Устройство и принцип действия расходомеров


Виды, устройство и принцип действия расходомеров

 О чем эта статья

Перейти к выбору и покупке расходомеров

Расходомер, как видно из названия — устройство, предназначенное для измерения расхода какого-либо вещества — как правило, жидкости или газа. Если имеется канал диаметром d и по нему со средней скоростью Va перемещается жидкость или газ, то расходом является величина:

где A=πd2/4 — площадь поперечного сечения канала.

Следует сразу отметить, что вещества, расход которых необходимо измерить, могут быть сжимаемыми (газ) или несжимаемыми (жидкость), и методики измерения расхода в обоих случаях имеют свои особенности.

Независимо от типа используемого устройства определения расхода вещества является довольно сложной комплексной задачей, при решении которой приходится учитывать множество факторов, таких как:

  1. Физические характеристики исследуемой среды
  2. Физические характеристики окружающей среды
  3. Форма канала и свойства материала, из которого он изготовлен

К каждому датчику как правило прилагается набор документов описывающих технические параметры прибора, его ограничения и рекомендации по эксплуатации. Перед покупкой изучите все эти документы и выберете наиболее подходящее для ваших задач устройство.

Среди довольно большого разнообразия расходомеров по принципу действия можно выделить следующие основные группы:

  • Датчики скорости потока по перепаду давления
  • Тепловые расходомеры
  • Ультразвуковые расходомеры
  • Электромагнитные расходомеры
  • Микрорасходомеры
  • Кориолисовские расходомеры
  • Расходомеры с мишенями
  • Детекторы изменения скорости потока

Рассмотрим основные виды расходомеров.

Тепловые расходомеры

В основе метода лежит довольно простая идея: если локально изменять свойства вещества в потоке (например, температуру) и регистрировать эти изменения на некотором удалении от места воздействия, можно определить среднюю скорость перемещения вещества в потоке (рисунок 1). Предположим, в потоке установлена пара датчиков температуры (A и B) и один нагревательный элемент C, причём расстояния AC>BC. Если вещество неподвижно, повышение температуры происходит локально за счёт теплопроводности, и датчик B нагревается быстрее, поскольку расположен ближе к нагревательному элементу. Если же поток придёт в движение, температура в области A упадёт до исходной температуры вещества в потоке, а температура в области B будет чуть выше исходной. Анализ данных с датчиков позволяет однозначно судить о скорости перемещения вещества в потоке.

Рисунок 1. Общая схема расположения ключевых элементов теплового расходомера.

Подобным образом изменению могут быть подвергнуты и другие параметры вещества (например, его химический состав), однако в большинстве случаев это недопустимо, например, когда речь идёт о медицинском применении расходомеров.

Ультразвуковые расходомеры

В устройствах данного типа используется свойство звуковых волн изменять скорость своего распространения в подвижной среде. Если установить источник (A) и приёмник (B) ультразвука со смещением (рисунок 2), то о скорости потока можно судить по изменению скорости распространения звуковой волны вдоль отрезка AB.

Рисунок 2. Общая схема расположения ключевых элементов ультразвукового расходомера

Кроме того, для измерения локальной скорости потока может быть использован эффект Допплера, для этого источник и приёмник располагаются как указано на рисунке 3. Исходный сигнал, а также сигнал с приёмника отправляются на смеситель. Частота ультразвука, которую фиксирует приёмник, изменяется в зависимости от скорости потока, исходная частота остаётся неизменной. Частота сигнала на выходе из смесителя является разностью частот исходного и принятого сигнала - по этой величине можно однозначно судить о локальной скорости вещества в потоке.

Рисунок 3. Общая схема расположения ключевых элементов расходомера на эффекте Допплера

Ультразвук достаточно часто используется в производстве датчиков. Например, существуют ультразвуковые дефектоскопы

Электромагнитные расходомеры

Если жидкость проводит ток, её перемещение поперёк линий магнитного поля приведёт к возникновению ЭДС, пропорциональной скорости потока. На практике эта схема реализуется путём установки электромагнитов таким образом, чтобы линии магнитного потока были перпендикулярны потенциальному перемещению потока жидкости, а также установкой пары электродов, фиксирующих наведённую движением потока ЭДС (рисунок 4).

Рисунок 4. Общая схема расположения ключевых элементов электромагнитного расходомера

Возможно несколько различных реализаций данного метода, однако изменения в целом касаются схемы обработки данных и не затрагивают принципиальные основы метода.

Вихревые расходомеры (Расходомеры с мишенями)

В расходомерах данного типа основным элементом является дискообразная или шарообразная мишень, укреплённая на эластичном тросе, один противоположный конец которого неподвижно закреплён (рисунок 5). Поток жидкости или газа приводит к смещению мишени, что вызывает деформацию троса, а установленные на нём тензодатчики регистрируют тип и степень деформации. Полученные данные позволяют судить о скорости потока вещества, а также о его направлении.

Рисунок 5. Схема расположения ключевых элементов вихревого расходомера

Достоинством таких датчиков является возможность проведения измерений расхода и скорости потока в двух или даже в трёх различных направлениях. Для обеспечения подобной многозадачности необходимо обеспечить симметричность мишени для всех нужных направлений.

Кориолисовские расходомеры

Обычно кориолисовский расходомер состоит из трубки, которая подвергается вибрационному воздействию от внешнего генератора колебаний (рисунок 6). Если трубка пуста, колебания приведут к синхронному ускорению всех участков трубки. Если же по трубке перемещается жидкость, на неё из-за воздействия ускорения, вызванного колебательным воздействием, будет также действовать кориолисова сила, направленная в различные стороны для входного и выходного потоков жидкости, что приведёт к сдвигу фазы колебаний трубки. Величина фазового рассогласования зависит от массы жидкости, протекающей по трубке в единицу времени.

Рисунок 6. Схема функционирования кориолисовского расходомера

Главным достоинством устройств данного типа является их универсальность — они могут применяться для определения скорости потока большого спектра веществ — как жидкостей, так и газов. Основным же недостатком кориолисовских расходомеров является их относительно высокая стоимость.

Микрорасходомеры

Этот класс представлен расходомерами теплового или емкостного принципа действия в миниатюрном исполнении. Требования к габаритам обусловлены областью применения подобных устройств — это, как правило, химическое производство или медицинские технологии. По принципу действия микрорасходомеры полностью идентичны своим крупногабаритным аналогам, однако стоимость миниатюрных устройств, как правило, гораздо выше.

Расходомеры по перепаду давления

Для понимания принципа функционирования данного типа расходомеров проще всего прибегнуть к аналогии с законом Ома. В рамках данной аналогии давление эквивалентно напряжению, а скорость потока эквивалентна силе тока. Если на пути прохождения потока установить препятствие (сопротивление), возникнет перепад давления до и после препятствия (падение напряжения на сопротивлении). Определение перепада давление можно осуществлять как непосредственно измеряя давление жидкости до и после прохождения препятствия, так и с помощью дифференциального датчика давления, установленного на ответвлении от основного канала. Аналогично можно определить силу тока на участке цепи, зная падение напряжения на сопротивлении известного номинала.

Детектор изменения скорости потока (датчики наличия расхода)

Часто требуется определение не количественных, а качественных характеристик потока жидкости или газа. К примеру, от устройства необходимо получать сигнал только в случае, если скорость потока отклоняется от номинальной. В данном случае чаще всего используются пороговые расходомеры на основе пьезоэффекта. В потоке устанавливается пара пьезокристаллов, включенных в электрическую цепь навстречу друг другу. Один из кристаллов изолирован от внешнего воздействия, второй находится непосредственно в потоке вещества (Рисунок 7).

Рисунок 7. Схема расположения ключевых элементов порогового расходомера на пьезокристаллах

В случае если кристаллы находятся в одинаковых условиях, заряды на них имеют равную величину и разные знаки, напряжение на резисторе R равно нулю. Если же скорость потока изменяется, возникает изменение заряда на не изолированном кристалле, баланс зарядов нарушается, напряжение на резисторе изменяется — регистрация этого явления позволяет сделать вывод об отклонении скорости потока от номинального значения.

Приборы, в основу которых положен данный метод, как правило, могут быть использованы для анализа как жидких, так и газообразных сред.

Механические расходомеры

К этой группе относится ряд устройств, полностью лишённых электронных компонентов. В расходомерах такого типа скорость потока может измеряться, например, путём определения скорости вращения механической турбины при погружении её в поток. Механические расходомеры довольно дешевы, однако их точность, как правило, не позволяет использовать их в большинстве критичных к этому параметру приложений. Помимо низкой точности, их недостатком является наличие подвижных частей, препятствующих потоку жидкости или газа, что также снижает точностные характеристики приборов данного типа. Однако, это не мешает им широко использоваться в приборах учета расхода воды установленных в квартирах.

Опубликована 04-03-12.

Если вам понравилась статья нажмите на одну из кнопок ниже

www.devicesearch.ru.com

Устройство и принцип действия расходомеров, виды и типы счетчиков воды

перейти к выбору расходомеров 

Выбор способа учета расхода жидкости в крупных организациях-потребителях воды, на предприятиях, использующих воду на технологические нужды и сбрасывающих стоки, на ТЭЦ и других промышленных объектах зависит от многих факторов. Это степень загрязнения потока, тип системы (напорная или безнапорная), место планируемой установки и др.

Основные типы расходомеров

Рассматривая основные конструкции счетчиков по принципу их устройства и работы можно выделить такие виды расходомеров:

  1. Тахометрические. Они состоят корпуса с установленной в нем лопастной крыльчаткой, которая вращается за счет перемещения воды и передает количество сделанных оборотов на считывающее устройство. Учитывая их простоту и дешевизну, именно такие счетчики используются в качестве бытовых водомеров на малых диаметрах напорных трубопроводов. В промышленном учете, где оперируют большими расходами, они не применяются из-за громоздкости и металлоемкости, а также создания гидравлического сопротивления для движения потока и возможных механических поломок.
  2. Электромагнитные полнопроходные. Это высокоточные приборы объемного учета расхода жидкости, используемые в трубопроводных системах с избыточным давлением жидкости.
  3. Штанговые электромагнитные. С их помощью выполняется замер скорости в середине потока в закрытых полностью заполненных трубах (под давлением). Используются для различных диаметров.
  4. Ультразвуковые. Различают водомеры, работающие по время-импульсному методу измерения, методу Доплера и кросс-корреляционные. Сигнал на считывающее устройство передается с ультразвуковых датчиков. Это одни из наиболее широко применяемых промышленных счетчиков. В зависимости от применяемых датчиков используются в напорных и самотечных системах.
  5. Радарные и лазерные системы измерения расходов. Бесконтактные устройства, применяемые в промышленности. Применяются для самотечных потоков.
  6. Счетчики на основе уровнемера. Их используют в безнапорных системах на лотках Вентури или Паршаля, на каналах с малым водопотреблением либо для технологического учета. При помощи беспроводных уровнемеров можно получить данные об удаленных и труднодоступных объектах.

Рассмотрим более подробно устройство и принцип действия основных расходомеров, применяемых для промышленного учета.

Время-импульсные ультразвуковые счетчики

Время-импульсный метод (или, по-другому, фазового сдвига) основан на измерении времени прохода сигнала против движения потока и по направлению перемещения жидкости. Для преобразования ультразвукового сигнала на трубопроводе устанавливают два или четыре смещенных вдоль движения воды пьезоэлемента. Как правило, применяются дисковые элементы, реже – кольцевые (на малых диаметрах).

Пьезоэлементы могут устанавливаться внутри потока (на внутренних стенках трубы или канала) или снаружи трубопровода (в этом случае сигнал проходит через наружную стенку). В зависимости от применяемых датчиков счётчики могут устанавливаться в самотечных системах (как открытых, так и закрытых), а также в полностью закрытых трубопроводах с избыточным давлением среды. Различают такие виды датчиков скорости:

  • трубные – врезаются в водопровод с внешней стороны. Могут применяться в напорной и безнапорной среде;
  • клиновидные – устанавливаются на дне или внутренней стенке трубы. Как правило, используются в безнапорных каналах либо в трубопроводах больших диаметров, если установка и обслуживание датчика снаружи неудобна;
  • сферические или полусферические – монтируются на наклонных стенках открытых трапециевидных каналов;
  • штанговые – имеют вид трубок, устанавливаются на вертикальных стенках каналов;
  • накладные – бесконтактные датчики, ставятся на внешнюю поверхность трубопровода.

В зависимости от способа установки датчиков различают контактные и бесконтактные устройства. Преимущество бесконтактных переносных расходомеров в возможности устанавливать их на трубопроводы без нарушения целостности. Они достаточно редко устанавливаются стационарно, чаще используются для поверочных замеров в разных точках.

Время-импульсные расходомеры пригодны для нахождения расхода чистой воды или немного загрязненной (с незначительным включением взвешенных частиц). Их применяют в водоснабжении и водоотведении, в охлаждающих контурах, в ирригационных схемах орошения, на насосных напорных станциях, в открытых природных и искусственных каналах и реках. Применяются как для коммерческого, так и для технологического учета.

Метод Доплера

Счетчики, работающие по данному методу, измеряют разность длины волны, отраженной от движущегося потока, относительно длины волны излучаемого сигнала. Измерение принимаемого и передаваемого сигнала для определения разницы между ними производится при помощи клиновидных или трубных датчиков скорости, устанавливаемых на дне канала или трубы.

Работающие по эффекту Доплера водомеры используют в напорных и самотечных системах, полностью и частично заполненных трубах, открытых каналах. Они работают в потоках разной степени загрязнения (кроме чистой воды). Доплеровские расходомеры используют для коммерческого учета в трубопроводах и самотечных каналах, для измерения расходов в реках и каналах ирригационных систем, в ливневых канализациях, на насосных станциях, трубопроводах водозабора и сброса стоков в водоемы.

Кросс-корреляционные ультразвуковые счетчики

Такие расходомеры работают по методу кросс-корреляции ультразвукового сигнала. Эта методика основана на принципе построения скоростей по различным уровням потока, счетчик дает возможность строить реальную диаграмму распределения скоростей в потоке. Также выполняется замер уровня потока.

С водомерами используются ультразвуковые трубные и клиновидные датчики скорости, устанавливаемые в потоке, уровень жидкости определяется при помощи надводных и подводных датчиков. Возможно исполнение комбинированных датчиков скорости и уровня.

Счетчики используются в напорных и самотечных, открытых и закрытых системах. Это точный метод измерения, дающий достоверные результаты для потоков различной степени загрязненности, в том числе он эффективен в неоднородных средах. Расходомеры используют в технологических трубопроводах, на очистных сооружениях, в реках и водоемах и др. В крупных каналах можно устанавливать несколько датчиков по всей ширине для получения более точных результатов.

Электромагнитные расходомеры

Их принцип работы основан на законе электромагнитной индукции, согласно которой в электропроводной жидкости, проходящей через электромагнитное поле, индуцируется ЭДС, пропорциональная скорости потока (проводника).

Такие расходомеры нашли применение в системах объемного учета теплоносителя и воды на промышленных и энергетических предприятиях. Недостаток – высокая стоимость и вес для диаметров более 300-400 мм, сложность снятия на поверку.

Штанговые электромагнитные водосчетчики работают по принципу погружения датчика в жидкость, где происходит измерение скорости потока. Такие счетчики определяют расход холодной воды в полностью заполненных трубопроводах.

Радарные и лазерные расходомеры

Бесконтактные узлы учета замеряют поверхностную скорость движения потока в открытых и закрытых самотечных потоках. Вычисление объемного расхода производится путем вычисления его через скорость на поверхности.

Такие устройства используют в труднодоступных местах и сильно загрязненных потоках, где нет возможности установить погружные датчики. Их применяют для учета канализационных и технических стоков.

перейти к выбору расходомеров 

vistaros.ru

17 Расходомеры переменного и постоянного перепада давления

Метод измерения расхода по переменному перепаду давления является наиболее универсальным, так как он позволяет измерять расход жидкостей газов и пара, протекающих в трубопроводах, практически при любых давлениях и температурах. В комплект установки для измерения расхода по переменному перепаду давления входят: сужающее устройство, соединитель­ные линии (импульсные трубки), дополнительные устройства (разделительные сосуды, отстойники, конденсационные сосуды) и измерительный прибор — дифференциальный манометр.

Существует три типа нормализованных сужающих устройств* нормальные диафрагмы, нормальные сопла и нормальные трубы Вентури. Вследствие простоты устройства и монтажа наибольшее рас­пространение получили сужающие устройства типа нормальной диафрагмы. Нормальная диафрагма (рис. а) представляет собой тон­кий металлический диск, имеющий концентрическое отверстие с острой кромкой и цилиндрической частью со стороны входа. Для диафрагм диаметром d < 150 мм кромка со стороны входа должна быть острой, без завалов и заусенцев. Для диафрагм диа­метром d > 150 мм допускается легкая шлифовка входной кромки наждачной бумагой. Толщина нормальной диафрагмы должна быть 0,1 D, длина цилиндрической части отверстия — 0,02 D. Диаметр отверстия цилиндрической части диафрагмы изготовляется с допуском ±0,001d. Нормальная диа­фрагма устанавливается между фланцами трубопровода (рис. б). Диафрагма 1 крепится двумя кольцевыми камерами 2 и 3. Камеры снабжены кольцевыми выточками, сообщающимися с сечением трубопровода до и после диафрагмы за счет зазоров. Кольцевые выточки специальными сверлениями соединены с трубками 4 .

Расходомеры постоянного перепада давления. У приборов этого типа измеряемое вещество (жидкость или газ) проходит непосредственно через расходомер, причем площадь проходного отверстия изменяется в зависимости от расхода; перепад давления при прохождении веще­ства через расходомер остается постоянным» Измерительная часть прибора (рис.) представляет собой вертикально располо­женную трубку 1, в которой находится по­плавок 2. Перепад давления при протекании череа коническую трубку жидкости, разность дав­лений до и после поплавка определяются весом поплавка и его геометрической фор­мой. Поскольку эти параметры при измере­нии расхода не меняются, перепад давления остается постоянным.

При постоянном перепаде давления пло­щадь кольцевого сечения между внутрен­ними стенками конической трубкиJ и по­плавком пропорциональна количеству жид­кости, протекающей в данный момент (рас­ходу).

В конической трубке площадь кольцевого сечения изменяется пропорционально высоте. Следовательно, поплавок изменяет свое положение по высоте в зависимости от расхода.

Формулы объемного и массового расходов имеют вид: Qоб.=H tg(8 m/

Qм.=H tg(8 mгде  - коэффициент расхода; ф - угол конусности измеритель­ной трубки; Н - высота подъема поплавка; р — плотность изме­ряемого вещества; m — масса поплавка.

18 Расходомеры турбинные и индукционные

Турбинные счетчики типа ТОР предназначены для измерения производительности (дебита) нефтяных скважин в автоматизпрованных групповых установках типа «Спутник».

Схема счетчика показана на рис. Жидкость проходит через входной патрубок 7, обтекатель 2 и вращает крыльчатку 3. Вращение крыльчатки через понижающий редуктор 5 и магнитную муфту 6 передается на механизм 8 местного отсчета, собранный на плате 7. Жидкость, пройдя крыльчатку, отражается экраном 4 и выходит из корпуса через патрубок 11. Корректировка показаний прибора при поверке осуществляется корректором 10. управление которым вынесено наружу счетчика. Счетчик монтируется с помощью быстросъемных хомутов. Дистанционная передача показаний осуществляется электромагнитным и магнитоиндукционным преобpaзователями .Электромагнитный датчик построен на принципе магнпто-унравляемых нормально разомкнутых контактов, которые, замыкаясь. выдают электрический сигнал, когда постоянные магниты, закрепленные па диске 12 проходят мимо контактов электромагнитного датчика 9. Магнитноиндукционный преобразователь представляет собой ге­нератор, имеющий постоянный магнит, сердечник и обмотку. Частотные сигналы в этом преобразователе возникают в резуль­тате прохождения ферромагнитных лопастей крыльчатки мимо сердечника. Индукционные расходомеры К достоинствам индукционных расходомеров относится то, что у этих приборов отсутствуют механические части, связанные с из­меряемым веществом; структура измеряемого потока не нарушается так как в него не помещают какие-либо выступающие предметы. Показания приборов не зависят от давления и температуры изме­ряемого вещества. Принцип действия индукционных расходомеров основан на измерении зависящей от расхода электродвижущей силы, индуктированной в потоке электропроводной жидкости под действием электромагнитного поля. Схема индукционного расходомера пока­зана на рис. Между полюсами магнита N — S перпендикулярно к напра­влению силовых линий магнитного поля проходит трубопровод 1, по которому течет жидкость. Если жидкость электропроводка, то в точках, лежащих на противоположных концах вертикального диаметра трубопровода, создается разность потенциалов, образу­ющая электродвижущую силу е, е= - Blw, где В - магнитная индукция; I - расстояние между электродами; w - скорость потока жидкости.

Разность потенциалов снимает­ся двумя электродами 2 и измеряется прибором 3. Отрезок тру­бы, расположенный в магнитном поле, изготовлен из немагнитного материала. Выражая скорость потока w через расход Q: w = 4 Q/пD2 получаем е= - 4QB/пD Из формулы видно, что величина э. д. с. прямо пропор­циональна расходу и магнитной индукции и обратно пропорцио­нальна диаметру трубопровода. Индукционные расходомеры с постоянным магнитным полем имеют ряд недостатков, являющихся следствием поляризации электродов. К достоинствам индукционных расходомеров следует отнести то, что они не имеют каких-либо подвижных или неподвижных выступающих частей, препятствующих измеряемому потоку, обла­дают линейной шкалой, высокой чувствительностью, хорошей вос­производимостью показаний и стабильной работой. Этими расходомерами можно измерять расходы сред, облада­ющих высоким агрессивным воздействием, радиоактивных сред и расход различного рода пульп.К числу достоинств индукционных расходомеров следует также отнести то, что применение их не обусловлено требованием прямого участка трубопровода и датчик может быть установлен в любом положении (в горизонтальном, наклонном, вертикаль­ном). К недостаткам индукционного расходомера следует отнести то, что измеряемая им жидкость должна обладать некоторой мини­мальной проводимостью. Многие углеводороды (в том числе нефть и продукты нефтепереработки) этим свойством не обладают.

studfiles.net

Расходомеры переменного перепада давления

Расходомеры переменного перепада давления

Расходомеры переменного перепада состоят из устройств, образующих местное сужение в трубопроводе (сужающие устройства) и дифференциальных манометров перепада давления.

Принцип действия сужающих устройств заключается в следующем: при протекании потока жидкости, газа или пара в суженном сечении трубопровода часть потенциальной энергии давления переходит в кинетическую. Средняя скорость потока увеличивается, в результате чего в сужающем устройстве создается перепад давления, величина которого зависит от расхода вещества.

Сужающие устройства подразделяются на две группы: нормализованные и ненормализованные. К первой группе относятся диафрагмы, сопла, трубы Вентури. Диафрагмы и сопла устанавливают в трубопроводах круглого сечения диаметром не менее 50 мм, а трубу Вентури — в трубопроводе диаметром не менее 100 мм.

Ко второй группе сужающих устройств относятся сдвоенные диафрагмы, сопла с профилем размером 1/4 круга и другие устройства, которые применяют для измерения расхода вязких жидкостей при малых диаметрах трубопроводов.

Диафрагмы (рис. 31) бывают камерные А — отбор импульсов давления при помощи кольцевых камер и бескамерные Б — отбор импульсов давления при помощи отверстий (табл. 13). Толщина диска диафрагмы должна быть менее 0,1 D (D — диаметр условного прохода трубопровода).

Камерные диафрагмы состоят из диска, прокладки и двух кольцевых камер. Кольцевые камеры измеряют давление до и после диафрагмы. Толщина диска равна 3 мм для трубопроводов диаметром D < 150 мм и 6 мм для трубопроводов диаметром 150 < D < 400 мм.

Сопла могут применяться для труб диаметром не менее 50 мм. Схема сопла представлена на рис. 32. Верхняя часть соответствует отбору импульсов давления при помощи кольцевой камеры, нижняя — отбор производится при помощи отверстий. Выпускают их малыми сериями.

 

Труба Вентури имеет постепенно сужающееся сечение, которое затем расширяется до первоначального размера. Вследствие такой формы потери давления в ней меньше, чем в диафрагмах и соплах. Труба Вентури состоит из входного и выходного конусов и цилиндрической средней части (рис. 33).

Труба Вентури называется длинной, если диаметр выходного конуса равен диаметру трубопровода, и короткой, если он меньше диаметра трубопровода.

Сужающие устройства — простые дешевые надежные средства измерения расхода. Градуировочная характеристика стандартных сужающих устройств может быть определена расчетным путем, поэтому отпадает необходимость в образцовых расходомерах. Сужающее устройство является индивидуальным для каждого расходомера.

Из перечисленных сужающих устройств наибольшее применение нашли диафрагмы, поэтому приведем примеры расчета диафрагмы для измерения расхода воды и влажного воздуха (газа).

Расчет сужающего устройства заключается в определении размеров его проходного отверстия.

 

 

1. Находим произведение коэффициента расхода а на отношение площади проходного сечения диафрагм к площади трубопровода а:

2. Рассчитываем критерии Рейнольдса, соответствующие расчетному и минимальному расходам:

3. По произведению ста с помощью графика (рис. 34) определяем значение а и а:

 

 

4. Рассчитываем потери давления от установки диафрагмы

 

Фактические потери давления от установки диафрагмы меньше допустимого значения.

  1. Определяем диаметр прохода диафрагмы при рабочей температуре:

 

6. Находим диаметр прохода при температуре 20 °С:

 

7. Проверяем расчет по формуле:

 

1. Определяем плотность влажного воздуха:

2. Находим ориентировочное значение произведения ста, приняв коэффициент расширения е = 1:

 

  1. Рассчитываем критерий Рейнольдса для расчетного и минимального расходов воздуха:
  2. По графику (см. рис. 34) определяем ориентировочные значения а и а. Они равны соответственно 0,445 и 0,673.
  3. Находим значение коэффициента расширения е по графику (рис. 36) - е = 0,975.
  4. Уточняем значение произведения а а 8 = 0,292 • 0,975 = 0,287.

  1. По уточненному произведению а а 8 определяем а и а (см. рис. 34):

Полученное значение меньше допустимого.

  1. Рассчитываем потери давления от сужающего устройства (см. рис. 35): APd = 55 %;

 

10. Проверяем расчет по формуле

Однотипные по устройству дифференциальные манометры и вторичные приборы могут быть использованы для различных условий измерения.

Расходомеры с сужающими устройствами универсальны, они применяются для измерения расхода практически любых однофазных (иногда и двухфазных) сред в широком диапазоне давлений, температур, диаметров трубопроводов.

Однако наряду с достоинствами эти расходомеры имеют и недостатки: нелинейная зависимость между расходом и перепадом не позволяет измерить расходы вещества менее 0,3 Qan (QBn — верхний предел расхода вещества). Погрешность измерения в зависимости от состояния сужающего устройства, диаметра трубопровода, постоянства давления и температуры измеряемой среды колеблется в пределах 1,5 —3 %. При измерении расходов при малых числах Re или в трубках малого диаметра возникает необходимость индивидуальной градуировки сужающих устройств.

Кроме того, длинные импульсные трубки затрудняют измерения быстроменяющихся расходов вещества.

Смотрите также

teploobmennye-apparaty.ru


Смотрите также

  • Акб принцип действия
  • Центробежный компрессор устройство и принцип действия
  • Действия при угоне автомобиля
  • Как расположены педали в машине с механической коробкой
  • Переднеприводные автомобили с продольным расположением двигателя
  • Расположение продольное
  • Почему трясет машину при наборе скорости
  • Небольшая вибрация при наборе скорости
  • Причины вибрации автомобиля при наборе скорости
  • Расчет сабвуфера по динамику
  • Установка в динамиков в авто