Характеристики автомобильных двигателей


Характеристики автомобильных двигателей

Описание: При любом числе оборотов коленчатого вала двигатель должен устойчиво работать при всех нагрузках. Скоростные характеристики Внешней скоростной характеристикой называют зависимость от числа оборотов эффективной мощности крутящего момента часового и удельного расхода топлива при полностью открытой дроссельной заслонке в карбюраторном двигателе или при при максимальной подаче топлива в дизеле. На внешней скоростной характеристике отмечаются следующие характерные точки: минимальное число оборотов при котором двигатель может воспринимать...

Дата добавления: 2015-01-27

Размер файла: 461.76 KB

Работу скачали: 4 чел.

Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

3

ЛЕКЦИЯ 16

Характеристики автомобильных двигателей

1 ОБЩИЕ СВЕДЕНИЯ

Особенностью автомобильного двигателя является его работа при изменении скоростного режима в широком диапазоне. При любом числе оборотов коленчатого вала двигатель должен устойчиво работать при всех нагрузках.По условиям баланса мощности, используемой для преодоления трения в силовой передаче, сопротивления качению и сопротивления воздуха, должен иметь определенный запас мощности для преодоления дополнительных сопротивлений, возникающих при движении автомобиля на подъем, трогании с места, разгоне и.т.п. На всех режимах двигатель должен работать экономично.Двигатель для автомобиля выбирают по характеристикам, которые определяют все качества данного двигателя и его пригодность к работе вразличных условиях. Эти характеристики позволяют также сравнивать между собой различные двигатели.В эксплуатационных условиях двигатель работает почти все время при непрерывно изменяющихся неустановившихся режимах. Получение полных данных, характеризующих работу двигателя при таких режимах, затруднительно. Поэтому основные характеристики определяют при испытании двигателя на стенде при установившихся режимах.

2 ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ

2.1 Скоростные характеристики

Внешней скоростной характеристикой называют зависимость от числа оборотов эффективной мощности, крутящего момента, часового и удельного расхода топлива при полностью открытой дроссельной заслонке в карбюраторном двигателе или при при максимальной подаче топлива в дизеле. На внешней скоростной характеристике отмечаются следующие характерные точки:

  •  минимальное число оборотов, при котором двигатель может воспринимать нагрузку;
  •  число оборотов, при котором крутящий момент достигает наибольшего значения;
  •  число оборотов, при котором удельный равсход топлива достигает наименьшего значения;
  •  число оборотов, при котором эффективная мощность достигает номинального значения;
  •  число оборотов, при котором ограничивается число максимальных оборотов регулятором;
  •  число оборотов, при котором крутящий момент и эффективная мощность равны моменту механических потерь и мощности механических потерь – разносная частота;

Индикаторный крутящий момент равен

Аналогично записываются формулы для Me и Mм.

Частичные скоростные характеристики определяют зависимость показателей двигатенля в зависимости от частоты вращения при различных постоянных положениях дроссельной заслонки или рейки ТНВД. По мере прикрытия дроссельной заслонки и снижении нагрузки вследствии увеличения сопротивления в

системе впуска коэффициент наполнения падает более резко при повышении частоты вращения, а максимум эффективной мощности смещается в сторону меньшей частоты вращения. Этим можно воспользоваться для предотвращения разноса в случае уменьшения нагрузки двигателя.

При КИВ>1 удельный расход топлива будет минимальным, но при прикрытии дроссельной заслонки КИВ ─ уменьшается, а удельный расход топлива возрастает. На дизельном двигателе при снижении нагрузки число оборотов возрастает более резко, что вызывает введение более жесткого регулирования по частоте с целью недопущения разносной частоты.

2.2 Нагрузочная характеристика

Нагрузочной характеристикой называют зависимость основных показателей двигателчя от нагрузки при постоянном числе оборотов. При испытании двигателя на тормозном стенде нагрузку изменяют при помощи специального устройства, скоростной режим устанавливается дроссельной заслонкой, в дизеле ─ перемещение рейки ТНВД. НХ определяется четырьмя параметрами:

  •  часовой расход топлива при полной нагрузке;
  •  удельный расход топлива при полной нагрузке;
  •  нагрузка при минимальном эффективном удельном расходе топлива;
  •  часовой расход топлива на холостомс ходу.

2.3 Регуляторная характеристика определяется параметрами двигателя в зависимости отразвиваемой мощности.

2.4 Регулировочные хаврактеристики устанавливают зависимость параметров двигателя от таких показателей как УОЗ или УОВТ

2.5 Токсические характеристики показывают содержание СО, СхНу Nox, сажа в дизелях.Наиболее полное представление о содержании отдельных токсических компонентов можно получитьпри анализе многопараметровых характеристик,где построены зависимости постоянных значений одного из указанных компонентов от нагрузки и частоты вращения. Анализ показывает, что удельное содержание СО в дизелях в 10 раз меньше, а СхНу – в 4 раза, окслов азота меньше, но соразмерно с карбюраторным двигателем. При форкамерно-факельном зажигании Со снижается до уровня дизеля, остальные компоненты – остаются без изменений.

Специальные характеристики:

  •  Характеристика холостого хода определяет часой расход топлива на ХХ без нагрузки. Удовлетворительной считается такая характеристика, при которой часовой расход топлива увеличивается с ростом числа оборотов ─ характер зависимости очень близок к прямой линии.
  •  Детонационная характеристика определяет склонность двигателя к детонации. Основное назначение ─ выбрать октановое число топлива для нормальной длительной эксплуатации.
  •  Шум двигателя являетяс отрицательным фактором, влияющим на человека. Уровень звука достигает 98-118 дб. У дизельного двигателя шум больше. Источники шума ─ акустическое излучение аэродинамического происхождения; механические колебания деталей; звуковая энергия, отдаваемая в окружающую среду двигателем приего колебаниях на элементах упругой подвески.

Акустическое излучение ─ процессы газообмена, вентилятор. Механические колебания возникают в результате сооударения деталей в пределах зазоров. Для снижения шума применяют глушители шума впуска, выпуска, шумовая изоляция моторного отсека, системы выпуска.

refleader.ru

Устройство автомобилей



Оценить мощностные и экономические возможности двигателя внутреннего сгорания при работе его в различных эксплуатационных условиях можно по техническим и технологическим характеристикам, получаемым в результате различных испытаний – стендовых, дорожных, полигонных, эксплуатационных и т. п.

Характеристикой двигателя называется зависимость основных показателей его работы (мощности, вращающего момента на выходном валу, расхода топлива) от одного из параметров режима работы (частоты вращения коленчатого вала, внешней нагрузки и т. п.). Характеристики двигателя определяют его эксплуатационные качества, уровень технического совершенства, правильность регулировок, а также его назначение.

Основные характеристики автомобильных двигателей определяются ГОСТ 14846-81 «Двигатели автомобильные. Методы стендовых испытаний»:

скоростная характеристика – зависимость основных эффективных показателей работы двигателя от частоты вращения его коленчатого вала;

коэффициент приспособляемости – способность двигателя преодолевать кратковременные перегрузки;

нагрузочные характеристики – зависимости удельного и часового расхода топлива от мощности, развиваемой двигателем;

характеристика холостого хода – зависимость часового расхода топлива от частоты вращения коленчатого вала при работе двигателя без нагрузки;

регулировочные характеристики – зависимость мощностных и экономических показателей работы от состава рабочей смеси, воспламеняемой в цилиндрах двигателя, угла опережения зажигания или впрыска, температуры двигателя и других регулируемых факторов.

***

Нагрузочная характеристика

Нагрузочной характеристикой называется изменение часового и удельного расхода топлива в зависимости от величины нагрузки. Работа на режимах нагрузочной характеристики наиболее характерна для двигателей, которые используются для привода электрических агрегатов, насосов, компрессоров, тракторов. В частности, нагрузочная характеристика имитирует работу двигателя на автомобиле, при его движении с постоянной скоростью на одной из передач в условиях переменного сопротивления со стороны дороги.

Цель получения нагрузочной характеристики – определение топливной экономичности двигателя.

Условия получения нагрузочной характеристики:

  • независимая переменная величина – нагрузка на двигатель (так как с увеличением нагрузки для ее преодоления двигатель должен увеличивать мощность Nе, среднее эффективное давление ре и крутящий момент Мк, то нагрузку выражают в процентах относительно одного из этих параметров;
  • постоянная величина – частота вращения коленчатого вала;
  • зависимые переменные величины – удельный расход топлива gе и часовой расход топлива Gt.

***

Скоростная характеристика

Скоростная характеристика двигателя представляет собой зависимость основных эффективных показателей его работы (эффективная мощность, вращающий момент на выходном валу, удельный и часовой расход топлива) от частоты вращения коленчатого вала при постоянной подаче топлива в цилиндры в установившемся тепловом режиме.

Различают внешнюю и частичные скоростные характеристики. Скоростная характеристика, полученная при полной подаче топлива (полностью открытой дроссельной заслонке или соответствующем положении рейки топливного насоса дизеля) и при углах опережения зажигания или начала впрыскивания топлива по техническим условиям на двигатель, называется внешней скоростной характеристикой двигателя. Внешняя скоростная характеристика позволяет определить максимальные мощностные показатели двигателя и оценить его экономичность при полных нагрузках.

Характеристики, соответствующие постоянным промежуточным положениям дроссельной заслонки или рейки топливного насоса, называются частичными скоростными характеристиками двигателя. Иными словами, любая характеристика, полученная при неполном открытии регулирующего органа двигателя, называется частичной скоростной характеристикой.

Скоростную характеристику реального двигателя строят по результатам стендовых испытаний. Вал работающего двигателя нагружают с помощью тормоза, обеспечивая фиксирование частоты вращения от минимально устойчивой до максимально допустимой. При этом на каждой частоте замеряют тормозной момент Мт в (Н×м) и часовой расход топлива в кг/ч.

По результатам испытаний строят кривые зависимости эффективного вращающего момента и часового расхода топлива от частоты вращения вала двигателя. Затем, используя формулы:

gе = GT/Pе = gi/ηM Mе = 3×104 Pе /πn

находят эффективную мощность и удельный расход топлива, после чего отображают их графические зависимости.

***



В зависимости от укомплектованности двигателя вспомогательными устройствами и оборудованием определяют мощность нетто (полная комплектация) или мощность брутто (неполная комплектация). Различают следующие характерные частоты вращения коленчатого вала:

  • минимальная частота вращения, при которой возможна устойчивая работа двигателя при полной подаче топлива;
  • частота вращения, соответствующая наибольшему вращающему моменту;
  • частота вращения, соответствующая наибольшей мощности двигателя;
  • наибольшая возможная частота вращения коленчатого вала, устанавливаемая ограничителем частоты вращения.

Характеристика холостого хода является частным случаем скоростной характеристики двигателя.

Внешнюю скоростную характеристику вновь проектируемого двигателя можно построить по эмпирическим зависимостям, где максимальная мощность и соответствующие ей удельный расход топлива и частота вращения берутся из данных теплового расчета двигателя при его конструировании.

***

Приемистость и приспособляемость двигателя

Способность двигателя с ростом частоты вращения коленчатого вала наращивать мощность называется его приемистостью. Приемистость двигателя непосредственно влияет на приемистость автомобиля, т. е. его способности ускоряться и разгоняться. Скоростная характеристика во многом отражает степень приемистости двигателя: чем круче кривая Nе, тем приемистость двигателя больше. Если сравнить скоростные характеристики карбюраторного двигателя и дизеля, то можно заметить, что кривая мощности Nе у дизеля круче, т. е. дизель обладает большей приемистостью.

Способность двигателя с ростом внешней нагрузки сохранять частоту вращения коленчатого вала называется его приспособляемостью (самоприспособляемостью или эластичностью). Например, затяжной подъем один из автомобилей может преодолеть без переключения КПП на пониженную передачу, а другой при таких же условиях заглохнет. Следовательно, в первом случае приспособляемость двигателя автомобиля выше, чем во втором.

Приспособляемость автомобиля к изменению внешней нагрузки оценивается коэффициентом приспособляемости (коэффициентом самоприспособляемости). Чем больше значение этого коэффициента, тем лучше приспособляемость автомобиля к увеличению внешней нагрузки.

Устойчивость режима автомобильного двигателя к увеличению внешней нагрузки оценивают по запасу крутящего момента, который определяется отношением максимального крутящего момента Мкmax к крутящему моменту Мкном, развиваемому двигателем на номинальном режиме; это отношение и называют коэффициентом приспособляемости k.

Коэффициент приспособляемости k, характеризующий приспособляемость двигателя к изменению внешней нагрузки, может быть определен по формуле:

k = Mкmax/Mкном

В бензиновых двигателях средний коэффициент приспособляемости k = 1,25...1,35, в дизельных k = 1,05...1,2. Поскольку коэффициент приспособляемости характеризует способность двигателя преодолевать кратковременные перегрузки без переключения передач, можно сделать вывод, что дизельные двигатели переносят изменение внешней нагрузки хуже, чем карбюраторные. Чтобы преодолеть этот недостаток дизелей увеличивают размеры цилиндров, что приводит к увеличению крутящего момента, а также применяют всережимные регуляторы частоты вращения коленчатого вала.

***

Общее устройство двигателя



k-a-t.ru

Технические характеристики автомобильного двигателя и на что они влияют

Приобретая автомобиль, большинство из нас в первую очередь обращают внимание именно на технические характеристики двигателя.

Зачастую от мотора напрямую зависит удобство эксплуатации автомобиля, его показатели потребления топлива, динамика и стоимость обслуживания. Поговорим поподробнее том, какие бывают основные характеристики двигателя, на которые необходимо обращать внимание при выборе машины.

Основные технические характеристики

Рабочий объем

Одной из основных технических характеристик двигателя является его рабочий объем. Зачастую от рабочего объема зависят его показатели топливной экономичности и мощности. Так, малолитражки, рабочий объем которых не превышает двух литров, могут иметь мощность порядка 100 лошадиных сил, и при этом они потребляют в городских условиях не более 10 литров топлива.

По статистике наибольшей популярностью сегодня пользуются автомобили с двигателями, рабочий объем которых составляет 2-3 литра. Такие машины одновременно отличаются великолепной динамикой и при этом гарантируют хорошую топливную экономичность.

А вот спорткары и мощные представительские седаны могут оснащаться моторами в четыре и более литров. В целом отметим, что в последние годы отмечается широкое использование турбонаддува, поэтому рабочий объем неизменно уменьшается, при этом отмечается улучшение показателей топливной экономичности.

Материал блока цилиндров

В зависимости от материала, из которого изготовлен блок цилиндров, принято разделять силовые агрегаты на чугунные, алюминиевые и из стальных сплавов. Изготовленные из чугуна элементы блока цилиндров отличаются повышенной прочностью, но при этом они имеют большой вес и не столь устойчивы к температурным воздействиям. Именно поэтому сегодня большинство силовых агрегатов отливаются из легкого алюминия, который одновременно отличается устойчивостью к высоким температурам.

Читайте также:  Греется автомобильный двигатель: причины и ремонт

Система питания

В зависимости от используемых систем питания все двигатели можно разделить на две основные категории: карбюраторные и инжекторные. В инжекторных системах питания обеспечивается непосредственный впрыск топлива через форсунки в каждый из цилиндров, что позволяет обеспечить экономию топлива, снизить его расход и улучшает мощностные характеристики двигателя.

А вот карбюраторная система питания, которая была популярна в середине прошлого века, сегодня в автомобилестроении практически не используется. Из преимуществ подобной системы питания можно отметить лишь ее простоту конструкции, надежность и легкость последующего ремонта. Дизельные автомобили имеют отличающуюся от бензиновых моторов систему питания, в которой топливо под высоким давлением подается в цилиндры, где и происходит воспламенение смеси с последующим полным сгоранием солярки в цилиндрах.

Количество клапанов

Количество клапанов в моторе напрямую зависит от числа цилиндров. Необходимо сказать, что от конкретной конструкции мотора напрямую зависят технические характеристики двигателей.

В настоящее время изготавливают силовые агрегаты с двумя клапанами на каждый цилиндр или же современные экономичные моторы с четырьмя клапанами на каждый цилиндр, два из которых ответственны за впуск рабочей смеси, а два – за выпуск.

Соответственно четырехцилиндровые двигатели могут иметь 8 или 16 клапанов. Их количество напрямую влияет на динамические характеристики автомобильных двигателей, топливную экономичность и стабильность работы на холостом ходу и низких оборотах.

Экологические нормы

Силовые агрегаты также могут отличаться своими экологическими нормами. Экологичность автомобиля зависит от используемых катализаторов, системы питания и ряда других устройств, которые позволяют обеспечить полное сгорание топлива и фильтрацию вредных элементов.

Экологические нормы принято различать по индексу показателя Евро. Чем выше этот показатель, тем лучше экологичные характеристики двигателя автомобиля. В настоящее время получили распространение машины с показателями экологичности Euro 4 — Euro 6.

Читайте также:  Неисправности дизельного двигателя и способы их устранения

Мощностные характеристики автомобильных двигателей

Мощность агрегата может выражаться как в киловаттах, так и в лошадиных силах. Также вам следует учитывать крутящий момент, который отвечает за динамику автомобиля. Если мощность в лошадиных силах в большей степени характеризует максимальную скорость, то крутящий момент отвечает за ускорение автомобиля и его разгон до определённой скорости.

Следует сказать, что от мощностных характеристик двигателя напрямую зависят его показатели топливной экономичности. Из особенностей показателей мощности в зависимости от вида топлива мотора можем отметить, что у дизелей пик мощности отмечается на низких оборотах, что позволяет гарантировать эффективный разгон и отличную тягу уже с самых низов. А вот бензиновые силовые агрегаты показывают максимальную мощность на высоких оборотах, что отрицательно сказывается на их приемистости и динамических показателях.

Расход топлива

Расход топлива для многих покупателей является едва ли не определяющим фактором при покупке нового авто. Следует сказать, что еще несколько десятков лет назад используемые двигатели хоть и отличались простотой конструкции, но при этом потребляли большое количество топлива, что приводило к увеличению расходов автовладельцев на эксплуатацию машин.

Сегодня же благодаря широкому внедрению технологии турбонаддува удалось без потери мощностных характеристик двигателя значительно снизить расход топлива автомобилями. Так, небольшие по своему объему двухлитровые турбодизели способны при крейсерской скорости в 100-120 километров в час потреблять около 5 литров солярки на 100 километров. У бензиновых силовых агрегатов показатели топливной экономичности не столь хороши, такие моторы способны потреблять в зависимости от своего объема 8-10 литров бензина на 100 километров.

dvigatels.ru

Типы автомобильных двигателей и их параметры

8 Апреля, 2017 / Статьи

 ДВС — это двигатель, работающий по принципу сжигания различного топлива непосредственно внутри самого агрегата. В отличие от двигателей другого типа, ДВС лишены: любых элементов передающих тепло для дальнейшего преобразования в механическую энергию, преобразование происходит непосредственно от сгорания топлива; значительно компактнее; имеют малый вес относительно агрегатов другого типа со сравнимой мощностью; требуют использования определенного топлива с жесткими характеристиками температуры горения, степени испаряемости, октановым числом и т. д.  Схема работы четырехтактного ДВС     В автомобилестроении применяются четырехтактные моторы:

 1. Впуск;

 2. Сжатие;

 3. Рабочий ход;

 4. Выпуск.

 Но существуют и двухтактные версии двигателей внутреннего сгорания, но в современном мире, они имеют ограниченное применение.  В данной статье будут рассмотрены только моторы, устанавливающиеся на автомобили.  Бензиновые моторы, как понятно из названия используют в качестве топлива для работы — бензин с различным октановым числом, и имеют систему принудительного поджига топливной смеси при помощи электрической искры.

 Могут разделяться по типу впуска на карбюраторные и инжекторные. Карбюраторные моторы уже пропадают из производства из-за сложности в точной настройке, высокого потребления бензина, неэффективности смешивания топливной смеси и несоответствия современным жестким экологическим требованиям. В таких моторах, смешивание горючей смеси начинается в камерах карбюратора и заканчивается по пути во впускном коллекторе. 

    Инжекторные агрегаты развиваются большими темпами, и система впрыска топлива улучшается с каждым поколением. Первые инжектора имели «моновпрыск» с единственной форсункой. По сути, это была модернизация карбюраторных моторов. Со временем, на большинстве агрегатов, начали использоваться системы с отдельными форсунками на каждый цилиндр. Использование форсунок в системе впуска, позволило точнее контролировать пропорции топлива и воздуха в разных режимах работы агрегата, снизить расход топлива, увеличить качество топливной смеси, увеличить мощность и экологичность силовых агрегатов.

 Современные форсунки, устанавливающиеся на силовые агрегаты с системой непосредственного впрыска топлива в цилиндры, способны производить несколько отдельных впрысков топлива за один такт. Это позволяет еще улучшить качество топливной смеси и добиваться максимальной отдачи энергии от используемого количества бензина. То есть, еще больше увеличилась экономия и производительность моторов. 

Схема Дизельного ДВС     Дизельные агрегаты — используют принцип воспламенения смеси дизельного топлива и воздуха при нагреве от сильного сжатия. При этом, в дизельных агрегатах не используются системы принудительного поджига. Данные моторы имеют ряд преимуществ перед бензиновыми, в первую очередь — это экономность топлива (до 20%), при сравнительной мощности. Топливо меньше расходуется из-за большей степени сжатия в цилиндрах, что улучшает характеристики горения и отдачи энергии топливной смеси, а следовательно, и топлива необходимо меньшее количество для достижения таких же результатов. Кроме этого, дизельные агрегаты не используют дроссельные заслонки, что улучшает поступление воздуха в силовой агрегат, что еще уменьшает расход топлива. Дизеля развивают больший крутящий момент, и на более низких оборотах коленчатого вала.  Не обошлось без недостатков. Из-за увеличенной нагрузки на стенки цилиндров, конструкторам пришлось использовать более надежные материалы, и увеличивать размеры конструкции (увеличение веса и удорожание производства). Кроме этого, работа дизельного силового агрегата — громкая из-за особенностей воспламенения топлива. А увеличенная масса деталей не позволяет мотору развивать высокие обороты с такой же скоростью, как и бензиновые, и максимальное значение оборотов коленчатого вала — ниже, чем у бензиновых агрегатов.  Данный тип автомобиля начала набирать популярность в последние года. Благодаря своей эффективности экономии топлива и увеличению общей мощности автомобиля благодаря комбинированию двух типов агрегатов. По сути, данная конструкция представляет собой два отдельных агрегата — небольшой ДВС (чаще всего дизельный) и электромотор (или несколько электромоторов) с аккумуляторной батареей большой емкости.  Схема гибридной силовой установки     Преимущества комбинирования выражаются в способности совмещать энергию двух агрегатов при разгоне, или использование каждого типа двигателя по отдельности, в зависимости от необходимости. К примеру, при движении в городской пробке — может работать только электродвигатель, экономя дизельное топливо. При движении по загородным дорогам, работает ДВС, как более выносливый, мощный и с большим запасом хода агрегат.  При этом, специальная батарея для электромоторов, способна подзарядиться от генератора, или используя систему рекуперации при торможении, что позволяет экономить не только топливо, но и электричество, необходимое для зарядки батареи.  Роторно-поршневой мотор построен по уникальной схеме движения поршня-ротора, который перемещается внутри цилиндра не по возвратно-поступательной траектории, а вокруг своей оси. Это осуществляется благодаря особой треугольной конструкции поршня и особенному расположению впускных и выпускных отверстий в цилиндре.  Вид треугольного поршня в цилиндре     Благодаря такой конструкции, двигатель быстро набирает обороты, что увеличивает динамические характеристики автомобиля. Но с развитием классической конструкции ДВС, двигателя Ванкеля начали терять свою актуальность из-за конструктивных ограничений. Принцип движения поршня не позволяет добиться большой степени сжатия топливной смеси, что исключает использование дизельного топлива. А малый ресурс, сложность обслуживания и ремонта, а также — слабые экологические показатели не позволяют автопроизводителям развивать данное направление.  Из-за необходимости уменьшения веса и габаритов, а также, размещения большего числа поршней в одном агрегате привело к появлению разновидностей моторов по компоновке.   Четырехцилиндровый рядный двигатель  Рядный двигатель — это самый классический вариант силового агрегата. В котором все поршни и цилиндры располагаются в один ряд. При этом, современные моторы с рядной компоновкой вмещают в себе не более шести цилиндров. Но именно шестицилиндровые рядные двигатели, имеют наилучшие показатели по уравновешиванию вибрации при работе. Единственный минус — это значительная длина мотора, относительно других компоновок. Расположение поршневой группы в V-образном ДВС  Данные моторы появились в следствии желания конструкторов уменьшить габариты двигателей, и необходимости разместить более шести поршней в одном блоке. В данных моторах, цилиндры находятся в разных плоскостях. Визуально, расположение цилиндров образует букву «V», откуда и пошло название. Угол между двумя рядами называется углом развала, и варьируется в широком диапазоне, разделяя данный тип моторов на подгруппы. Вид оппозитного двигателя с автомобиля марки Subaru  Оппозитные двигателя, получили максимальный угол развала в 180 градусов. Что позволило конструкторам снизить высоту агрегата до минимальных размеров, и распределить нагрузку на коленчатый вал, увеличивая его ресурс. Расположение цилиндров у VR-двигателей  Это комбинация свойств рядных и V-образных агрегатов. Угол развала в таких двигателях достигает 15 градусов, что позволяет использовать одну головку блока цилиндров с единым механизмом газораспределения. W-образный двигателя  Одни из самых мощных и «экстремальных» конструкций ДВС. Могут иметь три ряда цилиндров с большим углом развала, или два совмещенных VR блока. На сегодняшний день, распространение получили моторы на восемь и двенадцать цилиндров, но конструкция позволяет использовать и большее количество цилиндров.  Просмотрев множество информации про различные автомобили, любой интересующийся человек, увидит определенные основные параметры мотора:  • Мощность силового агрегата, измеряющуюся в л.с. (или кВт*ч);  • Максимальный крутящий момент развиваемый силовым агрегатом, измеряющийся в Н/м;  Большинство автолюбителей, разделяют силовые агрегаты, только по мощности. Но данное разделение не совсем верное. Безусловно, агрегат в 200 «лошадей», предпочтительнее двигателя в 100 «лошадей» на тяжелом кроссовере. А для легкого городского хэтчбека, хватит и 100 сильного мотора. Но есть некоторые нюансы.  Максимальная мощность, указанная в технической документации, достигается при определенных оборотах коленвала. Но используя автомобиль в городских условиях, водитель редко раскручивает мотор выше 2 500 оборотов в минуту. Поэтому, большее время эксплуатации машины, задействована только часть потенциальной мощности.  Но, часто, бывают случаи на дороге. Когда необходимо резко увеличить скорость для обгона, или для ухода от аварийной ситуации. Именно максимальный крутящий момент влияет на способность агрегата быстро набрать требуемые обороты и мощность. Если сказать проще, крутящий момент влияет на динамику автомобиля.

 Стоит отметить небольшую разницу между бензиновыми и дизельными моторами. Двигатель работающий на бензине — выдает максимальный крутящий момент при оборотах коленчатого вала от 3 500 до 6 000 в минуту, а дизельные моторы могут достигать максимальных параметров при более низких оборотах. Поэтому, многим кажется. Что дизельные агрегаты мощнее и лучше «тянут». Но, большинство самых мощных агрегатов используют бензиновое топливо, так как они способны развить большее число оборотов в минуту. 

Наглядный пример разницы бензинового и дизельного двигателя     А для подробного понимания термина крутящий момент, следует посмотреть на единицы его измерения: Ньютоны умноженные на метры. Другими словами, крутящий момент определяет силу, с которой поршень давит на коленчатый вал, а тот в свою очередь передает мощность на коробку передач, и в конечном итоге — на колеса.

 Также, можно упомянуть про мощную технику, у которой максимальный крутящий момент может достигаться при оборотах в 1 500 в минуту. В основном — это трактора, мощные самосвалы, и некоторые дизельные вездеходы. Естественно, таким машинам нет необходимости раскручивать мотор до максимальных значений оборотов. 

    Основываясь на приведенной информации, можно сделать вывод, что крутящий момент зависит от объема силового агрегата, его габаритов, размеров деталей и их веса. Чем тяжелее все эти элементы, тем более преобладает крутящий момент на низких оборотах. Дизельные агрегаты имеют больший крутящий момент и меньшие обороты коленчатого вала (большая инертность тяжелого коленвала и других элементов не позволяют развивать больших оборотов).  Стоит признать, что мощность и крутящий момент — это взаимосвязанные параметры, зависящие друг от друга. Мощность — это определенное количество работы, произведенная мотором за время. В свою очередь, работа мотора — это крутящий момент. Поэтому, мощность характеризуется как количество крутящего момента за единицу времени.  Существует известная формула, характеризующая отношение мощности и крутящего момента:  Мощность = крутящий момент * обороты в минуту / 9549  В итоге, получим значение мощности в киловаттах. Но естественно, просматривая характеристики автомобилей, нам привычнее видеть показатели в «л.с.». Для перевода киловатт в л.с. необходимо умножить получившееся значение на 1,36.  Как стало понятно из данной статьи, автомобильные двигатели внутреннего сгорания могут иметь множество отличий друг от друга. А выбирая автомобиль для постоянного использования — необходимо изучить все нюансы конструкции, характеристик, экономности, экологичности, мощности и надежности силового агрегата. Также, будет полезно изучить информацию о ремонтопригодности мотора. Так как многие современные агрегаты используют сложные системы газораспределения, впрыска топлива и выхлопа, что может усложнить их ремонт.

(Голосов: 2, Рейтинг: 3.44)

^

© 2007-2017 Продажа автомобилей, автоновости, каталог авто с ценами. Сетевое издание «CarsWeek» зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 25 апреля 2017 года. Свидетельство о регистрации ЭЛ № ФС77-69477.

Использование материалов сайта разрешается только с установкой активной гиперссылки на CarsWeek.ru. 16+

CarsWeek.ru

Тяговый расчет автомобиля

Федеральное агентство по образованию

Восточно-Сибирский государственный технологический

университет

методические указания к выполнению курсовой работы

по курсу «Теория эксплуатационных свойств автомобиля»

для студентов дневного и заочного обучения специальности

190601 «Автомобили и автомобильное хозяйство»

Составители: Быков А.В., Алексеев В.М.

Издательство ВСГТУ

Улан-Удэ 2005

А.В. Быков

“Тяговый расчет автомобиля”, методические указания к выполнению курсовой работы по курсу “Теория эксплуатационных свойств автомобиля”. с. 36, рис. 9, табл. 16, Улан-Удэ, 2005 г.

В методических указаниях излагаются основы расчета тягового баланса и динамики разгона автомобиля. Даны методики построения графиков тягового баланса в функции изменения скорости движения автомобиля, а также топливно-экономической характеристики.

Методические указания предназначены для студентов, обучающихся по специальностям 190601 “Автомобили и автомобильное хозяйство” и ” и 190603 “Сервис транспортных и технологических машин и оборудования (автомобильный транспорт)”.

© Восточно-Сибирский государственный технологический университет, 2005 г.

СОДЕРЖАНИЕ

Введение

4

1.

Построение внешней скоростной характеристики автомобильного двигателя

4

2.

Тяговый баланс автомобиля

8

3.

Динамический фактор автомобиля

12

4.

Характеристика ускорений автомобиля

15

5.

Характеристика времени и пути разгона автомобиля

17

6.

Мощностной баланс автомобиля

19

7.

Топливно-экономическая характеристика автомобиля

21

8.

Варианты заданий

25

Введение

Целью курсовой работы является закрепление знаний по основным разделам курса “Теория автомобиля”, а также привитие навыков самостоятельного исследования эксплуатационных свойств автотранспортных средств. В процессе выполнения курсовой работы студенты знакомятся с характеристиками и параметрами автомобилей, анализируют характер изменения эксплуатационных качеств в зависимости от дорожных, нагрузочных и конструктивных условий.

Курсовая работа включает в себя расчетный материал и графики. Каждый график выполняется на отдельном листе миллиметровой бумаги размером 297х210 (формат А4). Необходимо стараться разместить графики во весь лист. При этом следует соблюдать удобный масштаб так, чтобы расчетным значениям величин 0,1; 1; 10; и т.д. соответствовало на графике расстояние 5; 10; 15 мм.

Расчетная и графическая части брошюруют вместе, причем графическая часть располагается за расчетной. Все графики строят карандашом по лекалам.

1. Построение внешней скоростной характеристики автомобильного двигателя

Наиболее полные сведения о параметрах двигателя дает его внешняя скоростная характеристика. Она представляющая собой зависимость эффективной мощности - Ne , [кВт]; эффективного крутящего момента - Me, [Нм]; удельного расхода топлива - ge , [г/кВтч]; часового расхода топлива - GT, [кг/ч], от частоты вращения коленчатого вала ne, [об/мин], при установившемся режиме работы двигателя и максимальной подаче топлива.

Определение текущего значения эффективной мощности от частоты вращения коленчатого вала двигателя, производится по эмпирической зависимости, предложенной С.Р. Лейдерманом:

, [кВт] (1.1)

где: Ne max - максимальная эффективная мощность двигателя, [кВт];

ne - текущая частота вращения, [об/мин];

nN - частота вращения при максимальной мощности, [об/мин].

Коэффициенты а, b, с зависящие от типа и конструкции двигателя приведены в таблице 1.1

Таблица 1.1

Тип двигателя

Коэффициент

а

b

с

Бензиновый

1

1

1

Дизельный

0,5

1,5

1

Чтобы воспользоваться формулой Лейдермана, необходимо определить значения наименьшей устойчивой - ne min , и максимальной - ne max, частот вращения коленчатого вала двигателя. Наименьшую, устойчивую частоту вращения коленчатого вала бензинового двигателя следует принять равной - ne min = 0,13 nN , а у дизеля - ne min = 0,2 nN , [об/мин].

Максимальную частоту вращения коленчатого вала бензинового двигателя следует принять равной - ne max = 1,2 nN , а для дизеля - ne max = 1,05 nN , [об/мин].

С целью облегчения расчетов, полученные значения ne min и ne max следует округлить до ближайшей сотни об/мин.

Для получения зависимости Ne = f(ne), весь диапазон частот вращения коленчатого вала двигателя от ne min до ne max следует разбить примерно на 10 значений (обычно через 200, 300, 400 или 500 об/мин). Для каждого значения ne , с использованием уравнения Лейдермана, необходимо определить значения эффективной мощности двигателя Ne по формуле (1.1) и занести результаты расчетов в первую строку таблицы 1.2. Исходные данные для расчета внешней скоростной характеристики двигателей приведены в таблице 8.1.

Таблица 1.2.

Параметры внешней скоростной характеристики двигателя, марки ......

строки

Параметры внешней скоростной характеристики двигателя

Значения частот вращения ne , [об/мин]

ne min

1000

1500

.

5500

ne max

1

Ne, [кВт]

2

Ne, [кВт]

3

Me, [Нм]

4

Me, [Нм]

5

ge, [г/кВтчас]

6

GТ, [кг/час]

Следует помнить, что часть мощности двигателя затрачивается на привод вспомогательного оборудования (генератор, насос системы охлаждения двигателя, компрессор, насос гидроусилителя руля и др.), и лишь оставшаяся мощность Ne - так называемая мощность нетто, используется для движения автомобиля. Поскольку вышеназванные потери мощности обычно составляют 10 – 15%, для определения мощности нетто воспользуемся выражением:

Ne = 0,9Ne, [кВт]. (1.2)

Еще одним неотъемлемым графиком внешней скоростной характеристики двигателя является график зависимости эффективного крутящего момента двигателя Мe = f(ne). Для расчета графика эффективного крутящего момента используем выражение вида:

, [Нм]. (1.3)

Аналогично с мощностью, часть эффективного крутящего момента двигателя - Me затрачивается на привод навесного вспомогательного оборудования, и лишь оставшаяся его часть, так называемый крутящий момент нетто - Мe, используется для движения автомобиля. Для определения момента нетто воспользуемся выражением:

Мe = 0,9  Мe , [Нм] (1.4)

Еще одним графиком внешней скоростной характеристики двигателя является график зависимости удельного расхода топлива двигателя ge = f(ne). Для расчета удельного расхода топлива бензиновых двигателей используют эмпирическую зависимость вида:

, [г / кВтч] (1.5)

для дизельных двигателей:

, [г / кВтч] (1.6)

где: ge min – минимальный удельный расход топлива [г / кВтч].

Последним из графиков внешней скоростной характеристики двигателя является график часового расхода топлива. Для его построения используют полученные значения удельного часового расхода топлива и выражение вида:

, [кг/ч] (1.7)

Полученные результаты расчета занесите в таблицу 1.2.

Далее, на основе результатов расчетов таблицы 1.2, строят графики внешней скоростной характеристики двигателя, аналогичные, представленным на рис. 1.1.

На графике внешней скоростной характеристики должны быть отмечены:

Максимальная мощность нетто - Ne, [кВт];

Максимальный крутящий момент нетто - Me, [Нм];

Минимальный удельный расход топлива - ge min, [г / кВтч];

Частоты ne вращения коленчатого вала двигателя, соответствующие:

- максимальной мощности двигателя nN , [об/мин];

- максимальному крутящему моменту nM , [об/мин];

- минимальному удельному расходу топлива ng , [об/мин].

При наличии на двигателе ограничителя или регулятора частоты вращения коленчатого вала, графики внешней скоростной характеристики: строят с учетом их работы. Для построения линий, иллюстрирующих работу ограничителя (регулятора) – следует учитывать, что он срабатывает не мгновенно, а линейно, до увеличения частоты вращения коленчатого вала двигателя на 5% от ее номинального значения nN . Типовые графики внешней скоростной характеристики двигателя с ограничителем частоты вращения коленчатого вала представлены на рисунке 1.2.

В дальнейшем, регуляторная ветвь изображается также на графиках тягового и мощностного балансов, графиках динамического фактора и ускорений.

Рис. 1.1 Внешний вид внешней скоростной характеристики двигателя без регуляторной ветви

Рис. 1.2 Внешний вид внешней скоростной характеристики двигателя с регуляторной ветвью

www.StudFiles.ru


Смотрите также