единичную площадку, перпендикулярную солнечным лучам и расположенную вне атмосферы на среднем расстоянии от Земли до Солнца (так называемая солнечная постоянная), равен 1367 Вт/м2, изменения составляют 1-2 Вт/м2 в зависимости от цикла солнечной активности. При планетарном альбедо около 30% средний по времени глобальный приток солнечной энергии к планете составляет 239 Вт/м2. Поскольку Земля как планета испускает в космос в среднем такое же количество энергии, то, согласно закону Стефана - Больцмана, эффективная температура уходящего теплового длинноволнового излучения 255 К (-18°С). В то же время средняя температура земной поверхности составляет 15°С. Разница в 33°С возникает за счёт парникового эффекта.

Водный баланс атмосферы в целом соответствует равенству количества влаги, испарившейся с поверхности Земли, количеству осадков, выпадающих на земную поверхность. Атмосфера над океанами получает больше влаги от процессов испарения, чем над сушей, а теряет в виде осадков 90%. Избыток водяного пара над океанами переносится на континенты воздушными потоками. Количество водяного пара, переносимого в атмосферу с океанов на континенты, равно объёму стока рек, впадающих в океаны.

Движение воздуха. Земля имеет шарообразную форму, поэтому к её высоким широтам приходит гораздо меньше солнечной радиации, чем к тропикам. Вследствие этого между широтами возникают большие температурные контрасты. На распределение температуры в существенной мере влияет также взаимное расположение океанов и континентов. Из-за большой массы океанических вод и высокой теплоёмкости воды сезонные колебания температуры поверхности океана значительно меньше, чем суши. В связи с этим в средних и высоких широтах температура воздуха над океанами летом заметно ниже, чем над континентами, а зимой - выше.

Неодинаковый разогрев атмосферы в разных областях земного шара вызывает неоднородное по пространству распределение атмосферного давления. На уровне моря распределение давления характеризуется относительно низкими значениями вблизи экватора, увеличением в субтропиках (пояса высокого давления) и понижением в средних и высоких широтах. При этом над материками внетропических широт давление зимой обычно повышено, а летом понижено, что связано с распределением температуры. Под действием градиента давления воздух испытывает ускорение, направленное от областей с высоким давлением к областям с низким, что приводит к перемещению масс воздуха. На движущиеся воздушные массы действуют также отклоняющая сила вращения Земли (сила Кориолиса), сила трения, убывающая с высотой, а при криволинейных траекториях и центробежная сила. Большое значение имеет турбулентное перемешивание воздуха (смотри Турбулентность в атмосфере).

С планетарным распределением давления связана сложная система воздушных течений (общая циркуляция атмосферы). В меридиональной плоскости в среднем прослеживаются две или три ячейки меридиональной циркуляции. Вблизи экватора нагретый воздух поднимается и опускается в субтропиках, образуя ячейку Хэдли. Там же опускается воздух обратной ячейки Феррела. В высоких широтах часто прослеживается прямая полярная ячейка. Скорости меридиональной циркуляции порядка 1 м/с или меньше. Из-за действия силы Кориолиса в большей части атмосферы наблюдаются западные ветры со скоростями в средней тропосфере около 15 м/с. Существуют сравнительно устойчивые системы ветров. К ним относятся пассаты - ветры, дующие от поясов высокого давления в субтропиках к экватору с заметной  восточной составляющей (с востока на запад). Достаточно устойчивы муссоны — воздушные течения, имеющие чётко выраженный сезонный характер: они дуют с океана на материк летом и в противоположном направлении зимой. Особенно регулярны муссоны Индийского океана. В средних широтах движение воздушных масс имеет в основном западное направление (с запада на восток). Это зона атмосферных фронтов, на которых возникают крупные вихри - циклоны и антициклоны, охватывающие многие сотни и даже тысячи километров. Циклоны возникают и в тропиках; здесь они отличаются меньшими размерами, но очень большими скоростями ветра, достигающего ураганной силы (33 м/с и более), так называемые тропические циклоны. В Атлантике и на востоке Тихого океана они называются ураганами, а на западе Тихого океана - тайфунами. В верхней тропосфере и нижней стратосфере в областях, разделяющих прямую ячейку меридиональной циркуляции Хэдли и обратную ячейку Феррела, часто наблюдаются сравнительно узкие, в сотни километров шириной, струйные течения с резко очерченными границами, в пределах которых ветер достигает 100-150 и даже 200 м/с.

Климат и погода. Различие в количестве солнечной радиации, приходящей на разных широтах к разнообразной по физическим свойствам земной поверхности, определяет многообразие климатов Земли. От экватора до тропических широт температура воздуха у земной поверхности в среднем 25-30°С и мало меняется в течение года. В экваториальном поясе обычно выпадает много осадков, что создаёт там условия избыточного увлажнения. В тропических поясах количество осадков уменьшается и в ряде областей становится очень малым. Здесь располагаются обширные пустыни Земли.

В субтропических и средних широтах температура воздуха значительно меняется в течение года, причём разница между температурами лета и зимы особенно велика в удалённых от океанов областях континентов. Так, в некоторых районах Восточной Сибири годовая амплитуда температуры воздуха достигает 65°С. Условия увлажнения в этих широтах весьма разнообразны, зависят в основном от режима общей циркуляции атмосферы и существенно меняются от года к году.

В полярных широтах температура остаётся низкой в течение всего года, даже при наличии её заметного сезонного хода. Это способствует широкому распространению ледового покрова на океанах и суше и многолетнемёрзлых пород, занимающих в России свыше 65% её площади, в основном в Сибири.

За последние десятилетия стали всё более заметны изменения глобального климата. Температура повышается больше в высоких широтах, чем в низких; больше зимой, чем летом; больше ночью, чем днём. За 20 век среднегодовая температура воздуха у земной поверхности в России выросла на 1,5-2°С, причём в отдельных районах Сибири наблюдается повышение на несколько градусов. Это связывается с усилением парникового эффекта вследствие роста концентрации малых газовых примесей.

Погода определяется условиями циркуляции атмосферы и географическим положением местности, она наиболее устойчива в тропиках и наиболее изменчива в средних и высоких широтах. Более всего погода меняется в зонах смены воздушных масс, обусловленных прохождением атмосферных фронтов, циклонов и антициклонов, несущих осадки и усиление ветра. Данные для прогноза погоды собираются на наземных метеостанциях, морских и воздушных судах, с метеорологических спутников. Смотри также Метеорология.

Оптические, акустические и электрические явления в атмосфере. При распространении электромагнитного излучения в атмосфере в результате рефракции, поглощения и рассеяния света воздухом и различными частицами (аэрозоль, кристаллы льда, капли воды) возникают разнообразные оптические явления: радуга, венцы, гало, мираж и др. Рассеяние света обусловливает видимую высоту небесного свода и голубой цвет неба. Дальность видимости предметов определяется условиями распространения света в атмосфере (смотри Атмосферная видимость). От прозрачности атмосферы на различных длинах волн зависят дальность связи и возможность обнаружения объектов приборами, в том числе возможность астрономических наблюдений с поверхности Земли. Для исследований оптической неоднородностей стратосферы и мезосферы важную роль играет явление сумерек. Например, фотографирование сумерек с космических аппаратов позволяет обнаруживать аэрозольные слои. Особенности распространения электромагнитного излучения в атмосфере определяют точность методов дистанционного зондирования её параметров. Все эти вопросы, как и многие другие, изучает атмосферная оптика. Рефракция и рассеяние радиоволн обусловливают возможности радиоприёма (смотри Распространение радиоволн).

Распространение звука в атмосфере зависит от пространственного распределения температуры и скорости ветра (смотри Атмосферная акустика). Оно представляет интерес для зондирования атмосферы дистанционными методами. Взрывы зарядов, запускаемых ракетами в верхнюю атмосфера, дали богатую информацию о системах ветров и ходе температуры в стратосфере и мезосфере. В устойчиво стратифицированной атмосфере, когда температура падает с высотой медленнее адиабатического градиента (9,8 К/км), возникают так называемые внутренние волны. Эти волны могут распространяться вверх в стратосферу и даже в мезосферу, где они затухают, способствуя усилению ветра и турбулентности.

Отрицательный заряд Земли и обусловленное им электрическое поле атмосфера вместе с электрически заряженными ионосферой и магнитосферой создают глобальную электрическую цепь. Важную роль при этом играет образование облаков и грозового электричества. Опасность грозовых разрядов вызвала необходимость разработки методов грозозащиты зданий, сооружений, линий электропередач и связи. Особую опасность это явление представляет для авиации. Грозовые разряды вызывают атмосферные радиопомехи, получившие название атмосфериков (смотри Свистящие атмосферики). Во время резкого увеличения напряжённости электрического поля наблюдаются светящиеся разряды, возникающие на остриях и острых углах предметов, выступающих над земной поверхностью, на отдельных вершинах в горах и др. (Эльма огни). Атмосфера всегда содержит сильно меняющееся в зависимости от конкретных условий количество лёгких и тяжёлых ионов, которые определяют электрическую проводимость атмосферы. Главные ионизаторы воздуха у земной поверхности - излучение радиоактивных веществ, содержащихся в земной коре и в атмосфере, а также космические лучи. Смотри также Атмосферное электричество.

Влияние человека на атмосферу. В течение последних столетий происходил рост концентрации парниковых газов в атмосфере вследствие хозяйственной деятельности человека. Процентное содержание углекислого газа возросло с 2,8-102 двести лет назад до 3,8-102 в 2005 году, содержание метана - с 0,7-101 примерно 300- 400 лет назад до 1,8-10-4 в начале 21 века; около 20% в прирост парникового эффекта за последнее столетие дали фреоны, которых практически не было в атмосфере до середины 20 века. Эти вещества признаны разрушителями стратосферного озона, и их производство запрещено Монреальским протоколом 1987 года. Рост концентрации углекислого газа в атмосфере вызван сжиганием всё возрастающих количеств угля, нефти, газа и других видов углеродного топлива, а также сведением лесов, в результате чего уменьшается поглощение углекислого газа путём фотосинтеза. Концентрация метана увеличивается с ростом добычи нефти и газа (за счёт его потерь), а также при расширении посевов риса и увеличении поголовья крупного рогатого скота. Всё это способствует потеплению климата.

Для изменения погоды разработаны методы активного воздействия на атмосферные процессы. Они применяются для защиты сельскохозяйственных растений от градобития путём рассеивания в грозовых облаках специальных реагентов. Существуют также методы рассеяния туманов в аэропортах, защиты растений от заморозков, воздействия на облака с целью увеличения осадков в нужных местах или для рассеяния облаков в моменты массовых мероприятий.

Изучение атмосферы. Сведения о физических процессах в атмосфере получают прежде всего из метеорологических наблюдений, которые проводятся глобальной сетью постоянно действующих метеорологических станций и постов, расположенных на всех континентах и на многих островах. Ежедневные наблюдения дают сведения о температуре и влажности воздуха, атмосферном давлении и осадках, облачности, ветре и др. Наблюдения за солнечной радиацией и её преобразованиями проводятся на актинометрических станциях. Большое значение для изучения атмосферы имеют сети аэрологических станций, на которых при помощи радиозондов выполняются метеорологические измерения до высоты 30-35 км. На ряде станций проводятся наблюдения за атмосферным озоном, электрическими явлениями в атмосфере, химическим составом воздуха.

Данные наземных станций дополняются наблюдениями на океанах, где действуют «суда погоды», постоянно находящиеся в определённых районах Мирового океана, а также метеорологическими сведениями, получаемыми с научно-исследовательских и других судов.

Всё больший объём сведений об атмосфере в последние десятилетия получают с помощью метеорологических спутников, на которых установлены приборы для фотографирования облаков и измерения потоков ультрафиолетовой, инфракрасной и микроволновой радиации Солнца. Спутники позволяют получать сведения о вертикальных профилях температуры, облачности и её водозапасе, элементах радиационного баланса атмосферы, о температуре поверхности океана и др. Используя измерения рефракции радиосигналов с системы навигационных спутников, удаётся определять в атмосфере вертикальные профили плотности, давления и температуры, а также влагосодержания. С помощью спутников стало возможным уточнить величину солнечной постоянной и планетарного альбедо Земли, строить карты радиационного баланса системы Земля - атмосферы, измерять содержание и изменчивость малых атмосферных примесей, решать многие другие задачи физики атмосферы и мониторинга окружающей среды.

Лит.: Будыко М. И. Климат в прошлом и будущем. Л., 1980; Матвеев Л. Т. Курс общей метеорологии. Физика атмосферы. 2-е изд. Л., 1984; Будыко М. И., Ронов А. Б., Яншин А. Л. История атмосферы. Л., 1985; Хргиан А. Х. Физика атмосферы. М., 1986; Атмосфера: Справочник. Л., 1991; Хромов С. П., Петросянц М. А. Метеорология и климатология. 5-е изд. М., 2001.

Г. С. Голицын, Н. А. Зайцева.

knowledge.su

Слои атмосферы - тропосфера, стратосфера, мезосфера, термосфера и экзосфера

Общее

Земная атмосфера являет собой газовою оболочку планеты. Нижняя граница атмосферы проходит возле поверхности земли (гидросфера и земная кора), а верхняя граница является область соприкасающеюся космического пространства (122 км). В себе атмосфера содержит много разных элементов. Основные из них: 78% азот, 20% кислород, 1% аргон, углекислый газ, галий неона, водород и тд. Интересные факты можно посмотреть в конце статьи или перейдя по ссылке.

Атмосфера имеет четко выраженные слои воздуха. Слои воздуха отличаются между собой температурой, разностью газов и их плотностью и давлением. Нужно отметить, что слои стратосфера и тропосфера защищают Землю от солнечной радиации. В высших слоях живой организм может получить смертельную дозу ультрафиолетового солнечного спектра. Для быстрого перехода к нужному слою атмосферы, нажмите на соответствующий слой:

Тропосфера и тропопауза

Тропосфера — температура, давление, высота

Верхняя граница держится на отметке 8 — 10 км примерно. В умеренных широтах 16 — 18 км, а в полярных 10 — 12 км. Тропосфера — это нижний главный слой атмосферы. В этом слое находится более 80% всей массы атмосферного воздуха и близко 90% всей водяной пары. Именно в тропосфере возникают конвекция и турбулентность, образуются облака, происходят циклоны. Температура понижается с ростом высоты. Градиент: 0,65 °/100 м. Нагретая земля и вода нагревают прилагающий воздух. Нагретый воздух поднимается в верх, охлаждается и образует облака. Температура в верхних границах слоя может достигать — 50/70 °C.

Именно в этом слое происходят изменения климатических погодных условий. В нижнюю границу тропосферы называют приземным, так как он имеет много летучих микроорганизмов и пыли. Скорость ветра увеличивается с увеличением высоты в этом слое.

Тропопауза

Это переходной слой тропосферы к стратосфере. Здесь прекращается зависимость снижения температуры с повышением высоты. Тропопауза — минимальная высота, где вертикальный градиент температуры падает до 0,2°C/100 м. Высота тропопаузы зависит от сильных климатических проявлений, таких как циклоны. Над циклонами высота тропопаузы понижается, а над антициклонами повышается.

Стратосфера и Стратопауза

Высота слоя стратосферы примерно от 11 до 50 км. Присутствует незначительное изменение температуры на высоте 11 — 25 км. На высоте 25 — 40 км наблюдается инверсия температуры, от 56,5 поднимается до 0,8°C. От 40 км до 55 температура держится на отметке 0°C. Эту область называют — Стратопаузой.

В Стратосфере наблюдают воздействие солнечной радиации на молекулы газа, они диссоциируют на атомы. В этом слое нету почти водяного пара. Современные сверхзвуковые коммерческие самолёты летают на высоте до 20 км из-за стабильных полетных условий. Высотные метеозонды поднимаются на высоту 40 км. Здесь присутствуют устойчивые воздушные течения, скорость их достигает 300 км/ч. Также в этом слое сосредоточен озон, слой который поглощает ультрафиолетовые лучи.

Мезосфера и Мезопауза — состав, реакции, температура

Слой мезосферы начинается примерно на высоте 50 км и заканчивается на отметке 80 — 90 км. Температуры понижается с повышением высоты примерно 0,25-0,3°C/100 м. Основным энергетическим действием здесь является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов (имеет 1 или 2 непарных электронная) т.к. они реализуют свечение атмосферы.

Почти все метеоры сгорают в мезосфере. Ученые назвали эту зону — Игноросферой. Эту зону тяжело исследовать, так как аэродинамическая авиация здесь очень плохая из-за плотности воздуха, которая здесь в 1000 раз меньше чем на Земле. А для запуска искусственных спутников плотность еще очень высокая. Исследования проводят с помощью метеорологических ракет, но это извращенность. Мезопауза переходной слой между мезосферой и термосферой. Имеет температуру минимум -90°C.

Линия Кармана

Линию кармана называют границей между атмосферой Земли и космосом. Согласно международной авиационной федерацией (ФАИ) высота этой границы — 100 км. Такое определения дали в честь американского ученого Теодора Фон Кармана. Он определил, что примерно на этой высоте плотность атмосферы настолько мала, что аэродинамическая авиация здесь становится невозможная, так как скорость летательного устройства должна быть большей первой космической скорости. На такой высоте теряет смысл понятие звуковой барьер. Здесь управлять летательным аппаратом можно лишь за счет реактивных сил.

Термосфера и Термопауза

Верхняя граница этого слоя примерно 800 км. Температура растёт примерно до высоты 300 км где достигает порядка 1500 К. Выше температура остается неизменной. В этом слое происходит полярное сияние — происходит в следствии воздействия солнечной радиации на воздуха. Также этот процесс называют ионизацией атмосферного кислорода.

Из-за малой разряженности воздуха полёты выше линии Кармана реализуемы только по баллистических траекториях. Все пилотируемые орбитальные полеты (кроме полетов на Луну) происходят в этом слое атмосферы.

Экзосфера — плотность, температура, высота

Высота экзосферы выше 700 км. Здесь газ сильно разрежён,и происходит процесс диссипации — утечка частиц в межпланетное пространство. Скорость таких частиц может достигать 11,2 км/сек. Рост солнечной активности приводит к расширению толщины этого слоя.

Интересные факты

  • Газовая оболочка не улетает в космос из-за земного притяжения. Воздух состоит из частиц, которые имеют свою массу. Из закона тяготения можно вынести то, что каждый объект обладающий массой притягивается к Земли.
  • Закон Буйс-Баллота гласит, что если находиться в Северном полушарии и встать спиной к ветру, то справа будет располагаться зона высокого давления, а слева — низкого. В Южном же полушарии все будет наоборот.

Смотрите также:

terasfera.ru

Строение атмосферы

СТРОЕНИЕ АТМОСФЕРЫ

Атмосфе́ра (от. др.-греч. ἀτμός — пар и σφαῖρα — шар) — газовая оболочка (геосфера), окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и частично земную кору, внешняя граничит с околоземной частью космического пространства.

Физические свойства

Толщина атмосферы — примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере — (5,1—5,3)·1018 кг. Из них масса сухого воздуха составляет (5,1352 ±0,0003)·1018 кг, общая масса водяных паров в среднем равна 1,27·1016 кг.

Молярная масса чистого сухого воздуха составляет 28,966 г/моль, плотность воздуха у поверхности моря приблизительно равна 1,2 кг/м3. Давление при 0 °C на уровне моря составляет 101,325 кПа; критическая температура — −140,7 °C; критическое давление — 3,7 МПа; Cp при 0 °C — 1,0048·103 Дж/(кг·К), Cv — 0,7159·103 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде (по массе) при 0 °C — 0,0036 %, при 25 °C — 0,0023 %.

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м3, барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Атмосфера имеет слоистое строение. Слои атмосферы отличаются друг от друга температурой воздуха, его плотностью, количеством водяного пара в воздухе и другими свойствами. 

Тропосфе́ра (др.-греч. τρόπος — «поворот», «изменение» и σφαῖρα — «шар») — нижний, наиболее изученный слой атмосферы, высотой в полярных областях 8—10 км, в умеренных широтах до 10—12 км, на экваторе — 16—18 км.

При подъёме в тропосфере температура понижается в среднем на 0,65 К через каждые 100 м и достигает 180—220 K в верхней части. Этот верхний слой тропосферы, в котором снижение температуры с высотой прекращается, называюттропопаузой. Следующий, расположенный выше тропосферы, слой атмосферы называется стратосфера.

В тропосфере сосредоточено более 80 % всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, формируются и атмосферные фронты, развиваютсяциклоны и антициклоны, а также другие процессы, определяющие погоду и климат. Происходящие в тропосфере процессы обусловлены, прежде всего, конвекцией.

Часть тропосферы, в пределах которой на земной поверхности возможно зарождение ледников, называется хионосфера[3].

Тропопа́уза (от греч. τροπος — поворот, изменение и παῦσις — остановка, прекращение) — слой атмосферы, в котором прекращается снижение температуры с высотой; переходный слой от тропосферы к стратосфере. В земной атмосфере тропопауза расположена на высотах от 8—12 км (над уровнем моря) в полярных районах и до 16—18 км над экватором. Высота тропопаузы зависит также от времени года (летом тропопауза расположена выше, чем зимой) и циклонической деятельности (в циклонах она ниже, а в антициклонах — выше)

Толщина тропопаузы составляет от нескольких сотен метров до 2—3 километров. В субтропиках наблюдаются разрывы тропопаузы, обусловленные мощными струйными течениями. Тропопауза над отдельными районами часто разрушается и формируется заново.

Стратосфе́ра (от лат. stratum - настил, слой) — слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузойи является границей между стратосферой и мезосферой. Плотность воздуха в стратосфере в десятки и сотни раз меньше чем на уровне моря.

Именно в стратосфере располагается слой озоносферы («озоновый слой») (на высоте от 15—20 до 55—60 км), который определяет верхний предел жизни в биосфере. Озон (О3) образуется в результате фотохимических реакций наиболее интенсивно на высоте ~30 км. Общая масса О3 составила бы при нормальном давлении слой толщиной 1,7—4,0 мм, но и этого достаточно для поглощения губительного для жизни ультрафиолетового излучения Солнца. Разрушение О3 происходит при его взаимодействии со свободными радикалами, NO, галогенсодержащими соединениями (в т. ч. «фреонами»).

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180—200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц и других свечений.

В стратосфере и более высоких слоях под воздействием солнечной радиации молекулы газов диссоциируют — на атомы (выше 80 км диссоциируют СО2 и Н2, выше 150 км — О2, выше 300 км — N2). На высоте 200—500  км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О+2, О−2, N+2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы — ОН•, НО•2 и др.

В стратосфере почти нет водяного пара.

Полёты в стратосферу начались в 1930-годах. Широко известен полёт на первом стратостате (FNRS-1), который совершили Огюст Пикар и Пауль Кипфер 27 мая 1931 г. на высоту 16,2 км. Современные боевые и сверхзвуковые коммерческие самолёты летают в стратосфере на высотах в основном до 20 км (хотя динамический потолок может быть значительно выше). Высотные метеозонды поднимаются до 40 км; рекорд для беспилотного аэростата составляет 51,8 км.

В последнее время в военных кругах США большое внимание уделяют освоению слоёв стратосферы выше 20 км, часто называемых «предкосмосом» (англ. «near space»). Предполагается, что беспилотные дирижабли и самолёты на солнечной энергии (наподобие NASA Pathfinder) смогут длительное время находиться на высоте порядка 30 км и обеспечивать наблюдением и связью очень большие территории, оставаясь при этом малоуязвимыми для средств ПВО; такие аппараты будут во много раз дешевле спутников.

Стратопа́уза — слой атмосферы, являющийся пограничным между двумя слоями, стратосферой и мезосферой. В стратосфере температура повышается с увеличением высоты, а стратопауза является слоем, где температура достигает максимума. Температура стратопаузы — около 0 °C.

Данное явление наблюдается не только на Земле, но и на других планетах, имеющих атмосферу.

На Земле стратопауза находится на высоте 50 — 55 км над уровнем моря. Атмосферное давление составляет около 1/1000 от давления на уровне моря.

Мезосфе́ра (от греч. μεσο- — «средний» и σφαῖρα — «шар», «сфера») — слой атмосферы на высотах от 40—50 до 80—90 км. Характеризуется повышением температуры с высотой; максимум (порядка +50°C) температуры расположен на высоте около 60 км, после чего температура начинает убывать до −70° или −80°C. Такое понижение температуры связано с энергичным поглощением солнечной радиации (излучения) озоном. Термин принят Географическим и геофизическим союзом в 1951 году.

Газовый состав мезосферы, как и расположенных ниже атмосферных слоев, постоянен и содержит около 80 % азота и 20 % кислорода.

Мезосфера отделяется от нижележащей стратосферы стратопаузой, а от вышележащей термосферы — мезопаузой. Мезопауза в основном совпадает с турбопаузой.

Метеоры начинают светиться и, как правило, полностью сгорают в мезосфере.

В мезосфере могут появляться серебристые облака.

Для полётов мезосфера представляет собой своего рода «мёртвую зону» — воздух здесь слишком разрежен, чтобы поддерживать самолёты или аэростаты (на высоте 50 км плотность воздуха в 1000 раз меньше, чем на уровне моря), и в то же время слишком плотен для полётов искусственных спутников на такой низкой орбите. Прямые исследования мезосферы проводятся в основном с помощью суборбитальных метеорологических ракет; в целом мезосфера изучена хуже других слоёв атмосферы, в связи с чем учёные прозвали её «игноросферой».

Мезопа́уза — слой атмосферы, разделяющий мезосферу и термосферу. На Земле располагается на высоте 80—90 км над уровнем моря. В мезопаузе находится температурный минимум, который составляет около −100 °C. Ниже (начиная от высоты около 50 км) температура падает с высотой, выше (до высоты около 400 км) — снова растёт. Мезопауза совпадает с нижней границей области активного поглощения рентгеновского и наиболее коротковолнового ультрафиолетового излучения Солнца. На этой высоте наблюдаются серебристые облака.

Мезопауза есть не только на Земле, но и на других планетах, имеющих атмосферу.

Мезопа́уза — слой атмосферы, разделяющий мезосферу и термосферу. На Земле располагается на высоте 80—90 км над уровнем моря. В мезопаузе находится температурный минимум, который составляет около −100 °C. Ниже (начиная от высоты около 50 км) температура падает с высотой, выше (до высоты около 400 км) — снова растёт. Мезопауза совпадает с нижней границей области активного поглощения рентгеновского и наиболее коротковолнового ультрафиолетового излучения Солнца. На этой высоте наблюдаются серебристые облака.

Мезопауза есть не только на Земле, но и на других планетах, имеющих атмосферу.

Линия Ка́рмана — высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом.

В соответствии с определением Международной авиационной федерации (ФАИ), линия Кармана находится на высоте 100 км над уровнем моря.

Название высота получила по имени Теодора фон Кармана, американского учёного венгерского происхождения. Он первый определил, что примерно на этой высоте атмосфера становится настолько разрежённой, что аэронавтика становится невозможной, так как скорость летательного аппарата, необходимая для создания достаточной подъёмной силы, становится больше первой космической скорости, и поэтому для достижения бо́льших высот необходимо пользоваться средствамикосмонавтики.

Атмосфера Земли продолжается и за линией Кармана. Внешняя часть земной атмосферы, экзосфера, простирается до высоты 10 тыс. км и более, на такой высоте атмосфера состоит в основном из атомов водорода, способных покидать атмосферу.

Достижение Линии Кармана являлось первым условием для получения приза Ansari X Prize, так как это является основанием для признания полёта космическим.

studfiles.net

Атмосфера, ее состав и структура. Функции атмосферы.

Атмосфера (от. греч. ατμός — «пар» и σφαῖρα — «сфера») — газовая оболочка небесного тела, удерживаемая около него гравитацией. Атмосфера — газообразная оболочка планеты, состоящая из смеси различных газов, водных паров и пыли. Через атмосферу осуществляется обмен вещества Земли с Космосом. Земля получает космическую пыль и метеоритный материал, теряет самые легкие газы: водород и гелий. Атмосфера Земли насквозь пронизывается мощной радиацией Солнца, определяющей тепловой режим поверхности планеты, вызывающей диссоциацию молекул атмосферных газов и ионизацию атомов.

Атмосфера Земли содержит кислород, используемый большинством живых организмов для дыхания, и диоксид углерода, потребляемый растениями, водорослями и цианобактериями в процессе фотосинтеза. Атмосфера также является защитным слоем планеты, защищая её обитателей от солнечного ультрафиолетового излучения.

Атмосфера есть у всех массивных тел — планет земного типа, газовых гигантов.

Состав атмосферы

Атмосфера — это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), 0,038 % двуокиси углерода, и небольшое количество водорода, гелия, других благородных газов и загрязнителей.

Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО2 примерно на 10-12 %.Входящие в состав атмосферы газы выполняют различные функциональные роли. Однако основное значение этих газов определяется прежде всего тем, что они очень сильно поглощают лучистую энергию и тем самым оказывают существенное влияние на температурный режим поверхности Земли и атмосферы.

Начальный состав атмосферы планеты обычно зависит от химических и температурных свойств солнца в период формирования планет и последующего выхода внешних газов. Затем состав газовой оболочки эволюционирует под действием различных факторов.

Атмосфера Венеры и Марса в основном состоят из двуокиси углерода с небольшими добавлениями азота, аргона, кислорода и других газов. Земная атмосфера в большой степени является продуктом живущих в ней организмов. Низкотемпературные газовые гиганты — Юпитер, Сатурн, Уран и Нептун — могут удерживать в основном газы с низкой молекулярной массой — водород и гелий. Высокотемпературные газовые гиганты, такие как Осирис или 51 Пегаса b, наоборот, не могут её удержать и молекулы их атмосферы рассеиваются в пространстве. Этот процесс протекает медленно, постоянно.

Азот, самый распространенный газ в атмосфере, химически мало активен.

Кислород, в отличие от азота, химически очень активный элемент. Специфическая функция кислорода — окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.

 

Структура атмосферы

Структура атмосферы складывается из двух частей: внутренней— тропосферы, стратосферы, мезосферы и термосферы, или ионосферы, и внешней — магнитосферы (экзосферы).

1)Тропосфера – это нижняя часть атмосферы, в которой сосредоточено 3\4 т.е. ~ 80% всей земной атмосферы. Её высота определяется интенсивностью вертикальных (восходящих или нисходящих) потоков воздуха, вызванных нагреванием земной поверхности и океана, поэтому толщина тропосферы на экваторе составляет 16 – 18 км, в умеренных широтах 10-11 км, а на полюсах – до 8 км. Температура воздуха в тропосфере на высоте понижается на 0,6ºС на каждые 100м и колеблется от +40 до - 50ºС.

2)Стратосфера находится выше тропосферы и имеет высоту до 50км от поверхности планеты. Температура на высоте до 30км постоянная -50ºС. Затем она начинает повышаться и на высоте 50 км достигает +10ºС.

Верхней границей биосферы являются озоновый экран.

Озоновый экран – это слой атмосферы в пределах стратосферы, расположенный на разной высоте от поверхности Земли и имеющей максимальную плотность озона на высоте 20-26 км.

Высота озонового слоя у полюсов оценивается в 7 - 8 км, у экватора в 17-18км, а максимальная высота присутствия озона – 45-50 км. Выше озонового экрана жизнь невозможна из-за жёсткого ультрафиолетового излучения Солнца. Если спрессовать все молекулы озона, то получится слой ~ 3мм вокруг планеты.

3)Мезосфера – верхняя граница этого слоя располагается до высоты 80км. Главная её особенность – резкое понижение температуры -90ºС у её верхней границы. Здесь фиксируется серебристые облака, состоящие из ледяных кристаллов.

4)Ионосфера (термосфера)- располагается до высоты 800 км и для неё характерно значительное повышение температуры:

150км температура +240ºС,

200км температура +500ºС,

600км температура +1500ºС.

Под действием ультрафиолетового излучения Солнца газы находятся в ионизированном состоянии. С ионизацией связано свечение газов и возникновение полярных сияний.

Ионосфера обладает способностью многократного отражения радиоволн, что обеспечивает дальнюю радиосвязь на планете.

5)Экзосфера – располагается выше 800км и простирается до 3000км. Здесь температура >2000ºС. Скорость движения газов приближается к критической ~ 11,2 км/сек. Господствуют атомы водорода и гелия, которые образуют вокруг Земли светящуюся корону, простирающуюся до высоты 20000км.

Функций атмосферы

1) Терморегулирующая – погода и климат на Земле зависит от распределения тепла, давления.

2) Жизнеобеспечивающая.

3) В тропосфере происходит глобальные вертикальные и горизонтальные перемещения воздушных масс определяющий круговорот воды, теплообмен.

4) Практически все поверхности геологические процессы обусловлены взаимодействием атмосферы, литосферы и гидросферы.

5) Защитная – атмосфера защищает землю от космоса, солнечной радиации и метеоритной пыли.

Функции атмосферы. Без атмосферы жизнь на Земле была бы невозможна. Человек ежедневно потребляет 12-15 кг. воздуха, вдыхая каждую минуту от 5 до 100л, что значительно превосходит среднесуточную потребность в пище и воде. Кроме того, атмосфера надежно оберегает человека от опасностей, угрожающих ему из космоса: не пропускает метеориты, космические излучения. Без пищи человек может прожить пять недель, без воды - пять дней, без воздуха - пять минут. Нормальная жизнедеятельность людей требует не только воздуха, но и определенной его чистоты. От качества воздуха воздуха зависят здоровье людей, состояние растительного и животного мира, прочность и долговечность конструкций зданий, сооружений. Загрязненный воздух губителен для вод, суши, морей, почв. Атмосфера определяет световой и регулирует тепловой режимы земли, способствует перераспределению тепла на земном шаре. Газовая оболочка предохраняет Землю от чрезмерного остывания и нагревания. Если бы наша планета не была бы окружена воздушной оболочкой, то в течение одних суток амплитуда колебаний температуры достигла бы 200 С. Атмосфера спасает все живущее на Земле от губительных ультрафиолетовых, рентгеновских и космических лучей. Велико значение атмосферы в распределении света. Ее воздух разбивает солнечные лучи на миллион мелких лучей, рассеивает их и создает равномерное освещение. Атмосфера служит проводником звуков.

studopedya.ru

Атмосфера. Слои атмосферы. Почему небо голубое.

Атмосфера

Атмосфера – газообразная оболочка, окружающая Землю. Она удерживается на месте силой притяжения Земли, под действием которой большая часть газов скапливается над поверхностью земли – в самом нижнем слое атмосферы– тропосфере.

Мы живём в самом нижнем слое атмосферы. Самолёты курсируют в слое, называемой атмосферой. Такие явления, как полярные сияния в Северном и Южном полушарии возникают в термосфере. Выше находится космос.

Слои атмосферы

Сколько слоёв в атмосфере?

Существует пять основных слоёв атмосферы. Самый нижний слой– тропосфера – высотой 18 км от поверхности земли. Следующий слой – стратосфера простирается до высоты 50 км, выше – мезосфера – около 80 км над землёй. Самый верхний слой называется термосферой. Чем выше подниматься, тем менее плотной становится атмосфера; выше 1000 км земная атмосфера почти исчезает, и экзосфера(очень разряжённый пятый слой) переходит в безвоздушное пространство.

Как атмосфера защищает нас?

В стратосфере находится слой озона (соединение трёх атомов кислорода), который образует защитный экран, сдерживающий большую часть вредных ультрафиолетовых излучений. На границе атмосферы есть две радиационные зоны,известные как пояса Ван Аллена, которые также как щит отражают космические лучи.

Почему небо синего цвета?

Свет от солнца проходит через атмосферу и рассеивается,отражаясь от мелких частичек пыли и водяных паров, находящихся в воздухе. Так белый солнечный свет разбивается на спектральные части – цвета радуги.Синие лучи рассеиваются быстрее, чем остальные. В результате мы видим больше синего цвета, чем любых других цветов солнечного спектра, поэтому небо кажется синим.

 Продолжение

Облака всё время меняют форму. Причина этого -ветер. Одни вздымаются огромными массами, другие напоминают лёгкие пёрышки. Иногда облака полностью закрывают небо над нами.

Похожее

yznaj-ka.ru