Драйверы для светодиодных лампочек. Драйвер для автоламп


Драйверы для светодиодных лампочек.

Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно? Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод. А теперь перейдём к делу. Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии). Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1). Эту формулу я писАл много раз. Повторюсь. Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели. Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2). (220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать. Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено. Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях. Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно. Конденсаторы заказывал эти:aliexpress.com/snapshot/310648391.html aliexpress.com/snapshot/310648393.html Диоды вот эти:aliexpress.com/snapshot/6008595825.html Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения. У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г). Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%. В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо. Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно. Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора. Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую). Посмотрим на характеристики от продавца:[input voltage] ac85-265v" that everyday household appliances." [output voltage] load after 10-15v; can drive 3-4 3w led lamp beads series [output current] 600maА вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)]. Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех). Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит. Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее! На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно. Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).

Микросхема 3106 отслеживает выходные параметры преобразователя через обратную связь с вспомогательной обмотки трансформатора и управляет ключевым транзистором. Попытки найти информацию на эту МС в Интернете ничего не дала. RS1 RS2 — токозадающие резисторы. От их номинала зависит выходной ток драйвера. RS1 (1 Ом) – основной, при помощи RS2 (33 Ом) выходной ток подгоняется более точно. Оказывается, и у этих драйверов можно регулировать выходной ток. Снял зависимость выходного тока от сопротивления RS (может кому пригодится). Регулировать ток при помощи выносного переменного резистора не получится. Паразитные ёмкости и индуктивности никто не отменял. А теперь на счёт применимости. В этот светильник что только не вклеивал (был обзор). Теперь приклеил 1-Вт-ные светодиоды. К ним буду подключать обозреваемые драйверы, так нагляднее. А вот так он светит. Всего 12 светодиодов (6 пар). Для равномерного распределения света самое оптимальное количество. Для эксперимента тоже лучше не придумаешь. Один из вариантов подключения к драйверу с балластом на конденсаторах. С1=1,5мкФ+1,2мкФ=2,7мкФ. Чтобы посчитать мощность, необходимо посчитать ток по формуле (2). I=(228В-36В)*2,7мкФ/3,18=163мА. Мощность считается по формуле из школьного учебника физики. Р= 36В*0,163А=5,9Вт. А теперь посмотрим, что показывают приборы.

Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает. А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно. У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть. А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу. Итого 3 параллели по 4 светодиода. Вот, что показывает Ваттметр. 7,1Вт активной мощности. Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр. Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер. Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.

Всё рассмотрел, всё измерил. Теперь выделю плюсы и минусы этих схем:Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами. -Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой. -Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели. -Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами. +Схема очень проста, не требует особых навыков при изготовлении. +Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон. +Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста. +Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.). +Можно регулировать ток через светодиоды подбором ёмкости балласта. +Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения. Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение. Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша. Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь. На этом всё! Удачи всем.

mysku.ru

Схема драйвера для светодиодов 220

Для того чтобы светодиодные лампы работали максимально ярко и эффективно, используются специальные модули – драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора – преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются – проанализируйте характеристики и виды приборов.

Для чего нужны драйверы?

Основное назначение драйверов – это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

Параметры драйверов

Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

  1. Номинальный ток потребления.
  2. Мощность.
  3. Выходное напряжение.

Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто – это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

Мощность драйвера

Мощность прибора – это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие – мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

Р = Р(св) х N,

где Р, Вт – мощность драйвера;

Р(св), Вт – мощность одного светодиода;

N – количество светодиодов.

Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности – примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

Цвета светодиодов

Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

Типы драйверов

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные – типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток – высокое влияние различного рода электромагнитных помех.

На что обратить внимание при покупке?

Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование системы освещения. Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое – для использования в бытовых системах они не годятся.

Диммируемый драйвер

Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

  1. Уменьшать интенсивность освещенности днем.
  2. Скрывать или же подчеркивать определенные элементы интерьера.
  3. Зонировать помещение.

Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс – в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении – с синеватым.

Какую микросхему выбрать?

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Регулирование яркости.
  2. Напряжение питания – 6-30 В.
  3. Выходной ток – 1,2 А.
  4. Допустимая погрешность при стабилизации тока – не более 5%.
  5. Защита от отключения нагрузки.
  6. Выводы для диммирования.
  7. КПД – 97%.

Обозначение выводов микросхемы:

  1. SW – подключение выходного коммутатора.
  2. GND – отрицательный вывод источников питания и сигнала.
  3. DIM – регулятор яркости.
  4. CSN – датчик входного тока.
  5. VIN – положительный вывод, соединяемый с источником питания.

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо – можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

fb.ru

Как подобрать светодиодный драйвер - виды и основные характеристики

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

КПД импульсного драйвера для светодиодов достигает 95%

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.

Дешевый светодиодный драйвер

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P = P(led) × n

P(led) – мощность одного LED-элемента;

n — количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.

Подключение светодиодов к драйверу

Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами — до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов — до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.

Светодиодный драйвер без корпуса

Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе.  Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Импульсный драйвер

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток — во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

lampagid.ru

Светодиодные драйверы для авто - для управления светодиодами

Светодиодные драйверы для авто

Светодиодные драйверы для авто — этот материал для тех, кому уже порядком поднадоело заниматься выпаиванием резисторов из светодиодной ленты класса SMD, в случае их выхода из строя. А это, как показывает практика, происходит очень часто. И вот встает вопрос, что можно сделать, чтобы избавиться от этого трудоемкого процесса? Какое сконструировать устройство, чтобы оно являлось надежным и в то же время самым простым вариантом для обеспечения светодиодов напряжением питания.

Если взять 12 вольтовые лампы MR16 — не подойдут, так как создают ощутимые помехи в радио эфире. Использовать стабилизатор тока на lm317 для мощных светодиодов, тоже не подойдет из-за технической сложности, то есть для него требуется сторонний ограничительный резистор по току. Ну а воспользоваться просто мощным резистором, такой вариант совсем отпадает, поскольку значение тока непосредственно зависит от напряжения в бортовой сети автомобиля. И вот после некоторого отчаяния от неопределенности, хорошие люди подсказали — светодиодный линейный драйвер NSI45030AT1G.

Вот их внешний вид

А это их компактные размерыПо габаритам похожи на SMD-резисторы

Цифры находящиеся в конце маркировки обозначают ток. Для примера: драйвер NSI50350AST3G обеспечивает постоянным током 360 мА в независимости от действующего напряжения в бортовой сети автомобиля. Отличительная особенность — способны работать в параллельном включении. Как известно, при параллельном соединении значение рабочего тока прибавляется. Вам необходим рабочий ток в 1А?

Включите параллельно три регулятора постоянного тока NSI50350 для управления светодиодами . Результат будет такой: 350+350+350 =1050мА

Если вам необходимо построить устройство с маленьким током потребления, то тогда нужно воспользоваться компонентами с различными номиналами: NSI50010YT1G – 10 мА, NSI45015WT1G – 15 мА NSI45020AT1G – 20мА, NSI45030AT1G — 30 мА.

Вот с ними можете экспериментировать, то-есть подгонять под нужные вам токи и не вспоминайте больше про резисторы. В популярной литературе про приборы NSI, вот что пишут:

Светодиодные драйверы для авто и в частности всей линейки NSI-устройства и их особенностей, то это простейшие с высокой надежностью электронные элементы, предназначенные для регулировки потребляемого светодиодами тока, имеющие высокоэффективный отвод тепла от теплоотвода и не большую стоимость. Как драйвер в цепи светодиода микросхема в основном направлена для модулей освещения в автомобилях. Регулятор управления реализован на базовых принципах технологического решения SBT, что гарантирует стабильный ток в большом спектре входящих напряжений. Защиту светодиода от температурной составляющей при высоких значениях напряжениях и тока, осуществляет установленный в тракте регулировки тока терморезистор с отрицательным температурным коэффициентом сопротивления. Также в регулирующем тракте имеется защита от импульсных скачков напряжения.

Следовательно, вопрос: где их можно задействовать? Для подсветки щитка приборов? Подсветка номерного знака? Габаритные огни авто? Да, именно там они будут очень эффективно полезны.В общем приобретаем стабилизаторы:

NSI45030AT1G – 30 мА.

Светодиоды

LEMWS59R80HZ2D00.h2X, 5630, 5000K Производитель: LG INNOTEK

полоска фольгированного алюминия

Подготавливаем прозрачную пленку Lomond, которую можно использовать для печати различных изображений, фоторезист и для травления — хлорное железо. Конечно можно изготовить плату методом прорезки дорожек, как вам будет удобнее.

Изготавливаем половинкиНужны хорошо наточенные ножницы

Где-то добываем вышедшие из строя светодиодные лампы W5W

Извлекаем пластиковый цоколь W5W

Делаем точную разметку, что резать

Здесь нужно убрать все лишнее, чтобы плата свободно заходила в цоколь

Гравер

Делаем плату с размером цоколя

Готовим паяльную пасту

С помощью шприца наносим пасту на контактные площадки и сажаем на плату светодиоды с драйверами

Здесь нужно заметить, что в схеме имеется две NSI45030AT1G, а поэтому на обеих зеркальных половинках ток будет по 60 мАЗатем помещаем плату на хорошо разогретый утюг

И как только паяльная паста оплавит выводы деталей сразу же снимаем плату с утюга

Затем нужно будет облудить провод от сетевого кабеля

и припаять отрезки провода к контактным площадкам половинок

в цоколе

я сделал отверстия сбоку, через них пройдут выводы

поместил половинки в цоколи

перед этим я убрал все остатки канифоли с платы

а затем уже одел цоколи

выводы сделал короче, на нужную длину

выводы между собой не скручивал

выводы аккуратно загнул

Теперь все, сборка закончена, сейчас будем проверять.

Яркость свечения мощнее нежели у лампочки W5W. Проработала больше часа, замерил температуру — было около 50 градусов

В этой статье вобще-то не было целью создать источник света с яркостью большей, чем у аналогичной лампы накаливания. Речь шла именно об приборах NSI, при использовании которых не потребуются резисторы.

usilitelstabo.ru

Драйвер для LED лампочки

У меня дома уже почти 5 лет трудятся светодиодные лампочки Оптоган, в том числе модели Оптолюкс 12 Вт. Однако уже 2 лампа стала неисправной – замигала как стробоскоп. Так как Оптоган прекратил их производство, было решено восстанавливать лампу с помощью китайского светодиодного драйвера. Для тех, кого это заинтересовало – прошу под кат.

Доказательство покупки:

Для кого это покупалось:

Разбираем нашу лампу, и видим, что светодиодная сборка питается напряжением 26-32 Вольт, силой тока 0,4 А.

Сама сборка состоит из 12 1-ваттных светодиодов производства самой Оптоган (судя по всему, модели OLP-5065F6A-09A). Кому интересно – вот даташит на светодиод.

К слову, о них даже была статья в одном журнале.

Исходя из этих данных и заказываем драйвер, с максимально похожими параметрами.

Размеры драйвера – 42*18*17 мм., входное напряжение – 85 – 265 Вольт, выходное напряжение – 24 – 42 Вольт, сила тока – 300 мА. Рассчитан на мощность сборки 8 – 12 Ватт.

Картинка со страницы товара:

И пара моих фото:

Я не удержался, и до того, как сделал фото, протестировал драйвер и отпаял 2 силиконовых провода на входе. Сама плата собрана аккуратно, флюс отмыт (там где есть следы флюса – паял я).

Производитель драйвера – Dark energy :), версия – 1.5. построен он на микросхеме BP3125 производства китайской Bright Power Semiconductor (даташит).

Там же приведена типовая схема включения, по которой и собран драйвер. На входе стоит диодный мост и конденсатор на 400 В. 10 мКф, на выходе – кондер на 50 В. и 47 мКф.

К сожалению, я вспомнил о том, что нужно бы померить выходной ток, когда уже все собрал.

Приступим к финишной разборке лампы. Отверткой выковыриваем весь герметик, и вынимаем неисправный драйвер. К сожалению, тут аккуратность не спасает – все равно я снес 2 дросселя. Драйвер оптогана построен на микросхеме LNK403 производства Power Integrators (даташит).

Плату со светодиодами крепим к радиатору на термоклей, берем термоусадку диаметром 18 (лучше возьмите побольше) и обдуваем термофеном. В пластиковом цоколе удаляем остатки клея с помощью дремеля и насадок-наждачек. Клеим супер клеем.

Проверяем – все работает.

Приклеиваем плафон из поликарбоната с помощью клея B-7000, и вкручиваем в люстру.

Недостаток у этого драйвера по сравнению с родным – он включается чуть медленнее, буквально на долю секунды.

К сожалению, люксметра нет, так что проверить яркость не представляется возможным. Невооруженным глазом сильных отличий не замечено. То же касается пульсаций, которые на глаз незаметны.

После ремонта лампа работает уже 2 месяца, за это время проблем с ней не возникло.

В качестве бонуса – начинка лампы Оптоган оптолюкс на 5 Ватт, которая построена на микросхеме lnk457 (даташит).

Начинка Оптолюкс 5 Вт.

mysku.ru

Автомобильные лампы DLED ZES - отличное решение для головного света.

Компания DLED рада предложить своим покупателям новую разработку в области светодиодного освещения - наисовременнейшую серию автомобильных ламп для головного света DLED ZES. Представляем Вам подробный разбор автолампы с цоколем h5 из данной линейки.

Характеристики

Количество светодиодов - 16шт

Тип светодиодов - ZES

Световой поток лампы - 2000 Лм

Напряжение -DC9-32V

Входной ток -20W

Цветовая температура -5000K

Степень влагозащищенности - IP67

Продолжительность работы - более 30000 часов

Температура эксплуатации - -40°~+85°

Размеры

При небольших габаритах радиатора он отличается высокой мощностью. Тепловой рассеиватель, накручивающийся на конец лампы, может размещаться своей широкой частью как внутрь, так и наружу - при установке широкой части внутрь на 6.8мм сокращается длина, благодаря чему упрощается монтирование лампы и закрытие фары герметичной крышкой. 

Вариант расположения -широкой частью наружу

Вариант расположения -широкой частью внутрь

Длина

95.2мм

89мм

Ширина

18.5мм

18.5мм

Диаметр радиатора

51мм

51мм

Размещение светодиодов

За основу размещения светодиодов в конструкции данных ламп взята имитация нити накаливания. Платы закреплены на прочных, надежных болтах. Внешний корпус ровный, аккуратный, вся конструкция закреплена хорошо и качественно.

Световой поток

Замеры проводились в специализированном измерительном кубе с использованием люксометра. Первоначально были сняты показания ближнего света при температуре в 20C;затем ближний свет прогревался 60 минут и также были зафиксированы показания температуры; затем на 30 минут были включены лампы дальнего света, также сняты мерки.

 

Стандартная галогенная лампа h5, lumen

Измеренные показатели, lumen

Холодный ближний свет

1200

2070

Прогретый ближний свет

1000

2020

Прогретый дальний свет

1500

2158

1 светодиод DLED ZES характеризуется световым потоком от 140 до 270 люмен. Таким образом, с использованием измерений, приведенных выше, мы можем сделать вывод, что на 1 светодиод ближнего света приходится 258lumen (что меньше реальных показателей, т.к. часть лампы прикрыта защитной плоскостью), а на 1 светодиод дальнего - 269 lumen.

Размещение радиатора

Радиатор устанавливается снаружи, длина резьбы составляет 20мм, чего в-принципе достаточно; для большей плотности контакта покрыта термопастой, что обеспечивает высокий уровень теплопроводности. 6.2мм длины экономится, если устанавливать широкий конец радиатора внутрь.

Угол наклона

Угол наклона в фаре регулируется с помощью вращающегося крепления цоколя, которое фиксируется двумя надежными болтами. Градусная шкала, нанесенная на цоколь, значительно упрощает регулировку и делает её показатели более точными.

Масса

Масса автолампы DLED ZES h5 составляет 118г, 51.5г из них -съемный радиатор; масса драйвера и проводов  - 93.3г.

Мощность

Источник питания - блок питания на 5А. Замеренное напряжение ближнего света составляет 19.8Вт, дальнего света - 19.8Вт.

 

Энергопотребление с драйвером

Энергопотребление без драйвера

Ближний свет

19.71Вт

15.72Вт

Дальний свет

19.71Вт

15.78Вт

Напряжение питания лампы перед драйвером 12,02V DC

Потребляемый лампой ток перед драйвером 1,64А

Напряжение питания после драйвера 5,76V DC

Потребляемый лампой ток после драйвера на ближнем свете 2,73А

Потребляемый лампой ток после драйвера на дальнем свете 2,74А

 

Драйвер

Произведен высококачественно, поверхность рельефная, для влагозащищенности заполнен изнутри компаундом. Заявленное входное напряжение составляет от 9В до 32В, при пробном подключении на 24В работа драйвера соответствует всем стандартам. Энергопотребление составляет 4Вт, размеры -  62х36х18мм, масса - 93.3г, длина совместно с проводами - 31.2см. Источник питания с лампой соединяются при помощи коннектора с 4 контактами, закрывающегося сверху колпачком.

Температурное распределение по лампе

Светодиоды

111°

Середина

79°

радиатор

62°

Драйвер

50°

 

Коэффициент пульсаций

Показатели способности драйвера к стабилизации тока были протестированы специализированным пульсометром Radex Lupin; измерения продемонстрировали показатели работы в 0,63% и 0,67%, что соответствует идеальным параметрам.

Инструкция

Способ и порядокустановки указаны в прилагающейся к товару инструкции, отдельно для цоколей h5 и H7, H8, h21, h23, P13, 9004, 9005, 9006, 9007 и PSX26, h26EU и PSX24.

Подведение итогов

По измеренным и протестированным техническим характеристикам автолампы DLED ZES значительно превосходят галогенные лампы, можете сами в этом убедиться. В качестве примера вы можете посмотреть ниже несколько фотографий измерения характеристик автомобильной лампы накаливания с цоколем h5:

Температура нагрева галогенной лампы 479°С против 111°С у светодиодной лампы

Коэффициент пульсации галогенной лампы 11%, против 0,6% у светодиодной автолампы

Стоит отметить что одновременно с замером коэффициента замеряется и уровень освещенности (особенность прибора). Результаты замера конечно не верные, из-за того что лампа помещалась внебольшое закрытое пространство, но если судить по соотношению яркости - светодиодная лампа ярче практически в 3 раза.

В итоге мы получаем светодиодные лампы DLED ZES по параметрам гораздо лучше обычных галогенных ламп. Кроме прочего автомобильные светодиодные лампы гораздо надежнее и прослужат в десятки раз дльше обычных!

www.dled.ru


Смотрите также