Термостатический клапан что это


чем хорош термостатический смеситель при регулировке температуры тёплого пола

До недавнего времени тёплый пол ассоциировался с предметом роскоши. Но как оказалось, такое инженерное решение является наиболее действенным для создания удовлетворительного микроклимата в помещении. Привычное размещение радиаторов приводит к тому, что все тепло сразу поднимается, оставляя при этом нижние слои воздуха менее прогретыми, а пол и вовсе холодным. Это никак не вписывается в систему стандартов, которые определяют нормы благоприятных температурных показателей для человека.

Какой должна быть комфортная температура в жилом помещении

Так, в этих стандартах указано, что на уровне пола температура должна быть в пределах 22 °C-24 °C, а на уровне головы – не менее 20 °C. Возможно ли добиться таких показателей, если установлены настенные радиаторы? Однозначный ответ – нет. Можно добиться высоких температурных значений в квартире, это выполнимо как при центральном отоплении, так и при автономном – вопрос лишь в цене, которая будет объединять собой стоимость расходов на средства утепления. Но нижние слоя воздуха все равно будут менее прогреты.

Если же вы решили установить в своём жилище систему тёплого пола, вам нужно ознакомиться с таким её элементом, как термостатический клапан.

Для чего необходимо устройство

Термостатические клапаны выполняют функцию смешивания двух потоков в один для получения стабильной температуры в конструкции тёплого пола. При этом работа над получением необходимого значения температуры выполняется механизмом автоматически.

То есть, как можно было понять, имеется три хода для потоков воды. Отсюда и название таких клапанов – трёхходовые. Различаются они по способу смешивания потоков.

Два вида трехходовых клапанов по способу смешивания

Первый вид трехходового клапана – с функцией термостата

Его же ещё называют клапаном с поддержкой заданного уровня температуры. Чтобы на выходе получить стабильное значение, он регулирует интенсивность и холодного, и горячего потока. По сути, чтобы на выходе было 40 градусов, происходит регулировка обоих потоков при помощи термостата, и выполнение балансирующей настройки идёт с целью получить не просто заданную температуру, но и стабильную по своему значению.

Этот вид клапана трехходового смесительного может использоваться как для системы тёплого пола, так и в бытовой системе горячего водоснабжения. Автоматическая подстройка температуры выходного потока позволяет защитить потребителя от возможного ошпаривания. Происходит это следующим образом: при отсутствии подачи холодной воды клапан автоматически перекрывает подачу и горячего потока. А в остальном регулировка производится при помощи термочувствительного элемента так: при контакте со смешанным потоком он определяет значение температуры, и уменьшает или увеличивает входные отверстия, сжимаясь или расширяясь соответственно, для получения требуемого показателя.

Второй вид – трехходовой термостатический клапан

Отличается от первого вида тем, что здесь идёт регулировка только входящего горячего потока. В комплекте с этим клапаном поставляется термоголовка, оснащённая выносным датчиком.

Кроме того, в продаже имеются трёхходовые смесительные клапаны, которые не способны самостоятельно производить стабилизацию выходной температуры.

По сути, это обычные краны, но и их тоже зачастую используют на смесительных узлах для регулировки температуры тёплого пола.

Два типа термостатического клапана по направлению потоков

Один из них выбирают исходя из удобства монтажа в конкретной схеме, и от типа установки.

  1. Первый тип – т-образная схема. В ней выходной поток вытекает из середины, а горячая и холодная вода входит в противоположные стороны. Эту схему ещё называют симметричной.
  2. Второй тип – L-образная схема, асимметричная. Горячая вода тут подаётся сбоку, холодная – снизу, а смешанный поток, соответственно, с противоположного канала к входному горячему.

Какую проблему решает смеситель этого типа

Смесительный клапан решает проблему, как объединить высокотемпературный контур радиаторов с низкотемпературным контуром тёплого пола, ведь предел рекомендуемой температуры для него – всего 40 °C, когда в отопительной системе значение температуры воды может достигать 90 °C. Кроме него, для регуляции можно использовать и другие средства. Зависит от того, насколько большая площадь будет отведена под систему тёплого пола.

Другие виды устройств, при помощи которых можно регулировать температуру тёплого пола

  1. Для комнаты, площадь которой не превысит 10 квадратных метров, можно использовать обычные вентили. Достаточно установить два таких устройства по одному на подачу воды и на обратный поток, и выполнять регулировку так же само, как это делают на обычном радиаторе: прикрутили вентиль – снизили температуру, нужно её повысить – открыли вентиль посильнее. Недостаток такого смесительного устройства по сравнению с термостатическим трёхходовым клапаном – это ручная регулировка. Нет никаких приборов, которые покажут вам, какая температура получается на выходе, действия происходят методом «тыка».
  2. Смесители термостатические бывают не только трехходовые, но и двухходовые. Такой клапан можно установить вместо одного из ручных вентилей (способ регулировки при помощи вентиля, описанный выше), и он уже будет поддерживать заданную температуру автоматически.
  3. Для тёплого пола, который будет занимать большие площади, используют узел подмеса. Это устройство представляет целую систему из коллектора подачи и обратки, циркуляционного насоса и термостатического смесителя.

На что ориентироваться в первую очередь при выборе типа смесительного устройства

Исходя из этих данных, подбор системы смесителей для тёплого пола исходит в первую очередь из того, какую площадь вы собираетесь под него отвести. Самый дешёвый и простой вариант – это вентиля. Но подходят они только для малых помещений. Так, если вам необходимо уложить тёплый пол в туалете или в ванной, приобретать целую систему из узла подмеса нет необходимости. Трёхходовые клапаны будут стоить дороже, но так вы сможете добиться лучшей регулировки температуры.

Цена таких смесителей, соответственно, выше, ведь в них установлены терморегуляторы. Двухходовой термостатический клапан может обойтись до 45 долларов, трёхходовой – до 50. Цена распределительного узла подмеса может достигать 1000 долларов.

Если желание завести тёплый пол под большую площадь вас не покидает, но стоимость распределительного узла оказывается неподъемной, его можно собрать самостоятельно из отдельных частей при условии, что вы обладаете знаниями и опытом работы в данной области. Существует множество готовых схем установки регулятора для тёплого пола, которыми можно воспользоваться для самостоятельного монтажа. Сборка узла из отдельных частей может удешевить его примерно в полтора раза.

Оцените статью: Поделитесь с друзьями!

kotel.guru

Регулирующий термостатический вентиль для радиаторов

Кран и вентиль для радиатора отопления – это абсолютно разные узлы, функции которых отличаются. Кран может либо полностью открыть условный проход, либо закрыть. Работа вентиля заключается в частичном перекрытии пути теплоносителя. Этот вид арматуры применяется для регулировки температуры в батареях и балансировки системы отопления.

Отличие вентиля от крана

Шаровой кран в разрезе.

Если вы введете в строку поиска запрос «вентиль для радиатора отопления», то выдача будет касаться абсолютно всей арматуры для обвязки батарей, начиная с шаровых кранов. А ведь между вентилями и кранами есть концептуальное отличие, что не может ставить эти два узла в один ряд.

Кран – это трубопроводная арматура, которая работает на полное открывание или перекрытие пути теплоносителю. В качестве затворного элемента выступает шар с отверстием. Он вращается только вокруг своей оси. Никаких смещений по осям Х и У нет.

Вентили для радиаторов отопления могут перекрывать путь теплоносителю частично, ограничивая поток. Затворная часть перемещается перпендикулярно потоку. В верхнем положении условный проход полностью открыт, а в нижнем, когда запорный конус опускается в седло, вентиль перекрыт.

В отличие от кранов, где шар перекрывает условный проход вследствие вращения, в вентилях все несколько иначе:

  • вращается только шток клапана, создавая давление на перекрывающий конус;
  • конус опускается вниз, перекрывая поток.

Конструкция вентилей для радиаторов отопления может быть двух видов: с ручным и автоматическим управлением. Ручное управление – это когда нет возможности заменить вращающийся шток на термоголовку. Разница в том, что термоголовка не крутится, а просто давит на золотник за счет теплового расширения сильфона.

Сейчас медные трубы и фитинги для отопления используются редко, полимеры почти полностью вытеснили металлы.

 

Подробнее про пластиковые отопительные трубы вы можете почитать тут.

Термостатические вентили для радиаторов

Термовентиль в разрезе.

Первыми рассмотрим вентили, которые за счет уменьшения условного прохода могут регулировать температуру в батареях. Они называются термостатические вентили для радиаторов отопления. Как мы уже сказали, есть ручные и полуавтоматические. Полуавтоматические – потому что могут работать в обоих режимах.

Есть разные конфигурации:

  • прямые;
  • угловые;
  • с обычной и повышенной пропускной способностью – вторые применяются для однотрубных систем.

Вентили для радиаторов термостатические устанавливаются на подаче. Если арматура работает в ручном режиме, то настройка осуществляется один раз. Опытным путем вы выставляете необходимое положение затворного конуса, ориентируясь по температуре батарей. Неудобство в том, что с изменением погоды температура воздуха в помещении будет скакать. А если у вас центральное отопления, то появляется еще один нестабильный фактор – теплоноситель. Степень его нагрева тоже меняется в зависимости от погоды, за этим следят уже в котельной.

Если на термовентиль для радиатора отопления установлена термоголовка (если есть техническая возможность), то перепады температуры теплоносителя и изменения погоды не влияют на микроклимат в помещении.

В головке есть сильфон – это капсула, в которой есть рабочее вещество. За счет его теплового расширения капсула увеличивается в объёме и давит на запорный конус. В механических термоголовках нельзя влиять на степень теплового расширения рабочего вещества, поэтому регулировка осуществляется изменением расстояния от сильфона до конуса. В электрических головках вокруг сильфона намотана спираль, за счёт ее нагрева происходит тепловое расширение. В этом случае можно контролировать подачу тока на спираль, соответственно, влиять на изменение размеров конуса. Встроенный датчик температуры контролирует этот процесс.

Балансировочные вентили для радиаторов

Настроечный болт скрыт под крышкой.

Этот вид радиаторной арматуры предназначен для гидравлической балансировки системы отопления. Чтобы теплоноситель проходили равномерно по каждому теплообменнику в контуре нужно выровнять их гидравлическое сопротивление.

Балансировочный регулирующий вентиль для радиатора настраивается согласно проекту. В централизованных системах эта работу могут выполнять только сотрудники обслуживающей организации. Самовольное вмешательство в контур запрещено, даже поменять батарею без разрешения ЖЭКа нельзя. В небольших автономных системах эти вентили не нужны, только если контур большой и имеет несколько разных по длине веток.

Балансировочные вентили устанавливаются на обратке – это там, где теплоноситель покидает батарею. Бывают прямыми и угловыми, вполне могут заменить запорную арматуру (шаровые краны).

С недавних пор полиэтиленовые трубы для отопления (РЕХ) стали использоваться наравне с полипропиленом.

 

Соотношение внутреннего и наружного диаметра стальных труб отопления смотрите здесь.

Комбинированные регулирующие вентили для нижнего подключения

Комбинированный вентиль.

Есть такие двойные вентили для радиатора отопления похожие на бинокль. Обратите внимание на наличие крышечки сбоку. Она скрывает шток для балансировки системы. Если крышечки нет, то перед вами просто два совмещенный шаровых крана. Это уже не вентиль, а запорная арматура.

Комбинированные вентили помимо простой балансировки, могут еще и регулировать температуру в радиаторе. Например, четырехходовой термостатический узел для нижнего подключения радиатора. При этом метод монтажа тоже может отличаться. Есть узлы, которые работают в тандеме с термостатическими клапанами, а есть и такие, на которые можно накручивать термоголовки. Во втором случае обвязка намного аккуратнее.

utepleniedoma.com

Что представляет собой термосмесительный клапан для тёплого пола?

На сегодняшний день среди используемых систем отопления жилых помещений значительное место отводиться теплым полам. По сложности конструкции и способу монтажа теплый пол трудно назвать легким и доступным вариантом обогрева. Другое дело эффективность. Использование для отопления подогрев полов обеспечивает в жилых помещения максимально комфортный температурный баланс. Сравнивая работу водяных полов с традиционным радиаторным отоплением, первые значительно выигрывают, как в плане эффективности, так и в эстетическом плане. Единственное препятствие, которое не позволяет более широко использовать греющие водяные трубы для подогрева пола – это существенная разница температур теплоносителя.

Автономный котел или центральная система отопления дают воду для обогрева с температурой 75-950С. Теплый пол является низкотемпературной системой, оптимальная температура воды в отопительных трубах водяного контура составляет 35-550С. Как в такой ситуации получить воду для теплого пола нужной температуры? С этой задачей успешно справляется смесительный клапан для теплого пола. Устройство осуществляет смешивание горячей и холодной воды, циркулирующей в системе, т.е. подготовку теплоносителя для последующей подачи в трубопровод вашего пола. Какие бывают смесительные клапаны и какова их работа, рассмотрим все существующие модели и варианты установки.

Содержание статьи:

Место и роль смесительных клапанов в отопительной системе «теплые полы»

Основная задача, с которой приходится сталкиваться потребителям, решая вопрос монтажа теплых полов в своем доме, добиться необходимой температуры теплоносителя. Для радиаторов вода, температурой 750С вполне приемлема, чего не скажешь о трубах, которые уложены в толще бетонной стяжки.

Важно! Чрезмерный нагрев бетонной стяжки приводит к ухудшению температурного баланса внутри отапливаемого помещения. Напольное покрытие (в большинстве случаев на древесной основе) при высоких температурах быстро утрачивает свои эстетические и технологические качества, приходя в негодность.

В соответствии с санитарными нормами, нормальная температура нагрева теплых полов не должна превышать 260С. Тогда срединные слои воздушной массы внутри помещения прогреваются до комфортных значений 20-220С. Для того, что бы получить такие температурные параметры, вода, поступающая в петли водяного контура должна быть нагрета до 500С. Чуть менее 50% тепловой энергии нагретой воды уходит на прогрев слоеного пирога теплого пола. С учетом толщины слоя бетона, материала и разновидности напольного покрытия, происходит снижение температуры на поверхности пола.

Добиться существенного снижение температуры котловой воды на входе в отопительные водяные контуры помогает смесительный узел, представляющий собой комплект взаимосвязанных приборов и устройств. Одну из главных ролей в работе смесителя играет клапан термосмесительный, смешивающий воду для теплого пола. Благодаря этому небольшому приборчику осуществляется смешение двух поток воды, холодной и горячей для того, что бы на выходе получился вода необходимой температуры. Клапаны, устанавливаемые в смесительные узлы, бывают двух типов, трехходовые и двухходовые. Каждый из типов кранов выполняет свои, определенные технологическим процессом задачи и функции. Какой прибор лучше использовать для ваших теплых полов? Что стоит за выбором типа смешивающего и регулирующего устройства?

Что собой представляет смесительный термостатический клапан

Процесс работы теплых полов заключается в подаче горячей воды из нагревательного прибора или другого источника нагрева в смесительный узел. Первое устройство, с которым вступает в контакт горячая вода предохранительный смесительный термостатический клапан. Двухходовой или трехходовой кран специально установлен для того, что бы снижать температуру котловой воды перед тем как она поступит в коллектор. Охлаждение теплоносителя осуществляется в автоматическом режиме, за счет подмеса остывшей воды из трубы обратного потока. Этот процесс происходит постоянно и беспрерывно на протяжении того времени, когда включено отопление.

Выше уже было сказано, что для этих целей используются вентили подмеса двух типов.

Двухходовой термостатический смесительный клапан

Двухходовой термостатический клапан, если говорить обычными словами, представляет собой улучшенный вариант ручного вентиля.

Несложное и понятное устройство вентиля позволяет достаточно эффективно осуществлять регулировку температуры теплоносителя в автоматизированном режиме. Обычно такой прибор ставится в отопительную систему, заменяя ручные краны. К основным достоинствам двухходового типа устройства можно смело отнести:

  • автоматизированная работа по снижению температуры воды;
  • простая и недорогая конструкция;
  • легкий монтаж.

На заметку: Недостатком подобного прибора являются ограничения использования. Такой тип вентилей рассчитан на работу теплых полов небольшой площади. Обычно двухходовой клапан ставится на водяные отопительные контуры небольшой длины (для ванной комнаты, в детской).

Это тип смесительного прибора используется чаще всего, когда речь идет об оборудовании теплых полов в качестве вспомогательной системы отопления. С помощью этого прибора осуществляется корректная регулировка температуры теплоносителя, рабочего давления в системе и интенсивность водяных потоков.

Устройство состоит из цельного, литого корпуса (латунь или бронза). На кране имеется терморегулирующая головка с метрической шкалой. Положение головки может меняться в ручном и в автоматическом режиме. Для простых и недорогих систем отопления обычно используется оборудование с ручной настройкой. В сложных системах принято устанавливать термостатические вентили с дистанционными датчиками температуры. Основной деталью конструкции прибора – седла, одно или два. Двухседельные краны способны перекрывать поток воды полностью в отличие от трехходовых устройств.

Принцип работы устройства заключается в следующем:

  • вода, поступающая из обратного контура, снова направляется в петлю теплого пола;
  • снижение температуры нагрева отработанной воды ниже установленных параметров, приводит к срабатыванию устройства. В систему запускается горячая вода, смешиваясь внутри прибора с остывшей водой;
  • при достижении температуры воды заданных параметров, срабатывает термостатический датчик, вентиль автоматически перекрывает подачу горячей воды в систему.

Другими словами, затвор, состоящий из седла и плунжера, реагирует на механическое действие термостатической головки. Плунжер, опуская вниз, перекрывает поток воды, снижая давление. Опущенный вниз затвор означает полную герметизацию проходных отверстий крана, соответственно вода в систему не поступает. Плунжер установлен перпендикулярно направлению движения воды и может быть игольчатым, тарельчатым или стержневым.

На заметку: если использовать этот тип оборудования при отоплении помещений большой площади, термостат будет работать со сбоями. Вода в длинных контурах быстрее остывает, поэтому термостат вентиля будет срабатывать чаще, добавляя в систему горячую воду.

На практике сегодня применяются вентили трех видов:
  • Гидравлические;
  • Пневматические;
  • С электроприводом.

На рисунке указана схема подключения двухходового смесительного клапана в систему отопления «теплые полы».

Трехходовой смесительный клапан

Что касается трехходового смесительного клапана, то его работа в принципе отличается от принципа действия двухходового устройства. Здесь идет речь о подмесе к горячей воде, поступающей от котла к коллектору, остывшей воды, поступающей из обратки. Плюсы и минусы данного устройства аналогичны двухходовому крану за исключением одной детали:

Во время включения устройства в работу, интенсивность потока теплоносителя никак не меняется. За счет этого достигается равномерное изменение температуры воды, поступающей в петли водяного контура.

К основным особенностям этого устройства следует отнести максимально удобную регулировку температурного режима нагрева водяного пола. Этот тип смесительного устройства рассчитан на работу с масштабными системами отопления (помещения площадью более 250 м2). Однако, несмотря на очевидные преимущества, трехходовой клапан имеет ряд недостатков.

Важно! При срабатывании термостата, кран открывается полностью, давая доступ в систему теплого пола горячего теплоносителя. Это может стать причиной перегрева отопительного контура в лучшем случае, а в худшем варианте, к разрыву трубопровода.

В отличие от двухходового типа, трехходовое устройство подмеса имеет низкую пропускную способность.

Изделие изготавливается из латуни или из бронзы. Оснащается изделие термочувствительной головкой или термостатом. Схема работы этого устройства следующая:

Горячая вода следует через правый и фронтальный патрубки до того момента, пока температура воды отвечает заданным параметрам. При снижении или росте температуры теплоносителя в работу вступает термостат, приводящий в движение шток. В результате движения штока происходит подмес горячей или охлажденной жидкости из других магистралей. Фронтальное отверстие открывается полностью в том случае, когда температура воды снова достигла желаемых параметров.

В зависимости от привода, трехходовые клапаны могут быть следующей конструкции:

  • с термостатическим приводом;
  • с термостатической головкой;
  • с электроприводом;
  • с сервоприводом.

Каждая модель имеет свои отличия и особенности, специально рассчитанные для использования в различных гидравлических системах коммуникаций.

Подключается трехходовой клапан следующим образом.

Заключение

Подключаются оба типа смесительных термостатических клапана по-разному. Для двухходового крана характерной является параллельная схема подключения. Для трехходового вентиля используется последовательное подключение.

Первый тип, двухходовой клапан в основном используется для работы с одним или с двумя водяными отопительными контурами. Для этого варианта и используется параллельное подключение.

Трехходовой тип устройства рассчитан на работу с длинными водяными контурами. При последовательном подключении вентиля достигается максимальная производительность теплых полов. Оба устройства монтируются в систему перед смесительным узлом, перед циркуляционным насосом. Надежность работы кранов проверяется во время пробного пуска системы отопления. Правильный монтаж и настройка приборов позволят вашим полам работать длительное время и максимально эффективно.

znatoktepla.ru

Смесительный термостатический клапан и его назначение

Содержание статьи

При обустройстве водопроводов, в которых циркулирует горячая жидкость, возникает необходимость в том, чтобы управлять процессом смешивания жидкости, обеспечивать защиту от ожогов и балансировку системы при перепадах давления. Справиться со всеми этими задачами вручную очень сложно. Однако их способен успешно решить смесительный термостатический клапан, одну из моделей которого по вполне доступной цене предлагает всемирно известный онлайн магазин AliExpress.

Термостатический клапан: основные особенности и предназначение

Термостатические клапаны являются специальными соединительными фитингами, используемыми в отопительных системах и системах, обеспечивающих снабжение потребителей горячей водой. Эти устройства особенно полезны для частных домов, в которых установлен локальный водонагревательный прибор.

Об обустройстве систем ГВС в индивидуальных домах мы рассказывали в ранее опубликованной статье.

Термостатический клапан, называемый также терморегулирующим, термосмесительным и балансировочным, обеспечивает выполнение следующих задач:

  • поддержание заданного температурного режима на выходе;
  • поддержание заданного давления;
  • защита пользователей от ожогов.

Поддержание клапаном заданного температурного уровня и защита людей от ожогов обеспечиваются путем смешивания горячей жидкости с холодной. Зачастую термостатические клапаны, предназначенные для защиты, устанавливаются на входе водопроводных кранов в санузлах. Защитная функция фитингов обеспечивается за счет имеющегося в их составе специального блока, перекрывающего воду в тех случаях, когда она становится чересчур горячей.

Задача по поддержанию давления реализуется клапаном вполне аналогично. Однако данная его функция в частных домах, где давление воды практически никогда не бывает чрезмерно высоким, востребована довольно редко.

Использование термостатического клапана в составе систем отопления

Конструкция термостатических клапанов, используемых в составе отопительных систем, слегка отлична от ранее описанной. Дело в том, что поддержание клапаном заданной температуры обеспечивается за счет смешивания воды отопительных веток – подающей и обратки.

В обычной водяной системе отопления отопительные трубы в доме закольцованы. Горячая вода в них циркулирует постоянно, без конца возвращаясь к водонагревателю для подогрева. Этот процесс продолжается до момента разогрева дома до нужной температуры. Работа бойлера в подобном режиме совершенно лишена экономичности.

Достаточно высокий уровень экономии достигается при установке терморегуляторного клапана, который монтируют на выходе бойлера. Используя этот клапан, конфигурацию системы отопления слегка изменяют так, чтобы из бойлера шла лишь одна ветка, подающая нагретый теплоноситель. Обратку же закольцовывают на клапан.

При подобной конфигурации отпадает необходимость в постоянной работе бойлера. Горячая вода из нагревателя подается в отопительную систему лишь для того, чтобы обеспечить подогрев до необходимого уровня воды в обратке. Таким образом, в отопительных системах термостатический клапан играет роль средства, обеспечивающего экономию ресурсов.

Конструкция термостатических клапанов и принцип их работы

Какой бы ни была модель термостатического смесительного клапана, он включает в себя следующие обязательные элементы:

  • корпус, чаще всего латунный;
  • смесительное приспособление или же регулятор направления;
  • рычажок управления;
  • гайки, уплотнители, пружины и прочие мелкие детали.

Корпус клапана снабжается двумя входами и одним выходом. Входы служат для приема разнотемпературных жидкостей, а выход – для выдачи жидкости заданной температуры.

Регулятор направления (смеситель) находится внутри корпуса. Функционирование этих устройств может быть различным. В простейшем случае устанавливается пружинный запорный элемент, чувствительный к уровню температуры (давления). Увеличение напряжения пружины обеспечивает в подобных клапанах снижение температуры на их выходе.

Конкретное состояние клапана задается с помощью ручки управления, которой настраивается жесткость пружины или задается положение запирающего элемента.

Разновидности клапанов

Термостатический клапан может быть прямым и непрямым или, иначе говоря, симметричным и асимметричным.

Прямые клапаны смешивание воды производят в соответствии с Т-образной схемой. Вода в них поступает из двух разнонаправленных ветвей, а на выходе ее направление изменяется на перпендикулярное.

В асимметричных моделях всегда имеется центральная ось, предназначенная, как правило, для горячей воды. Подмешивание же холодной воды производится по примыкающей боковой ветке. Термостатический клапан такого типа чаще всего встречается в отопительных системах, в которых основная ветка идет от водонагревающего прибора, а побочная подводит воду из обратки.

Итак, мы изложили основные сведения, касающиеся термостатических смесительных клапанов. Сделали мы это для того, чтобы вы смогли сполна оценить те возможности, которые открывает перед вами приобретение подобного устройства на сайте AliExpress. Надеемся, что это приобретение привнесет дополнительный комфорт в принадлежащий вам дом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Я вкладываю в написанные мной статьи всю свою душу и все свои знания в надежде, что это будет полезно посетителям нашего сайта. Буду очень признателен всем, кто решит написать свое мнение о моей работе, свои замечания и предложения в форме для комментариев, имеющейся после каждой из опубликованных мной статей. Всего опубликовано 138 статей.

www.allremont59.ru

назначение и виды клапанов, как подключить клапан к системе отопления

Трехходовой термостатический клапан используют для регулирования температуры теплоносителя. Поэтому его часто применяют в современных отопительных системах. При помощи клапана можно подавать теплоноситель определенной температуры в радиаторы. Таким образом, можно сэкономить на расходах на отопление. Но термостатический клапан выполняет и другие функции. О них можно узнать в данной статье. 

Содержание:

  1. Назначение и виды клапанов
  2. Принцип работы
  3. Как подключить клапан к системе отопления
  4. Типы приводов

Назначение и виды клапанов

По принципу действия трехходовые термостатические клапаны делятся:

  1. Переключающие.
  2. Разделительные.
  3. Смесительные.

Переключающие клапаны переключают воду по разным направлениям. Разделительные клапаны разделяют два потока с разной температурой, а смесительные устройства наоборот их смешивают. Трехходовые клапаны различаются внешне. На корпусе устройства изображен рисунок, который отражает принцип работы. На разделительном элементе указывается похожее изображение. Переключающие клапаны не имеют рисунка, но они отличаются по форме от других видов. 

При помощи разделения или смешивания потоков можно добиться необходимой температуры носителя тепла. А переключение применяют в двухконтурных газовых котлах. Необходим клапан для того чтобы подогретую воду по очереди направлять в разные теплообменники.

Принцип работы

Клапан обычно выглядит в виде тройника, выполненного из бронзы или латуни. А сверху устроена шайба для регулировки. Вода продолжает циркулировать через правый или фронтальный патрубок пока температура не достигнет нужного значения. Задачей термостатического клапана является удержание температуры носителя тепла на выходе в определенном значении. Для этого в зависимости от схемы подмешивается горячая или холодная вода из левого патрубка. 

Если температура теплоносителя выходит за требуемое значение , то фронтальный входной патрубок перекрывается. 

Как подключить клапан к системе отопления

После того как мы разобрались что такое трехходовой термостатический клапан и как он работает, то можно рассмотреть схемы подключения к системе отопления. Необходимо установить клапан в следующих случаях:

  • В системе « теплый пол». Так как в контурах теплоноситель должен иметь температуру не более 45°. Контролировать температуру сможет трехходовой термостатический клапан;
  • Клапан часто применяют, чтобы защитить твердотопливный котел от конденсата. А также случается температурный шок из-за внезапных отключений электричества. 
  • Для того чтобы в разных местах отопительной системы поддерживалась требуемая температура носителя тепла применяют трехходовой термостатический клапан.

В системе «теплый пол» циркуляционный насос гоняет носитель тепла по контурам до его остывания. Затем срабатывает термоголовка и датчик, а трехходовой термостатический клапан добавляет горячую воду, которая идет от котла, в замкнутый контур. 

Для защиты твердотопливного котла от конденсата нельзя допустить подачу остывшей воды из радиаторов во время его разогрева. Для этого применяют схему подключения с трехходовым клапаном и байпасом. Принцип работы заключается в следующем: вода движется по малому кругу, проходя через байпас в то время пока теплогенератор не прогрелся. Когда в обратке теплоноситель нагревается до 50-55°, то клапан открывается и подмешивает холодный носитель тепла из системы. Когда отопитель выходит в рабочий режим, то байпас закрывается и поток проходит через радиаторы. 

Рассмотрим установку клапана при обвязке твердотопливного теплогенератора и аккумулятора тепла. Для того чтобы ее прогреть быстро температура теплоносителя должна быть 70-85°. Но такая температура не нужна для системы отопления радиаторами. Поэтому производят установку трехходового термостатического клапана за аккумулятором для понижения температуры.

В домах с большой площадью обычно устроена сложная отопительная система. В каждый контур требуется подача температуры разной температуры. Самая высокая температура требуется бойлеру. Именно поэтому на подводке к нему не нужна регулирующая арматура. А остальным контурам необходим теплоноситель с более низкой температурой, поэтому их подключают через трехходовой термостатический клапан.

Типы приводов

Во время работы трехходовым клапаном управление температурой происходит при помощи внешнего привода. Он в свою очередь делится на несколько видов:

  1. Термостатическая головка может управлять краном вместо обычного привода. Она имеет чувствительный элемент, который реагирует на температуру воздуха. Для того чтобы она начала реагировать на температуру воды клапан дополнительно снабжают выносным датчиком температуры. Его помещают в трубопровод, где протекает теплоноситель, и соединяется с приводом капиллярной трубкой. Такой способ считается точным.
  2. Самый простой привод за счет расширения жидкой среды чувствительной к переменам температуры, которая размещена в нем, нажимает на шток. Бытовые клапаны небольшого диаметра обычно оснащены таким типом привода. Такие клапаны можно с легкостью снять и установить другое устройство.
  3. Данный способ является самым популярным и самым точным. Электропривод, который управляется контроллером, также может воздействовать на шток. Преобразователи температуры постоянно измеряют температуру носителя тепла и при повышении сразу сигнализируют контролеру. А от него полностью зависит работа термостатического клапана.
  4. Есть и более простой вид изделия. Он называется трехходовой смесительный клапан с сервоприводом. Он является упрощенным видом предыдущего способа. Но в данном способе отсутствует контролер. В таком случае краном управляет привод, при этом получая сигналы от температурного датчика. Обычно такой вид используется в комплекте с кранами, которые имеют секторный или шаровой распределительный элемент.

Читайте также:

baltgazservice.ru

устройство, виды смесительных систем, монтаж

Многие владельцы домов для обеспечения в своем жилище теплой атмосферы устраивают автономную систему отопления. Работа по её созданию довольно непростая и требует определенных знаний. Такая система отопления имеет сложную конструкцию. В её составе присутствует большое количество различных узлов и агрегатов. Каждый из них выполняет свою определенную функцию. Одним из её элементов является трёхходовой клапан. Он выступает в качестве смесителя. В нем происходит процесс регулировки температуры теплоносителя.

Делается это главным образом для того, чтобы обеспечить равномерное прогревание труб и определенный уровень температуры в каждой из комнат. Если отказаться при монтаже систем отопления в доме от использования этой детали, то получится ситуация, когда вода при прохождении через теплообменник будет нагреваться неодинаково. Результатом этого будет то, что в одних комнатах дома будет тепло, а в других несколько прохладнее.

Когда это необходимо?

Современные технологии, которые в последние годы проникли практически во все сферы, используются и при монтаже систем отопления. Благодаря им появилась возможность для создания распределительно-смесительной арматуры, которая отличается хорошей функциональностью. Одна из её разновидностей — регулирующий клапан трехходовой. Он может использоваться в различных узлах системы отопления. Также применяют его в системах водоснабжения. Производство этих деталей осуществляется с использованием высокотехнологичного оборудования. Поэтому стоимость клапанов достаточно высокая.

Если говорить об основных задачах, которые выполняет эта деталь, отметим следующие:

  • смешивание двух потоков рабочей среды;
  • разделение входящего потока.

Для чего необходимо смешивание? Главное, для чего нужен этот процесс — защита энергетического оборудования, работающего на твердом топливе, от низкотемпературной коррозии. Её возникновение происходит по причине образования конденсата. Также смешивание обеспечивает защиту от ожогов потребителей горячей водой. Главное же, для чего оно необходимо — обеспечение эффективной температуры в контуре напольного и радиаторного отопления, за счет которых обеспечивается отопление и снабжение жилища горячей водой.

В системах отопления, подключенных параллельно, в которых используются два котла, применяется разделение. Например, его применяют, когда одновременно дровяной и газовый котел работают в составе системы отопления. После того как дрова в котле полностью прогорят, посредством разделительного клапана произойдет переключение движения теплоносителя к радиаторам от газовой установки. Использование модуля разделения позволяет в процессе работы установки систем отопления переключать контур с отопления на горячее водоснабжение, обеспечивая потребителя горячей водой.

Устройство термостатического клапана

Эти клапаны устанавливаются на все модели отопителей. Их конструкция является стандартной, поэтому основное, чем отличаются модели таких клапанов – габаритные размеры. Поэтому по своему внешнему виду термостатические клапаны для котлов Ariston, Ардерия или других производителей будут выглядеть одинаково.

Касаясь технических характеристик, отметим, что ознакомиться с ними можно, если заглянуть в технический паспорт изделия. Не стоит устанавливать на котел трёхходовой термостатический клапан, который не предназначен для него. В этом случае он все равно не сможет нормально работать. Выполнив же установку, можно столкнуться с более печальными последствиями: неподходящая деталь приведет к потере котлом рабочего состояния. В результате, пытаясь сэкономить, возникнет необходимость в дополнительных расходах.

Устройство трёхходового термостатического клапана, используемого для твердотопливных и газовых котлов, не имеет серьезных различий. Тип применяемого для получения тепловой энергии топлива также не имеет никакого значения. Особенности циркуляции теплоносителя также не важны. Связано это с тем, что в процессе использования клапаны не вступают в контакт с камерой сгорания, поэтому нет необходимости в подстройке этих элементов к типу системы отопления.

Если говорить о теплоносителе, то большинство владельцев частных домов в своих системах использует обычную воду. Делают выбор в её пользу многие из-за её доступности и отсутствия проблем во время эксплуатации системы отопления. Использовать что-то другое просто не имеет смысла, ведь водяное отопление достаточно, надежно и при использовании таких систем с ними не возникает проблем.

В качестве материала для изготовления трехходовых термостатических клапанов используются:

  • бронза;
  • нержавеющая сталь.

Существуют клапаны из полимерных материалов, но они пока еще мало представлены на рынке. Но в скором времени можно ожидать увеличение их представительства, поскольку они демонстрируют высокую надежность в эксплуатации.

Термостатический клапан, предназначенный для газового котла, имеет простое устройство. Для него характерен Т-образный вид и наличие двух входных и одного выходного отверстия. Специальная мембрана, располагающаяся внутри смесительного клапана, обеспечивает регулировку потоков, поступающих из разных источников. Благодаря ей удается добиться оптимальной температуры.

Варианты конструкций

Существуют следующие разновидности трехходовых смесительных клапанов:

  • автоматические;
  • механические.

В автоматических клапанах движение мембраны происходит естественным путём в зависимости от температуры теплоносителя.

В механическом клапане человеком выставляется положение разделителя. Поэтому, чтобы следить за температурой, приходится на каждую из входящих труб дополнительно устанавливать термометр.

Виды смесительных клапанов

Исходя из задач, для решения которых устанавливаются клапаны, их разделяют на:

  • смесительные;
  • разделительные.

Все задачи, которые были описаны выше, обеспечиваются за счет ручных манипуляций и автоматически.

Конструкция любого трёхходового смесительного клапана включает корпус, в составе которого присутствует регулирующий элемент. У каждого производителя для регулировки могут быть предусмотрены разные элементы. В одних используются поршни или штоки. Эти узлы необходимы для осуществления возвратно-поступательных движений. Некоторые производители применяют сектор и диск, благодаря которым выполняется поворотное движение. С выпускным диаметром каждого патрубка связано положение запорно-регулирующего механизма.

Наибольшей популярностью пользуются терморегулирующие смесители. Основное их предназначение связано с поддержанием необходимой температуры. Его использование не только обеспечивает баланс потоков. Благодаря ему удается создать поток с требуемой температурой на выходе. В системах горячего водоснабжения, а также в хорошо известной системе теплый пол активно применяются эти модели. Также их устанавливают в системах отопления, которые построены на основе котла, работающего на твердом топливе.

Термосмесительный клапан может комплектоваться автоматическим и ручным управлением. Основное различие между этими разновидностями будет заключаться в необходимости выполнения регулярной проверки состояния системы во избежание перегрева. В настоящий момент механические устройства используются крайне редко, поскольку есть более совершенные агрегаты.

Подключение и эксплуатация

Каких-то особых знаний для установки на отопитель этой детали не требуется. Необходим только набор ключей, которые используются для затягивания клапана. Также во время установки клапана необходима паста-герметик, используя которую выполняют запечатывание стыков.

Подключение этого смесительного клапана выполняется по одной схеме. Поэтому, если вы в первый раз выполняете установку такой детали, то ничего не перепутаете. Обращаться к мастеру за установкой этой детали стоит, только если замена детали выполняется по гарантии. В этом случае с вас не возьмут денег. Если у вас другая ситуация, то в этом случае, потратив полчаса своего времени, вы сможете выполнить установку клапана, при этом сэкономив деньги.

Особенности эксплуатации

Устройство трехходового клапана, которое было описано выше, наглядно демонстрирует, что эта деталь надежна. Она состоит из минимального числа деталей. Основные неисправности, которые могут возникать во время ее работы, связаны в основном с нарушением герметичности корпуса и потерей мембраной рабочего состояния. Какие-то другие проблемы исключены, ведь конструкция клапана простая и ломаться там просто нечему. Поломка этого элемента системы отопления — редкое явление. Они могут возникать только из-за заводского брака или если владелец неправильно использует клапан.

Если говорить о ремонте трёхходового клапана, то он не является целесообразным. Вы, конечно, можете предпринять попытку запаивания дырочки. Но, выполнив такой ремонт, в скором времени можно заметить, как рядом с ней появится другая, поскольку этот процесс необратим.

Лучше не тратить время на ремонт, а приобрести новый клапан, тем более что он стоит недорого. Средняя цена на него составляет 550 руб. После установки новой детали в течение нескольких лет можно не беспокоиться по поводу проблем с ней.

Заключение

Трехходовой клапан — необходимая деталь в системе отопления жилого дома. Она обеспечивает эффективность обогрева помещения, поскольку позволяет регулировать температуру теплоносителя. Установив такой клапан, вы избежите ситуации, когда в одной комнате будет теплее, чем в другой. Приобрести это оборудование и установить его можно без особых проблем. Она доступна на рынке и стоит недорого. Установку трехходового клапана можно провести своими силами.

Оцените статью: Поделитесь с друзьями!

kotel.guru

Особенности расчета систем отопления с термостатическими клапанами

Термостатические клапаны для радиаторов по сравнению с ручными радиаторными клапанами имеют особенности при гидравлическом расчёте. Эти особенности связаны со спецификой работы клапана в системе отопления.

Эти клапаны управляются термочувствительным элементом (термоголовкой), внутри которого находится сильфонная ёмкость, заполненная рабочим телом (газ, жидкость, твёрдое вещество) с высоким коэффициентом объемного расширения. При изменении температуры воздуха, окружающего сильфон, рабочее тело расширяется или сжимается, деформируя сильфон, который, в свою очередь, воздействует на шток клапана, открывая или закрывая его (рис. 1).

Рис. 1. Схема работы термостатического клапана

Основной гидравлической характеристикой термостатического клапана является пропускная способность Kv. Это расход воды, который способен пропустить через себя клапан при перепаде давления на нем в 1 бар. Индекс «V» обозначает, что коэффициент отнесен к часовому объемному расходу и измеряется в м3/ч. Зная пропускную способность клапана и расход воды через него, можно определить потерю давления на клапане по формуле:

ΔPк = (V / Kv)2 · 100, кПа.

Регулирующие клапаны, в зависимости от степени открытия, имеют разную пропускную способность. Пропускная способность полностью открытого клапана обозначается Kvs. Потери давления на термостатическом радиаторном клапане при гидравлических расчетах, как правило, определяются не при полном открытии, а для определенной зоны пропорциональности – Xp.

Xp – это зона работы термостатического клапана в интервале от температуры воздуха при полном закрытии (точка S на графике регулирования) до установленного пользователем значения допустимого отклонения температуры. Например, если коэффициент Kv дан при Xp = S – 2, и термоэлемент установлен в такое положение, что при температуре воздуха 22 ˚С клапан будет полностью закрыт, то этот коэффициент будет соответствовать положению клапана при температуре окружающего воздуха 20 ˚С.

Отсюда можно сделать вывод, что температура воздуха в помещении будет колебаться в пределах от 20 до 22 ˚С. Показатель Xp влияет на точность поддержания температуры. При Xp = (S – 1) диапазон поддержания температуры внутреннего воздуха будет в пределах 1 ˚С. При Xp = (S – 2) – диапазон 2 ˚С. Зона Xp = (S – max) характеризует работу клапана без термочувствительного элемента.

В соответствии с ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях», в холодный период года в жилой комнате оптимальные температуры лежат в пределах от 20 до 22 ˚С, то есть, диапазон поддержания температуры в жилых помещениях зданий должен быть 2 ˚С. Таким образом, для расчёта жилых зданий требуется выбор значений пропускной способности при Xp = (S – 2).

Рис. 2. Термостатический клапан VT.031

На рис. 3 показаны результаты стендового испытания термостатического клапана VТ.031 (рис. 2) с термостатическим элементом VТ.5000 с установленным значением «3». Точка S на графике это теоретическая точка закрытия клапана. Это температура, при которой клапан имеет настолько маленький расход, что его можно считать, практически, закрытым.

Рис. 3. График закрытия клапана VT.031 с термоэлементом VT.5000 (поз. 3) при перепаде давлений 10 кПа

Как видно на графике, клапан закрывается при температуре 22 ˚С. При понижении температуры воздуха, пропускная способность клапана увеличивается. На графике показаны значения расхода воды через клапан при температуре 21 (S – 1) и 22 (S – 2) ˚С.

В табл. 1 представлены паспортные значения пропускной способности термостатического клапана VТ.031 при различных Xp.

Таблица 1. Паспортные значения пропускной способности клапана VT.031

DN клапана

1/2''

Значение коэффициента

пропускной способности

Kv при Xp; м3/ч

S – 1

0,35

S – 1,5

0,45

S – 2

0,63

S – 3

0,9

Kvs; м3/ч

1,2

Клапаны испытываются на специальном стенде, показанном на рис. 4. В ходе испытаний поддерживается постоянный перепад давления на клапане равный 10 кПа. Температура воздуха имитируется при помощи термостатической ванны с водой, в которую погружается термоголовка. Температура воды в ванне постепенно повышается, при этом фиксируются расходы воды через клапан до полного закрытия.

Рис. 4. Стендовые испытания клапана VT.032 на пропускную способность по ГОСТу 30815-2002

Кроме значений пропускной способности термостатические клапаны характеризуются таким показателем, как максимальный перепад давления. Это такой перепад давления на клапане, при котором он сохраняет паспортные регулировочные характеристики, не создает шум, а также при котором все элементы клапана не будут подвержены преждевременному износу.

В зависимости от конструкции, термостатические клапаны имеют различные значения максимального перепада давления. У большинства представленных на рынке радиаторных термостатических клапанов эта характеристика составляет 20 кПа. При этом, согласно п. 5.2.4 ГОСТ 30815-2002, температура, при которой клапан закроется, при максимальном перепаде давления, не должна отличаться от температуры закрытия при перепаде давления 10 кПа более чем на 1 ˚С.

Из графика на рис. 5 видно, что клапан VТ.031 при перепаде давления 10 кПа и уставке термоэлемента «3» закрывается при 22 ˚С.

Рис. 5. Графики закрытия клапана VT.031 с термоэлементом VT.5000 при перепаде давления 10 кПа (синяя линяя) и 100 кПа (красная линия)

При перепаде давления 100 кПа клапан закрывается при температуре 22,8˚С. Влияние дифференциального давления составляет 0,8 ˚С. Таким образом, в реальных условиях эксплуатации такого клапана при перепадах давления от 0 до 100 кПа, при настройке термоэлемента на цифру «3», диапазон температур закрытия клапана составит от 22 до 23 ˚С.

Если в реальных условиях эксплуатации перепад давления на клапане вырастет больше максимального, то клапан может создавать недопустимый шум, а также его характеристики будут существенно отличаться от паспортных.

Из-за чего же происходит увеличение перепада давления на термостатическом клапане во время эксплуатации? Дело в том, что в современных двухтрубных системах отопления расход теплоносителя в системе постоянно меняется, в зависимости от текущего теплопотребления. Какие-то терморегуляторы открываются, какие-то – закрываются. Изменение расходов по участкам приводит к изменению распределения давлений.

Для примера рассмотрим простейшую схему (рис. 6) с двумя радиаторами. Перед каждым радиатором установлен термостатический клапан. На общей линии находится регулирующий вентиль.

Рис. 6. Расчетная схема с двумя радиаторами

Допустим, что потери давления на каждом термостатическом клапане составляет 10 кПа, потери давления на вентиле – 90 кПа, общий расход теплоносителя – 0,2 м3/ч и расход теплоносителя через каждый радиатор – 0,1 м3/ч. Потерями давления в трубопроводах пренебрегаем. Полные потери давления в этой системе составляют 100 кПа, и они поддерживаются на постоянном уровне. Гидравлику такой системы можно представить следующей системой уравнений:

где Vо – общий расход, м3/ч, Vр – расход через радиаторы, м3/ч, kvв – пропускная способность вентиля, м3/ч, kvт.к. – пропускная способность термостатических клапанов, м3/ч, ΔPв – перепад давления на вентиле, Па, ΔPт.к – перепад давления на термостатическом клапане, Па.

Рис. 7. Расчетная схема с отключенным радиатором

Предположим, что в помещении, где установлен верхний радиатор, температура увеличилась, и термостатический клапан полностью перекрыл поток теплоносителя через него (рис. 7). В этом случае весь расход будет идти только через нижний радиатор. Перепад давления в системе выразится следующей формулой:

где Vо′ – общий расход в системе после отключения одного термостатического клапана, м3/ч, Vp′ – расход теплоносителя через радиатор, в данном случае он будет равен общему расходу; м3/ч.

Если принять во внимание, что перепад давления поддерживается постоянным (равным 100 кПа), то можно определить расход, который установится в системе после отключения одного из радиаторов.

Потери давления на вентиле снизятся, так как общий расход через вентиль уменьшился с 0,2 до 0,17 м3/ч. Потери давления на термостатическом клапане наоборот вырастут, потому что расход через него вырос с 0,1 до 0,17 м3/ч. Потери давления на вентиле и термостатическом клапане составят:

Из приведенных расчетов можно сделать вывод, что перепад давления на термостатическом клапане нижнего радиатора при открытии и закрытии термостатического клапана верхнего радиатора будет варьироваться от 10 до 30,8 кПа.

Но что будет, если оба клапана перекроют движение теплоносителя? В этом случае потери давления на вентиле будут нулевыми, так как движения теплоносителя через него не будет. Следовательно, разница давлений до золотника/после золотника в каждом радиаторном клапане будет равна располагаемому напору и составит 100 кПа.

Если используются клапаны с допустимым перепадом давлений меньше этой величины, то клапан может открыться, несмотря на отсутствии реальной потребности в этом. Поэтому перепад давлений на регулируемом участке сети должен быть ниже максимально допустимого перепада давления на каждом терморегуляторе.

Предположим, что вместо двух радиаторов в системе установлено некое множество радиаторов. Если в какой-то момент все терморегуляторы, кроме одного, закроются, то потери давления на вентиле будут стремиться к 0, а перепад давления на открытом термостатическом клапане будет стремиться к располагаемому напору, т.е., для нашего примера, к 100 кПа.

В этом случае расход теплоносителя через открытый радиатор будет стремиться к значению:

То есть в самом неблагоприятном случае (если из множества радиаторов открытым останется только один) расход на открытом радиаторе вырастет более чем в три раза.

Насколько же измениться мощность отопительного прибора при таком увеличении расхода? Теплоотдача Q секционного радиатора считается по формуле:

где Qн – номинальная мощность отопительного прибора, Вт, Δtср – средняя температура отопительного прибора, ˚С, tв – температура внутреннего воздуха, ˚С, Vпр – расход теплоносителя через отопительный прибор, n – коэффициент зависимости теплоотдачи от средней температуры прибора, p – коэффициент зависимости теплоотдачи от расхода теплоносителя.

Предположим, что отопительный прибор имеет номинальную теплоотдачу Qн = 2900 Вт, расчётные параметры теплоносителя 90/70 ˚С. Коэффициенты для радиатора принимаются: n = 0,3, p = 0,015. В расчётный период при расходе 0,1 м3/ч такой отопи- тельный прибор будет иметь мощность:

Чтобы узнать мощность прибора при Vр’’=0,316 м³⁄ч необходимо решить систему уравнений:

Методом последовательных приближений получаем решение этой системы уравнений:

Отсюда можно сделать вывод, что в системе отопления при самых неблагоприятных условиях, когда все отопительные приборы, кроме одного, на участке перекрыты, перепад давления на термостатическом клапане может вырасти до располагаемого напора. В приведенном примере при располагаемом напоре 100 кПа расход увеличится в три раза, при этом мощность прибора возрастёт всего на 17 %.

Повышение мощности отопительного прибора приведёт к увеличению температуры воздуха в отапливаемом помещении, что, в свою очередь, вызовет закрытие термостатического клапана. Таким образом, колебание перепада давления на термостатическом клапане во время эксплуатации в пределах паспортного максимального значения перепада является допустимым, и не приведет к нарушению в работе системы.

В соответствии с ГОСТ 30815-2002 максимальный перепад давления на термостатическом клапане определяется производителем из соблюдения требований бесшумности и сохранения регулировочных характеристик. Однако, изготовление клапана с широким диапазоном допустимых перепадов давления сопряжено с определенными конструктивными трудностями. Особые требования так же предъявляются к точности изготовления деталей клапана.

Большинство производителей выпускают клапаны с максимальным перепадом давления 20 кПа.

Исключение составляют клапаны VALTEC VT.031 и VT.032 (клапан термостатический прямой) с максимальным перепадом давления 100 кПа (рис. 8) и клапаны фирмы Giacomini серии R401–403 с максимальным перепадом давления 140 кПа (рис. 9).

Рис. 8. Технические характеристики радиаторных клапанов VT.031, VT.032

Рис. 9. Фрагмент технического описания термостатического клапана Giacomin R403

Рис. 10. Фрагмент технического описания термостатического клапана

При изучении технической документации необходимо быть внимательным, так как некоторые производители переняли практику банкиров - вставлять мелкий текст в примечаниях.

На рис. 10 представлен фрагмент из технического описания одного из типов термостатических клапанов. В основной графе указано значение максимального перепада давления 0,6 бара (60 кПа). Однако в сноске есть примечание, что действительный диапазон работы клапана ограничен всего лишь 0,2 барами (20 кПа).

Рис. 11. Золотник термостатического клапана с осевым креплением уплотнителя

Ограничение вызвано шумом, возникающим в клапане при высоких перепадах давления. Как правило, это касается клапанов с устаревшей конструкцией золотника, в котором уплотнительная резинка просто крепится по центру заклепкой или болтом (рис. 11).

При больших перепадах давления уплотнитель такого клапана начинает вибрировать из-за неполного прилегания к золотниковой тарелке, вызывая акустические волны (шум).

Повышенный допустимый перепад давления в клапанах VALTEC и Giacomini достигнут за счёт принципиально иной конструкции золотниковых узлов. В частности, у клапанов VT.031 использован латунный золотниковый плунжер, «футерованный» эластомером EPDM (рис. 12).

Рис. 12. Вид золотникового узла клапана VT.031

Сейчас разработка термостатических клапанов с широким диапазоном рабочих перепадов давления является одной из приоритетных задач специалистов многих компаний.

    Исходя из изложенного, можно дать следующие рекомендации по проектированию систем отопления с термостатическими клапанами:
  1. Коэффициент пропускной способности термостатического клапана рекомендуется определять, исходя из допустимого диапазона температур обслуживаемого помещения. Например, для жилых комнат по ГОСТ 30494-2011 оптимальные пара- метры внутреннего воздуха находятся диапазоне 20–22 ˚С. Значение Kv в этом случае принимается при Xp = S – 2. В помещениях категории 3а (помещения с массовым пребыванием людей, в которых люди находятся преимущественно в положении сидя без уличной одежды) оптимальный диапазон температур 20–21 ˚С. Для этих помещений значение Kv рекомендуется принимать при Xp = S – 1.
  2. На циркуляционных кольцах системы отопления должны быть установлены устройства (перепускные клапаны либо регуляторы перепада давления), ограничивающие максимальный перепад давления таким образом, чтобы перепад давления на клапане не превысил предельного паспортного значения.

Приведем несколько примеров подбора и установки устройств, для ограничения перепада давления на участке с термостатическими клапанами.

Пример 1. Расчётные потери давления в квартирной системе отопления (рис. 13), включая термостатические клапаны, составляют 15 кПа. Максимальный перепад давления на термостатических клапанах равен 20 кПа (0,2 бара). Потери давления на коллекторе, включая потери на теплосчётчиках, балансировочных клапанах и прочей арматуре примем 8 кПа. В итоге перепад давления до коллектора составляет 23 кПа.

Если установить регулятор перепада давления или перепускной клапан до коллектора, то в случае перекрытия всех термостатических клапанов в данной ветке, перепад на них составит 23 кПа, что превышает паспортное значение (20 кПа). Таким образом, в данной системе регулятор перепада давления или перепускной клапан должен устанавливаться на каждом выходе после коллектора, и должен быть настроен на перепад 15 кПа.

Рис. 13. Схема к примеру 1

Пример. 2. Если принять не тупиковую, а лучевую систему поквартирного отопления (рис. 14), то потери давления в ней будут значительно ниже. В приведенном примере коллекторно-лучевой системы потери в каждой радиаторной петле составляют 4 кПа. Потери давления на квартирном коллекторе примем 3 кПа, а потери давления на этажном коллекторе – 8 кПа.

В этом случае регулятор перепада давления можно расположить перед этажным коллектором и настроить его на перепад 15 кПа. Такая схема позволяет сократить количество регуляторов перепада давления и существенно удешевить систему.

Рис. 14. Схема к примеру 2

Пример 3. В данном варианте используются радиаторные термостатические клапаны с максимальным перепадом давления 100 кПа (рис. 15). Так же как и в первом примере, примем, что потери давления в квартирной системе отопления составляют 15 кПа. Потери давления на квартирном узле ввода (квартирной станции) 7 кПа. Перед квартирной станцией перепад давления составит 23 кПа. В десятиэтажном здании общую длину пары стояков системы отопления можно принять порядка 80 м (сумма подающего и обратного трубопроводов).

Рис. 15. Схема к примеру

При средних линейных потерях давления по стояку 300 Па/м, общие потери давления в стояках составят 24 кПа. Отсюда следует, что перепад давления у основания стояков составит 47 кПа, что меньше максимально допустимого перепада давления на клапане.

Если установить регулятор на перепад давления на стояк и настроить его на давление 47 кПа, то даже когда все радиаторные клапаны, подключенные к этому стояку, закроются, перепад давления на них будет ниже 100 кПа.

Таким образом, можно существенно снизить стоимость системы отопления, установив вместо десяти регуляторов перепада давления на каждом этаже, один регулятор у основания стояков.

Автор: Жигалов Д.В.

© Правообладатель ООО «Веста Регионы», 2010 Все авторские права защищены. При копировании статьи ссылка на правообладателя и/или на сайт www.valtec.ru обязательна.

valtec.ru


Смотрите также